Advertisement

Pseudarthrosis

  • Philip K. Louie
  • Bryce A. Basques
  • Nicollette M. Pepin
  • Grant D. Shifflett
Chapter

Abstract

Pseudarthrosis is a well-known complication in minimally invasive fusion techniques of the spine. As a major cause of failed lumbar spinal surgery, patients often present with significant back pain and disability due to pseudarthrosis. Fortunately, the rates of fusion for minimally invasive techniques are high and similar to those of standard open techniques. A comprehensive understanding of the fusion process will aid surgeons inoptimizing the index procedure in hopes of preventing pseudarthrosis. Furthermore, establishing the diagnosis of symptomatic lumbar pseudarthrosis can often be challenging as symptoms can be initially vague. This requires careful correlation between the clinical presentation and radiologic studies, typically dynamic plain film radiographs and thin-cut CT scan with reconstructions. Once the diagnosis of pseudarthrosis is made, various conservative and surgical treatments can be considered. Conservative treatments typically involve activity modification in combination with core strengthening and aerobic exercises. Surgical treatments are individually based on assessment of spinal balance, previous treatments, hardware stability, pseudarthrosis morphology, and graft options.

Keywords

Revision fusion Instability Electrical stimulation Interbody fusion Circumferential fusion Atrophic pseudarthrosis Hypertrophic pseudarthrosis 

References

  1. 1.
    Reid JJ, Johnson JS, Wang JC. Challenges to bone formation in spinal fusion. J Biomech. 2011;44:213–20.  https://doi.org/10.1016/j.jbiomech.2010.10.021.CrossRefPubMedGoogle Scholar
  2. 2.
    Boden SD. Overview of the biology of lumbar spine fusion and principles for selecting a bone graft substitute. Spine. 2002;27:S26.CrossRefGoogle Scholar
  3. 3.
    Boden SD, Sumner DR. Biologic factors affecting spinal fusion and bone regeneration. Spine. 1995;20:113S.CrossRefGoogle Scholar
  4. 4.
    Heggeness MH, Esses SI, Mody DR. A histologic study of lumbar pseudarthrosis. Spine. 1993;18:1016–20.CrossRefGoogle Scholar
  5. 5.
    Whang PG, O’Hara BJ, Ratliff J, Sharan A, Brown Z, Vaccaro AR. Pseudarthrosis following lumbar interbody fusion using bone morphogenetic protein-2: intraoperative and histopathologic findings. Orthopedics. 2008;31:1031–4.Google Scholar
  6. 6.
    Heggeness MH, Esses SI. Classification of pseudarthroses of the lumbar spine. Spine. 1991;16:S449–54.CrossRefGoogle Scholar
  7. 7.
    Bono CM, Lee CK. Critical analysis of trends in fusion for degenerative disc disease over the past 20 years: influence of technique on fusion rate and clinical outcome. Spine. 2004;29:455–63; discussionZ5.CrossRefGoogle Scholar
  8. 8.
    Kotani Y, Abumi K, Ito M, Sudo H, Abe Y, Minami A. Mid-term clinical results of minimally invasive decompression and posterolateral fusion with percutaneous pedicle screws versus conventional approach for degenerative spondylolisthesis with spinal stenosis. Eur Spine J. 2012;21:1171–7.  https://doi.org/10.1007/s00586–011–2114-x.CrossRefPubMedGoogle Scholar
  9. 9.
    Khan NR, Clark AJ, Lee SL, Venable GT, Rossi NB, Foley KT. Surgical outcomes for minimally invasive vs open transforaminal lumbar interbody fusion: an updated systematic review and meta-analysis. Neurosurgery. 2015;77:847–74–discussion874.  https://doi.org/10.1227/NEU.0000000000000913.CrossRefPubMedGoogle Scholar
  10. 10.
    Wu RH, Fraser JF, Härtl R. Minimal access versus open transforaminal lumbar interbody fusion. Spine. 2010;35:2273–81.  https://doi.org/10.1097/BRS.0b013e3181cd42cc.CrossRefPubMedGoogle Scholar
  11. 11.
    Adogwa O, Parker SL, Bydon A, Cheng J, McGirt MJ. Comparative effectiveness of minimally invasive versus open transforaminal lumbar interbody fusion. J Spinal Disord Tech. 2011;24:479–84.  https://doi.org/10.1097/BSD.0b013e3182055cac.CrossRefPubMedGoogle Scholar
  12. 12.
    Blondel B, Adetchessi T, Pech-Gourg G, Métellus P, Dufour H, Fuentes S. Minimally invasive transforaminal lumbar interbody fusion through a unilateral approach and percutaneous osteosynthesis. Orthop Traumatol Surg Res. 2011;97:595–601.  https://doi.org/10.1016/j.otsr.2011.05.002.CrossRefPubMedGoogle Scholar
  13. 13.
    Seng C, Siddiqui MA, Wong KPL, Zhang K, Yeo W, Tan SB, et al. Five-year outcomes of minimally invasive versus open transforaminal lumbar interbody fusion: a matched-pair comparison study. Spine. 2013;38:2049–55.  https://doi.org/10.1097/BRS.0b013e3182a8212d.CrossRefPubMedGoogle Scholar
  14. 14.
    Choi UY, Park JY, Kim KH, Kuh SU, Chin DK, Kim KS, et al. Unilateral versus bilateral percutaneous pedicle screw fixation in minimally invasive transforaminal lumbar interbody fusion. Neurosurg Focus. 2013;35:E11.  https://doi.org/10.3171/2013.2.FOCUS12398.CrossRefPubMedGoogle Scholar
  15. 15.
    Sidhu GS, Henkelman E, Vaccaro AR, Albert TJ, Hilibrand A, Anderson DG, et al. Minimally invasive versus open posterior lumbar interbody fusion: a systematic review. Clin Orthop Relat Res. 2014;472:1792–9.  https://doi.org/10.1007/s11999–014–3619–5.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kim HS, Park KH, Ju CI, Kim SW, Lee SM, Shin H. Minimally invasive multi-level posterior lumbar interbody fusion using a percutaneously inserted spinal fixation system: technical tips, surgical outcomes. J Korean Neurosurg Soc. 2011;50:441–5.  https://doi.org/10.3340/jkns.2011.50.5.441.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Singh AK, Ramappa M, Bhatia CK, Krishna M. Less invasive posterior lumbar interbody fusion and obesity: clinical outcomes and return to work. Spine. 2010;35:2116–20.  https://doi.org/10.1097/BRS.0b013e3181cf0980.CrossRefPubMedGoogle Scholar
  18. 18.
    Saraph V, Lerch C, Walochnik N, Bach CM, Krismer M, Wimmer C. Comparison of conventional versus minimally invasive extraperitoneal approach for anterior lumbar interbody fusion. Eur Spine J. 2004;13:425–31.  https://doi.org/10.1007/s00586–004–0722–4.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kim J-S, Choi WG, Lee S-H. Minimally invasive anterior lumbar interbody fusion followed by percutaneous pedicle screw fixation for isthmic spondylolisthesis: minimum 5-year follow-up. Spine J. 2010;10:404–9.  https://doi.org/10.1016/j.spinee.2010.02.022.CrossRefPubMedGoogle Scholar
  20. 20.
    Lee S-H, Kang B-U, Jeon SH, Park JD, Maeng DH, Choi Y-G, et al. Revision surgery of the lumbar spine: anterior lumbar interbody fusion followed by percutaneous pedicle screw fixation. J Neurosurg Spine. 2006;5:228–33.  https://doi.org/10.3171/spi.2006.5.3.228.CrossRefPubMedGoogle Scholar
  21. 21.
    Lee DY, Lee S-H, Maeng DH. Two-level anterior lumbar interbody fusion with percutaneous pedicle screw fixation: a minimum 3-year follow-up study. Neurol Med Chir (Tokyo). 2010;50:645–50.CrossRefGoogle Scholar
  22. 22.
    Dakwar E, Cardona RF, Smith DA, Uribe JS. Early outcomes and safety of the minimally invasive, lateral retroperitoneal transpsoas approach for adult degenerative scoliosis. Neurosurg Focus. 2010;28:E8.  https://doi.org/10.3171/2010.1.FOCUS09282.CrossRefPubMedGoogle Scholar
  23. 23.
    Phillips FM, Isaacs RE, Rodgers WB, Khajavi K, Tohmeh AG, Deviren V, et al. Adult degenerative scoliosis treated with XLIF: clinical and radiographical results of a prospective multicenter study with 24-month follow-up. Spine. 2013;38:1853–61.  https://doi.org/10.1097/BRS.0b013e3182a43f0b.CrossRefPubMedGoogle Scholar
  24. 24.
    Tobler WD, Ferrara LA. The presacral retroperitoneal approach for axial lumbar interbody fusion: a prospective study of clinical outcomes, complications and fusion rates at a follow-up of two years in 26 patients. J Bone Joint Surg Br. 2011;93:955–60.  https://doi.org/10.1302/0301–620X.93B7.25188.CrossRefPubMedGoogle Scholar
  25. 25.
    Kepler CK, Sharma AK, Huang RC. Lateral transpsoas interbody fusion (LTIF) with plate fixation and unilateral pedicle screws: a preliminary report. J Spinal Disord Tech. 2011;24:363–7.  https://doi.org/10.1097/BSD.0b013e3181fee8b6.CrossRefPubMedGoogle Scholar
  26. 26.
    Mannion RJ, Nowitzke AM, Wood MJ. Promoting fusion in minimally invasive lumbar interbody stabilization with low-dose bone morphogenic protein-2—but what is the cost? Spine J. 2011;11:527–33.  https://doi.org/10.1016/j.spinee.2010.07.005.CrossRefPubMedGoogle Scholar
  27. 27.
    Rihn JA, Kirkpatrick K, Albert TJ. Graft options in posterolateral and posterior interbody lumbar fusion. Spine. 2010;35:1629–39.  https://doi.org/10.1097/BRS.0b013e3181d25803.CrossRefPubMedGoogle Scholar
  28. 28.
    Grabowski G, Cornett CA. Bone graft and bone graft substitutes in spine surgery: current concepts and controversies. J Am Acad Orthop Surg. 2013;21:51–60.  https://doi.org/10.5435/JAAOS-21–01–51.CrossRefPubMedGoogle Scholar
  29. 29.
    Lad SP, Nathan JK, Boakye M. Trends in the use of bone morphogenetic protein as a substitute to autologous iliac crest bone grafting for spinal fusion procedures in the United States. Spine. 2011;36:E274–81.  https://doi.org/10.1097/BRS.0b013e3182055a6b.CrossRefPubMedGoogle Scholar
  30. 30.
    Shen FH, Samartzis D. Assessment of lumbar fusion: importance of dynamic plain standing x-rays. J Am Coll Surg. 2008;207:955–6.  https://doi.org/10.1016/j.jamcollsurg.2008.04.024.CrossRefPubMedGoogle Scholar
  31. 31.
    Brodsky AE, Kovalsky ES, Khalil MA. Correlation of radiologic assessment of lumbar spine fusions with surgical exploration. Spine. 1991;16:S261–5.CrossRefGoogle Scholar
  32. 32.
    Ho JM, Ben-Galim PJ, Weiner BK, Karbach LE, Reitman CA, Heggeness MH, et al. Toward the establishment of optimal computed tomographic parameters for the assessment of lumbar spinal fusion. Spine J. 2011;11:636–40.  https://doi.org/10.1016/j.spinee.2011.04.027.CrossRefPubMedGoogle Scholar
  33. 33.
    Kanchiku T, Imajo Y, Suzuki H, Yoshida Y, Taguchi T. Usefulness of an early MRI-based classification system for predicting vertebral collapse and pseudoarthrosis after osteoporotic vertebral fractures. J Spinal Disord Tech. 2014;27:E61–5.  https://doi.org/10.1097/BSD.0b013e318292b509.CrossRefPubMedGoogle Scholar
  34. 34.
    Glassman SD, Anagnost SC, Parker A, Burke D, Johnson JR, Dimar JR. The effect of cigarette smoking and smoking cessation on spinal fusion. Spine. 2000;25:2608–15.CrossRefGoogle Scholar
  35. 35.
    Bydon M, la Garza-Ramos De R, Abt NB, Gokaslan ZL, Wolinsky J-P, Sciubba DM, et al. Impact of smoking on complication and pseudarthrosis rates after single- and 2-level posterolateral fusion of the lumbar spine. Spine. 2014;39:1765–70.  https://doi.org/10.1097/BRS.0000000000000527.CrossRefPubMedGoogle Scholar
  36. 36.
    Lee YP, Sclafani J, Garfin SR. Lumbar Pseudarthrosis: diagnosis and treatment. Semin Spine Surg. 2011;23:275–81.  https://doi.org/10.1053/j.semss.2011.05.009.CrossRefGoogle Scholar
  37. 37.
    Kaiser MG, Eck JC, Groff MW, Ghogawala Z, Watters WC, Dailey AT, et al. Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 17: bone growth stimulators as an adjunct for lumbar fusion. J Neurosurg Spine. 2014;21:133–9.  https://doi.org/10.3171/2014.4.SPINE14326.CrossRefPubMedGoogle Scholar
  38. 38.
    Simmons JW, Mooney V, Thacker I. Pseudarthrosis after lumbar spine fusion: nonoperative salvage with pulsed electromagnetic fields. Am J Orthop. 2004;33:27–30.PubMedGoogle Scholar
  39. 39.
    Dede O, Thuillier D, Pekmezci M, Ames CP, Hu SS, Berven SH, et al. Revision surgery for lumbar pseudarthrosis. Spine J. 2015;15:977–82.  https://doi.org/10.1016/j.spinee.2013.05.039.CrossRefPubMedGoogle Scholar
  40. 40.
    Glassman SD, Berven S, Bridwell K, Horton W, Dimar JR. Correlation of radiographic parameters and clinical symptoms in adult scoliosis. Spine. 2005;30:682–8.CrossRefGoogle Scholar
  41. 41.
    Kim YJ, Bridwell KH, Lenke LG, Rhim S, Cheh G. Pseudarthrosis in long adult spinal deformity instrumentation and fusion to the sacrum: prevalence and risk factor analysis of 144 cases. Spine. 2006;31:2329–36.  https://doi.org/10.1097/01.brs.0000238968.82799.d9.CrossRefPubMedGoogle Scholar
  42. 42.
    Tormenti MJ, Maserati MB, Bonfield CM, Okonkwo DO, Kanter AS. Complications and radiographic correction in adult scoliosis following combined transpsoas extreme lateral interbody fusion and posterior pedicle screw instrumentation. Neurosurg Focus. 2010;28:E7.  https://doi.org/10.3171/2010.1.FOCUS09263.CrossRefPubMedGoogle Scholar
  43. 43.
    Robinson BT, Metcalfe D, Cuff AV. Surgical techniques for autologous bone harvesting from the iliac crest in adults. Cochrane Database Syst Rev. 2018;2018:CD011783.  https://doi.org/10.1002/14651858.CD011783/full.CrossRefPubMedCentralGoogle Scholar
  44. 44.
    Pirris SM, Nottmeier EW, Kimes S, O’Brien M, Rahmathulla G. A retrospective study of iliac crest bone grafting techniques with allograft reconstruction: do patients even know which iliac crest was harvested? Clinical article. J Neurosurg Spine. 2014;21:595–600.  https://doi.org/10.3171/2014.6.SPINE13902.CrossRefPubMedGoogle Scholar
  45. 45.
    Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA. Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res. 1996;329:300–9.CrossRefGoogle Scholar
  46. 46.
    Schwartz CE, Martha JF, Kowalski P, Wang DA, Bode R, Li L, et al. Prospective evaluation of chronic pain associated with posterior autologous iliac crest bone graft harvest and its effect on postoperative outcome. Health Qual Life Outcomes. 2009;7:49.  https://doi.org/10.1186/1477–7525–7-49.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kim DH, Rhim R, Li L, Martha J, Swaim BH, Banco RJ, et al. Prospective study of iliac crest bone graft harvest site pain and morbidity. Spine J. 2009;9:886–92.  https://doi.org/10.1016/j.spinee.2009.05.006.CrossRefPubMedGoogle Scholar
  48. 48.
    Howard JM, Glassman SD, Carreon LY. Posterior iliac crest pain after posterolateral fusion with or without iliac crest graft harvest. Spine J. 2011;11:534–7.  https://doi.org/10.1016/j.spinee.2010.09.001.CrossRefPubMedGoogle Scholar
  49. 49.
    Merritt AL, Spinnicke A, Pettigrew K, Alamin TF. Gluteal-sparing approach for posterior iliac crest bone graft: description of a new technique and assessment of morbidity in ninety-two patients after spinal fusion. Spine. 2010;35:1396–400.  https://doi.org/10.1097/BRS.0b013e3181cabf69.CrossRefPubMedGoogle Scholar
  50. 50.
    Salerni AA. Minimally invasive removal or revision of lumbar spinal fixation. Spine J. 2004;4:701–5.CrossRefGoogle Scholar
  51. 51.
    Daffner SD, Wang JC. Migrated XLIF cage: case report and discussion of surgical technique. Orthopedics. 2010;33:518.  https://doi.org/10.3928/01477447–20100526–21.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Philip K. Louie
    • 1
  • Bryce A. Basques
    • 1
  • Nicollette M. Pepin
    • 2
  • Grant D. Shifflett
    • 3
  1. 1.Department of Orthopaedic SurgeryRush University Medical CenterChicagoUSA
  2. 2.University of California, IrvineSan DiegoUSA
  3. 3.DISC Sports & Spine CenterMarina Del ReyUSA

Personalised recommendations