Advertisement

Neural and Dural Injury in Minimally Invasive Surgery

  • Clifton W. Hancock
  • Donna D. Ohnmeiss
  • Scott L. BlumenthalEmail author
Chapter

Abstract

The minimally invasive surgery (MIS) philosophy, i.e., the use of smaller less tissue destructive approaches, has been applied with varying success to many areas of spine surgery including discectomy, decompression, and fusion. Potential advantages of MIS approaches include reduced blood loss, faster healing, less pain, reduced infection rates, and reduced hospital stays. However, MIS approaches do carry risks of complications, which in many cases may be unique to MIS due to the limited view and the access of a smaller operative exposure, although in regard to some complications, MIS remains similar or even superior to traditional open procedures. In this chapter, we present information on neural and dural injuries as related to MIS approaches, their occurrence, and strategies to reduce the risk.

Keywords

Dural tear Neural injury Complications Minimally invasive surgery Spine surgery 

References

  1. 1.
    Kambin P, Gellman H. Percutaneous lateral discectomy of the lumbar spine. A preliminary report. Clin Orthop Relat Res. 1983;174:127–32.Google Scholar
  2. 2.
    Hijikata S, Yamagishi M, Nakayama T. Percutaneous discectomy: a new treatment method for lumbar disk herniation. J Toden Hosp. 1975;5:5–13.Google Scholar
  3. 3.
    Obenchain TG. Laparoscopic lumbar discectomy: case report. J Laparoendosc Surg. 1991;1(3):145–9.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Regan JJ, McAfee PC, Guyer RD, Aronoff RJ. Laparoscopic fusion of the lumbar spine in a multicenter series of the first 34 consecutive patients. Surg Laparosc Endosc. 1996;6(6):459–68.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006;6(4):435–43.PubMedCrossRefGoogle Scholar
  6. 6.
    Jin J, Ryu KS, Hur JW, Seong JH, Kim JS, Cho HJ. Comparative study of the difference of perioperative complication and radiologic results: MIS-DLIF (Minimally Invasive Direct Lateral Lumbar Interbody Fusion) Versus MIS-OLIF (Minimally Invasive Oblique Lateral Lumbar Interbody Fusion). Clin Spine Surg. 2018;31:31–6.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Woods KR, Billys JB, Hynes RA. Technical description of oblique lateral interbody fusion at L1-L5 (OLIF25) and at L5-S1 (OLIF51) and evaluation of complication and fusion rates. Spine J. 2017;17(4):545–53.PubMedCrossRefGoogle Scholar
  8. 8.
    Kim JS, Choi WS, Sung JH. 314 minimally invasive oblique lateral interbody fusion for L4–5: clinical outcomes and perioperative complications. Neurosurgery. 2016;63(Suppl 1):190–1.CrossRefGoogle Scholar
  9. 9.
    Wong AP, Lall RR, Dahdaleh NS, Lawton CD, Smith ZA, Wong RH, et al. Comparison of open and minimally invasive surgery for intradural-extramedullary spine tumors. Neurosurg Focus. 2015;39(2):E11.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Regev GJ, Salame K, Keynan O, Lidar Z. Resection of benign vertebral tumors by minimally invasive techniques. Spine J. 2015;15(11):2396–403.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Sclafani JA, Kim CW. Complications associated with the initial learning curve of minimally invasive spine surgery: a systematic review. Clin Orthop Relat Res. 2014;472(6):1711–7.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Kotani Y, Abumi K, Ito M, Sudo H, Abe Y, Minami A. Mid-term clinical results of minimally invasive decompression and posterolateral fusion with percutaneous pedicle screws versus conventional approach for degenerative spondylolisthesis with spinal stenosis. Eur Spine J. 2012;21(6):1171–7.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Jaikumar S, Kim DH, Kam AC. History of minimally invasive spine surgery. Neurosurgery. 2002;51(5 Suppl):S1–14.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Epstein NE. More nerve root injuries occur with minimally invasive lumbar surgery: let’s tell someone. Surg Neurol Int. 2016;7(Suppl 3):S96–s101.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Hodges SD, Humphreys SC, Eck JC, Covington LA. Management of incidental durotomy without mandatory bed rest. A retrospective review of 20 cases. Spine. 1999;24(19):2062–4.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Tsutsumimoto T, Yui M, Uehara M, Ohta H, Kosaku H, Misawa H. A prospective study of the incidence and outcomes of incidental dural tears in microendoscopic lumbar decompressive surgery. Bone Joint J. 2014;96-B(5):641.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Kim CW. Minimally invasive lumbar decompression-the surgical learning curve. Spine J. 2016;16(8):917.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Wiese M, Kramer J, Bernsmann K, Ernst Willburger R. The related outcome and complication rate in primary lumbar microscopic disc surgery depending on the surgeon’s experience: comparative studies. Spine J. 2004;4(5):550–6.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Ruban D, O’Toole JE. Management of incidental durotomy in minimally invasive spine surgery. Neurosurg Focus. 2011;31(4):E15.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Chou D, Wang VY, Khan AS. Primary dural repair during minimally invasive microdiscectomy using standard operating room instruments. Neurosurgery. 2009;64(5 Suppl 2):356–8.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Song D, Park P. Primary closure of inadvertent durotomies utilizing the U-Clip in minimally invasive spinal surgery. Spine. 2011;36(26):E1753–7.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Ito K, Aoyama T, Horiuchi T, Hongo K. Utility of nonpenetrating titanium clips for dural closure during spinal surgery to prevent postoperative cerebrospinal fluid leakage. J Neurosurg Spine. 2015;23(6):812–9.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Weinstein JN, Lurie JD, Tosteson TD, Tosteson AN, Blood EA, Abdu WA, et al. Surgical versus nonoperative treatment for lumbar disc herniation: four-year results for the Spine Patient Outcomes Research Trial (SPORT). Spine. 2008;33(25):2789–800.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Weinstein JN, Tosteson TD, Lurie JD, Tosteson AN, Blood E, Hanscom B, et al. Surgical versus nonsurgical therapy for lumbar spinal stenosis. N Engl J Med. 2008;358(8):794–810.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Desai A, Ball PA, Bekelis K, Lurie JD, Mirza SK, Tosteson TD, et al. Outcomes after incidental durotomy during first-time lumbar discectomy. J Neurosurg Spine. 2011;14(5):647–53.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Khoo LT, Fessler RG. Microendoscopic decompressive laminotomy for the treatment of lumbar stenosis. Neurosurgery. 2002;51(5 Suppl):S146–54.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Ikuta K, Tono O, Tanaka T, Arima J, Nakano S, Sasaki K, et al. Surgical complications of microendoscopic procedures for lumbar spinal stenosis. Minim Invasive Neurosurg. 2007;50(3):145–9.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Ikuta K, Arima J, Tanaka T, Oga M, Nakano S, Sasaki K, et al. Short-term results of microendoscopic posterior decompression for lumbar spinal stenosis. Technical note. J Neurosurg Spine. 2005;2(5):624–33.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Kamson S, Trescot AM, Sampson PD, Zhang Y. Full-endoscopic assisted lumbar decompressive surgery performed in an outpatient, ambulatory facility: report of 5 years of complications and risk factors. Pain Physician. 2017;20(2):E221–e31.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Weinstein JN, Lurie JD, Tosteson TD, Zhao W, Blood EA, Tosteson AN, et al. Surgical compared with nonoperative treatment for lumbar degenerative spondylolisthesis. Four-year results in the Spine Patient Outcomes Research Trial (SPORT) randomized and observational cohorts. J Bone Joint Surg Am. 2009;91(6):1295–304.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Wu X, Zhuang S, Mao Z, Chen H. Microendoscopic discectomy for lumbar disc herniation: surgical technique and outcome in 873 consecutive cases. Spine. 2006;31(23):2689–94.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    He J, Xiao S, Wu Z, Yuan Z. Microendoscopic discectomy versus open discectomy for lumbar disc herniation: a meta-analysis. Eur Spine J. 2016;25(5):1337–81.CrossRefGoogle Scholar
  33. 33.
    Cong L, Zhu Y, Tu G. A meta-analysis of endoscopic discectomy versus open discectomy for symptomatic lumbar disk herniation. Eur Spine J. 2016;25(1):134–43.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Alimi M, Hofstetter CP, Torres-Campa JM, Navarro-Ramirez R, Cong GT, Njoku I Jr, et al. Unilateral tubular approach for bilateral laminotomy: effect on ipsilateral and contralateral buttock and leg pain. Eur Spine J. 2017;26(2):389–96.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Asgarzadie F, Khoo LT. Minimally invasive operative management for lumbar spinal stenosis: overview of early and long-term outcomes. Orthop Clin North Am. 2007;38(3):387–99.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Pao JL, Chen WC, Chen PQ. Clinical outcomes of microendoscopic decompressive laminotomy for degenerative lumbar spinal stenosis. Eur Spine J. 2009;18(5):672–8.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Xu BS, Tan QS, Xia Q, Ji N, Hu YC. Bilateral decompression via unilateral fenestration using mobile microendoscopic discectomy technique for lumbar spinal stenosis. Orthop Surg. 2010;2(2):106–10.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Polikandriotis JA, Hudak EM, Perry MW. Minimally invasive surgery through endoscopic laminotomy and foraminotomy for the treatment of lumbar spinal stenosis. J Orthop. 2013;10(1):13–6.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Mobbs RJ, Li J, Sivabalan P, Raley D, Rao PJ. Outcomes after decompressive laminectomy for lumbar spinal stenosis: comparison between minimally invasive unilateral laminectomy for bilateral decompression and open laminectomy. J Neurosurg Spine. 2014;21(2):179–86.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Knight MT, Jago I, Norris C, Midwinter L, Boynes C. Transforaminal endoscopic lumbar decompression & foraminoplasty: a 10 year prospective survivability outcome study of the treatment of foraminal stenosis and failed back surgery. Int J Spine Surg. 2014;8:1–22.CrossRefGoogle Scholar
  41. 41.
    Shriver MF, Xie JJ, Tye EY, Rosenbaum BP, Kshettry VR, Benzel EC, et al. Lumbar microdiscectomy complication rates: a systematic review and meta-analysis. Neurosurg Focus. 2015;39(4):E6.PubMedCrossRefGoogle Scholar
  42. 42.
    Teli M, Lovi A, Brayda-Bruno M, Zagra A, Corriero A, Giudici F, et al. Higher risk of dural tears and recurrent herniation with lumbar micro-endoscopic discectomy. Eur Spine J. 2010;19(3):443–50.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kaushal M. Results of arthrospine assisted percutaneous technique for lumbar discectomy. Indian J Orthop. 2016;50(3):228–33.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kaushal M, Sen R. Posterior endoscopic discectomy: results in 300 patients. Indian J Orthop. 2012;46(1):81–5.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Choi I, Ahn JO, So WS, Lee SJ, Choi IJ, Kim H. Exiting root injury in transforaminal endoscopic discectomy: preoperative image considerations for safety. Eur Spine J. 2013;22(11):2481–7.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Parikh K, Tomasino A, Knopman J, Boockvar J, Hartl R. Operative results and learning curve: microscope-assisted tubular microsurgery for 1- and 2-level discectomies and laminectomies. Neurosurg Focus. 2008;25(2):E14.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Fourney DR, Dettori JR, Norvell DC, Dekutoski MB. Does minimal access tubular assisted spine surgery increase or decrease complications in spinal decompression or fusion? Spine. 2010;35(9 Suppl):S57–65.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Rasouli MR, Rahimi-Movaghar V, Shokraneh F, Moradi-Lakeh M, Chou R. Minimally invasive discectomy versus microdiscectomy/open discectomy for symptomatic lumbar disc herniation. Cochrane Database of Sys Rev (Online). 2014;9:Cd010328.Google Scholar
  49. 49.
    Kogias E, Klingler JH, Franco Jimenez P, Vasilikos I, Sircar R, Scholz C, et al. Incidental durotomy in open vs. tubular revision microdiscectomy: a retrospective controlled study on incidence, management and outcome. Clin Spine Surg. 2017;30:E1333–7.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Zhang Q, Yuan Z, Zhou M, Liu H, Xu Y, Ren Y. A comparison of posterior lumbar interbody fusion and transforaminal lumbar interbody fusion: a literature review and meta-analysis. BMC Musculoskelet Disord [Electron Res]. 2014;15:367.CrossRefGoogle Scholar
  51. 51.
    Liu J, Deng H, Long X, Chen X, Xu R, Liu Z. A comparative study of perioperative complications between transforaminal versus posterior lumbar interbody fusion in degenerative lumbar spondylolisthesis. Eur Spine J. 2016;25(5):1575–80.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Schwender JD, Holly LT, Rouben DP, Foley KT. Minimally invasive transforaminal lumbar interbody fusion (TLIF): technical feasibility and initial results. J Spinal Disord Tech. 2005;18(Suppl):S1–6.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Lee KH, Yeo W, Soeharno H, Yue WM. Learning curve of a complex surgical technique: minimally invasive transforaminal lumbar interbody fusion (MIS TLIF). J Spinal Disord Tech. 2014;27(7):E234–40.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Habib A, Smith ZA, Lawton CD, Fessler RG. Minimally invasive transforaminal lumbar interbody fusion: a perspective on current evidence and clinical knowledge. Minim Invasive Surg. 2012;2012:657342.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Klingler JH, Volz F, Kruger MT, Kogias E, Rolz R, Scholz C, et al. Accidental durotomy in minimally invasive transforaminal lumbar interbody fusion: frequency, risk factors, and management. Sci World J. 2015;2015:532628.Google Scholar
  56. 56.
    Goldstein CL, Macwan K, Sundararajan K, Rampersaud YR. Perioperative outcomes and adverse events of minimally invasive versus open posterior lumbar fusion: meta-analysis and systematic review. J Neurosurg Spine. 2016;24(3):416–27.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Jang KM, Park SW, Kim YB, Park YS, Nam TK, Lee YS. Acute contralateral radiculopathy after unilateral transforaminal lumbar interbody fusion. J Korean Neurosurg Soc. 2015;58(4):350–6.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Hussain NS, Perez-Cruet MJ. Complication management with minimally invasive spine procedures. Neurosurg Focus. 2011;31(4):e2.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Crandall DG, Revella J, Patterson J, Huish E, Chang M, McLemore R. Transforaminal lumbar interbody fusion with rhBMP-2 in spinal deformity, spondylolisthesis and degenerative disease—Part 2: BMP dosage related complications and long-term outcomes in 509 patients. Spine. 2013;38(13):1137–45.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Joseph V, Rampersaud YR. Heterotopic bone formation with the use of rhBMP2 in posterior minimal access interbody fusion: a CT analysis. Spine. 2007;32(25):2885–90.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Villavicencio AT, Burneikiene S. RhBMP-2-induced radiculitis in patients undergoing transforaminal lumbar interbody fusion: relationship to dose. Spine J. 2016;16(10):1208–13.PubMedCrossRefGoogle Scholar
  62. 62.
    Tannoury CA, An HS. Complications with the use of bone morphogenetic protein 2 (BMP-2) in spine surgery. Spine J. 2014;14(3):552–9.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Archavlis E, Carv y nievas M. Comparison of minimally invasive fusion and instrumentation versus open surgery for severe stenotic spondylolisthesis with high-grade facet joint osteoarthritis. Eur Spine J. 2013;22(8):1731–40.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Ozer AF, Suzer T, Can H, Falsafi M, Aydin M, Sasani M, et al. Anatomic assessment of variations in Kambin’s triangle: a surgical and cadaver study. World Neurosurg. 2017;100:498–503.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Wood M, Mannion R. A comparison of CT-based navigation techniques for minimally invasive lumbar pedicle screw placement. J Spinal Disord Tech. 2011;24(1):E1–5.PubMedCrossRefGoogle Scholar
  66. 66.
    Wood MJ, Mannion RJ. Improving accuracy and reducing radiation exposure in minimally invasive lumbar interbody fusion. J Neurosurg Spine. 2010;12(5):533–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Gautschi OP, Schatlo B, Schaller K, Tessitore E. Clinically relevant complications related to pedicle screw placement in thoracolumbar surgery and their management: a literature review of 35,630 pedicle screws. Neurosurg Focus. 2011;31(4):E8.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Nakahara M, Yasuhara T, Inoue T, Takahashi Y, Kumamoto S, Hijikata Y, et al. Accuracy of percutaneous pedicle screw insertion technique with conventional dual fluoroscopy units and a retrospective comparative study based on surgeon experience. Global Spine J. 2016;6(4):322–8.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Yang BP, Wahl MM, Idler CS. Percutaneous lumbar pedicle screw placement aided by computer-assisted fluoroscopy-based navigation: perioperative results of a prospective, comparative, multicenter study. Spine. 2012;37(24):2055–60.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Yson SC, Sembrano JN, Sanders PC, Santos ER, Ledonio CG, Polly DW Jr. Comparison of cranial facet joint violation rates between open and percutaneous pedicle screw placement using intraoperative 3-D CT (O-arm) computer navigation. Spine. 2013;38(4):E251–8.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Hu X, Ohnmeiss DD, Lieberman IH. Robotic-assisted pedicle screw placement: lessons learned from the first 102 patients. Eur Spine J. 2012;22(3):661–6.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Kosmopoulos V, Schizas C. Pedicle screw placement accuracy: a meta-analysis. Spine. 2007;32(3):E111–20.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Bindal RK, Ghosh S. Intraoperative electromyography monitoring in minimally invasive transforaminal lumbar interbody fusion. J Neurosurg Spine. 2007;6(2):126–32.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Uribe JS, Vale FL, Dakwar E. Electromyographic monitoring and its anatomical implications in minimally invasive spine surgery. Spine. 2010;35(26 Suppl):S368–74.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Cummock MD, Vanni S, Levi AD, Yu Y, Wang MY. An analysis of postoperative thigh symptoms after minimally invasive transpsoas lumbar interbody fusion. J Neurosurg Spine. 2011;15(1):11–8.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Houten JK, Alexandre LC, Nasser R, Wollowick AL. Nerve injury during the transpsoas approach for lumbar fusion. J Neurosurg Spine. 2011;15(3):280–4.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Parker SL, Amin AG, Farber SH, McGirt MJ, Sciubba DM, Wolinsky JP, et al. Ability of electromyographic monitoring to determine the presence of malpositioned pedicle screws in the lumbosacral spine: analysis of 2450 consecutively placed screws. J Neurosurg Spine. 2011;15(2):130–5.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Strube P, Hoff E, Hartwig T, Perka CF, Gross C, Putzier M. Stand-alone anterior versus anteroposterior lumbar interbody single-level fusion after a mean follow-up of 41 months. J Spinal Disord Tech. 2012;25(7):362–9.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Eck JC, Hodges S, Humphreys SC. Minimally invasive lumbar spinal fusion. J Am Acad Orthop Surg. 2007;15(6):321–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Sasso RC, Kenneth Burkus J, LeHuec JC. Retrograde ejaculation after anterior lumbar interbody fusion: transperitoneal versus retroperitoneal exposure. Spine. 2003;28(10):1023–6.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Kaiser MG, Haid RW Jr, Subach BR, Miller JS, Smith CD, Rodts GE Jr. Comparison of the mini-open versus laparoscopic approach for anterior lumbar interbody fusion: a retrospective review. Neurosurgery. 2002;51(1):97–103.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Mobbs RJ. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg. 2015;1(1):16.Google Scholar
  83. 83.
    Boos N, Kalberer F, Schoeb O. Retroperitoneal endoscopically assisted minilaparotomy for anterior lumbar interbody fusion: technical feasibility and complications. Spine (Phila Pa 1976). 2001;26(2):E1.CrossRefGoogle Scholar
  84. 84.
    McAfee PC, Regan JJ, Geis WP, Fedder IL. Minimally invasive anterior retroperitoneal approach to the lumbar spine. Emphasis on the lateral BAK. Spine. 1998;23(13):1476–84.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Hrabalek L, Adamus M, Gryga A, Wanek T, Tucek P. A comparison of complication rate between anterior and lateral approaches to the lumbar spine. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2014;158(1):127–32.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Dakwar E, Vale FL, Uribe JS. Trajectory of the main sensory and motor branches of the lumbar plexus outside the psoas muscle related to the lateral retroperitoneal transpsoas approach. J Neurosurg Spine. 2011;14(2):290–5.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Uribe JS, Arredondo N, Dakwar E, Vale FL. Defining the safe working zones using the minimally invasive lateral retroperitoneal transpsoas approach: an anatomical study. J Neurosurg Spine. 2010;13(2):260–6.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Benglis DM, Vanni S, Levi AD. An anatomical study of the lumbosacral plexus as related to the minimally invasive transpsoas approach to the lumbar spine. J Neurosurg Spine. 2009;10(2):139–44.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Moro T, Kikuchi S-I, Konno S-i, Yaginuma H. An anatomic study of the lumbar plexus with respect to retroperitoneal endoscopic surgery. Spine. 2003;28(5):423–7.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Tohmeh AG, Rodgers WB, Peterson MD. Dynamically evoked, discrete-threshold electromyography in the extreme lateral interbody fusion approach. J Neurosurg Spine. 2011;14(1):31–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Moller DJ, Slimack NP, Acosta FL Jr, Koski TR, Fessler RG, Liu JC. Minimally invasive lateral lumbar interbody fusion and transpsoas approach-related morbidity. Neurosurg Focus. 2011;31(4):E4.PubMedCrossRefGoogle Scholar
  92. 92.
    Pumberger M, Hughes AP, Huang RR, Sama AA, Cammisa FP, Girardi FP. Neurologic deficit following lateral lumbar interbody fusion. Eur Spine J. 2012;21(6):1192–9.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Knight RQ, Schwaegler P, Hanscom D, Roh J. Direct lateral lumbar interbody fusion for degenerative conditions: early complication profile. J Spinal Disord Tech. 2009;22(1):34–7.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Sofianos DA, Briseno MR, Abrams J, Patel AA. Complications of the lateral transpsoas approach for lumbar interbody arthrodesis: a case series and literature review. Clin Orthop Relat Res. 2012;470(6):1621–32.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Rodgers WB, Gerber EJ, Patterson J. Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine. 2011;36(1):26–32.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Dakwar E, Le TV, Baaj AA, Le AX, Smith WD, Akbarnia BA, et al. Abdominal wall paresis as a complication of minimally invasive lateral transpsoas interbody fusion. Neurosurg Focus. 2011;31(4):E18.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Papanastassiou ID, Eleraky M, Vrionis FD. Contralateral femoral nerve compression: an unrecognized complication after extreme lateral interbody fusion (XLIF). J Clin Neurosci. 2011;18(1):149–51.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Park DK, Lee MJ, Lin EL, Singh K, An HS, Phillips FM. The relationship of intrapsoas nerves during a transpsoas approach to the lumbar spine: anatomic study. J Spinal Disord Tech. 2010;23(4):223–8.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Clifton W. Hancock
    • 1
  • Donna D. Ohnmeiss
    • 2
  • Scott L. Blumenthal
    • 3
    Email author
  1. 1.Texas Back InstitutePlanoUSA
  2. 2.Texas Back Institute Research FoundationPlanoUSA
  3. 3.Center for Disc Replacement, Texas Back InstitutePlanoUSA

Personalised recommendations