Advertisement

Minimally Invasive Spine Surgery Complications with Implant Placement and Fixation

  • Joseph S. Butler
  • Mark F. Kurd
Chapter

Abstract

Minimally invasive spine surgery (MISS) has evolved dramatically over the past several decades in an attempt to minimize approach-related trauma, expedite hospital discharge, and optimize clinical and functional outcomes. Although the goals of MISS are to perform an efficient target surgery with minimal iatrogenic injury, there are a variety of approaches and implant-related complications associated with this surgical strategy. This chapter will discuss the learning curve associated with MISS, in addition to exploring the various technical challenges and complications associated with some of the most common MISS procedures.

Keywords

MISS Minimally invasive spine Complications Implant 

References

  1. 1.
    Mayer HM. Minimally invasive spine surgery: a surgical manual. 2nd ed. New York: Springer; 2006.CrossRefGoogle Scholar
  2. 2.
    Eck JC, Hodges S, Humphreys SC. Minimally invasive lumbar spinal fusion. J Am Acad Orthop Surg. 2007;15:321–9.CrossRefGoogle Scholar
  3. 3.
    Kim CW, Siemionow K, Anderson DG, Phillips FM. The current state of minimally invasive spine surgery. Instr Course Lect. 2011;60:353–70.PubMedGoogle Scholar
  4. 4.
    Sclafani JA, Regev GJ, Webb J, Garfin SR, Kim CW. Use of a quantitative pedicle screw accuracy system to assess new technology: initial studies on O-arm navigation and its effect on the learning curve of percutaneous pedicle screw insertion. SAS J. 2011;5:57–62.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Voyadzis JM. The learning curve in minimally invasive spine surgery. Semin Spine Surg. 2011;23:9–13.CrossRefGoogle Scholar
  6. 6.
    Perez-Cruet MJ, Fessler RG, Perin NI. Review: complications of minimally invasive spinal surgery. Neurosurgery. 2002;51:S26–36.PubMedGoogle Scholar
  7. 7.
    Sclafani JA, Kim CW. Complications associated with the initial learning curve of minimally invasive spine surgery: a systematic review. Clin Orthop Relat Res. 2014 Jun;472(6):1711–7.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Dhall SS, Wang MY, Mummaneni PV. Clinical and radiographic comparison of mini-open transforaminal lumbar interbody fusion with open transforaminal lumbar interbody fusion in 42 patients with long-term follow-up: clinical article. J Neurosurg Spine. 2008;9:560–5.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Park Y, Ha JW. Comparison of one-level posterior lumbar interbody fusion performed with a minimally invasive approach or a traditional open approach. Spine (Phila Pa 1976). 2007;32:537–43.CrossRefGoogle Scholar
  10. 10.
    Rong LM, Xie PG, Shi DH, Dong JW, Lin B, Feng F, Cai DZ. Spinal surgeons’ learning curve for lumbar microendoscopic discectomy: a prospective study of our first 50 and latest 10 cases. Chin Med J (Engl). 2008;121:2148–51.CrossRefGoogle Scholar
  11. 11.
    Lee DY, Lee SH. Learning curve for percutaneous endoscopic lumbar discectomy. Neurol Med Chir (Tokyo). 2008;48:383–9.CrossRefGoogle Scholar
  12. 12.
    McLoughlin GS, Fourney DR. The learning curve of minimally- invasive lumbar microdiscectomy. Can J Neurol Sci. 2008;35:75–8.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Nowitzke AM. Assessment of the learning curve for lumbar microendoscopic discectomy. Neurosurgery. 2005;56:755–62.CrossRefGoogle Scholar
  14. 14.
    Regan JJ, Yuan H, McAfee PC. Laparoscopic fusion of the lumbar spine: minimally invasive spine surgery: a prospective multicenter study evaluating open and laparoscopic lumbar fusion. Spine (Phila Pa 1976). 1999;24:402–11.CrossRefGoogle Scholar
  15. 15.
    Huang TJ, Hsu RW, Lee YY, Chen SH. Video-assisted endoscopic lumbar discectomy. Surg Endosc. 2001;15:1175–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Sihvonen T, Herno A, Paljärvi L, Airaksinen O, Partanen J, Tapaninaho A. Local denervation atrophy of paraspinal muscles in postoperative failed back syndrome. Spine (Phila Pa 1976). 1993;18:575–81.CrossRefGoogle Scholar
  17. 17.
    Weinstein JN, Lurie JD, Tosteson TD, Tosteson AN, Blood EA, Abdu WA, et al. Surgical versus nonoperative treatment for lumbar disc herniation: four-year results for the Spine Patient Outcomes Research Trial (SPORT). Spine (Phila Pa 1976). 2008;33:2789–800.CrossRefGoogle Scholar
  18. 18.
    Yoshimoto M, Takebayashi T, Ida K, Tanimoto K, Yamashita T. Microendoscopic discectomy in athletes. J Orthop Sci. 2013;18:902–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Shriver MF, Xie JJ, Tye EY, Rosenbaum BP, Kshettry VR, Benzel EC, Mroz TE. Lumbar microdiscectomy complication rates: a systematic review and meta-analysis. Neurosurg Focus. 2015;39(4):E6.CrossRefGoogle Scholar
  20. 20.
    He J, Xiao S, Wu Z, Yuan Z. Microendoscopic discectomy versus open discectomy for lumbar disc herniation: a meta-analysis. Eur Spine J. 2016;25(5):1373–81.CrossRefGoogle Scholar
  21. 21.
    Foley KT, Smith MM. Microendoscopic discectomy. Tech Neurosurg. 1997;3:301–7.Google Scholar
  22. 22.
    Rahman M, Summers LE, Richter B, et al. Comparison of techniques for decompressive lumbar laminectomy: the minimally invasive versus the ‘classic’ open approach. Minim Invasive Neurosurg. 2008;51:100–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Yagi M, Okada E, Ninomiya K, et al. Postoperative outcome after modified unilateral-approach microendoscopic midline decompression for degenerative spinal stenosis. J Neurosurg Spine. 2009;10:293–9.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Ikuta K, Arima J, Tanaka T, et al. Short-term results of microendoscopic posterior decompression for lumbar spinal stenosis. J Neurosurg Spine. 2005;2:624–33.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kim JS, Jung B, Arbatti N, et al. Surgical experience of unilateral laminectomy for bilateral decompression (ULBD) of ossified ligamentum flavum in the thoracic spine. Minim Invasive Neurosurg. 2009;52:74–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Palmer S, Turner R, Palmer R. Bilateral decompression of lumbar spinal stenosis involving a unilateral approach with microscope and tubular retractor system. J Neurosurg. 2002;97:213–7.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Tsai RY, Yang RS, Bray RS Jr. Microscopic laminotomies for degenerative lumbar spinal stenosis. J Spinal Disord. 1998;11:389–94.PubMedCrossRefGoogle Scholar
  28. 28.
    Phan K, Mobbs RJ. Minimally invasive versus open laminectomy for lumbar stenosis: a systematic review and meta-analysis. Spine (Phila Pa 1976). 2016 Jan;41(2):E91–E100.CrossRefGoogle Scholar
  29. 29.
    Henderson CM, Hennessy RG, Shuey HM Jr, et al. Posterior-lateral foraminotomy as an exclusive operative technique for cervical radiculopathy: a review of 846 consecutively operated cases. Neurosurgery. 1983;13:504–12.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Boehm H, Greiner-Perth R, El-Saghir H, et al. A new minimally invasive posterior approach for the treatment of cervical radicul- opathy and myelopathy: surgical technique and preliminary results. Eur Spine J. 2003;12:268–73.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Gazzeri R, Galarza M, Alfieri A. Controversies about interspinous process devices in the treatment of degenerative lumbar spine diseases: past, present, and future. Biomed Res Int. 2014;2014:975052.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Alfieri A, Gazzeri R, Prell J, et al. Role of lumbar interspinous distraction on the neural elements. Neurosurg Rev. 2012;35:477–84; discussion 484PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Caserta S, La Maida GA, Misaggi B, et al. Elastic stabilization alone or combined with rigid fusion in spinal surgery: a biomechanical study and clinical experience based on 82 cases. Eur Spine J. 2002;11(Suppl 2):S192–7.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Galarza M, Fabrizi AP, Maina R, et al. Degenerative lumbar spinal stenosis with neurogenic intermittent claudication and treatment with the Aperius PercLID System: a preliminary report. Neurosurg Focus. 2010;28:E3.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Sobottke R, Schlüter-Brust K, Kaulhausen T, et al. Interspinous implants (X Stop, Wallis, Diam) for the treatment of LSS: is there a correlation between radiological parameters and clinical outcome? Eur Spine J. 2009;18:1494–503.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Richards JC, Majumdar S, Lindsey DP, et al. The treatment mechanism of an interspinous process implant for lumbar neurogenic intermittent claudication. Spine (Phila Pa 1976). 2005;30:744–9.CrossRefGoogle Scholar
  37. 37.
    Lee J, Hida K, Seki T, et al. An interspinous process distractor (X STOP) for lumbar spinal stenosis in elderly patients: preliminary experiences in 10 consecutive cases. J Spinal Disord Tech. 2004;17:72–7; discussion 78PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Zucherman JF, Hsu KY, Hartjen CA, et al. A multicenter, prospective, randomized trial evaluating the X STOP interspinous process decompression system for the treatment of neurogenic intermittent claudication: two-year follow-up results. Spine (Phila Pa 1976). 2005;30:1351–8.CrossRefGoogle Scholar
  39. 39.
    Kondrashov DG, Hannibal M, Hsu KY, et al. Interspinous process decompression with the X-STOP device for lumbar spinal stenosis: a 4-year follow-up study. J Spinal Disord Tech. 2006;19:323–7.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Guehring T, Omlor GW, Lorenz H, et al. Disc distraction shows evidence of regenerative potential in degenerated intervertebral discs as evaluated by protein expression, magnetic resonance imaging, and messenger ribonucleic acid expression analysis. Spine (Phila Pa 1976). 2006;31:1658–65.CrossRefGoogle Scholar
  41. 41.
    Guehring T, Omlor GW, Lorenz H, et al. Stimulation of gene expression and loss of anular architecture caused by experimental disc degeneration—an in vivo animal study. Spine (Phila Pa 1976). 2005;30:2510–5.CrossRefGoogle Scholar
  42. 42.
    Phan K, Rao PJ, Ball JR, Mobbs RJ. Interspinous process spacers versus traditional decompression for lumbar spinal stenosis: systematic review and meta-analysis. J Spine Surg. 2016;2(1):31–40.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Zhao XW, Ma JX, Ma XL, Li F, He WW, Jiang X, Wang Y, Han B, Lu B. Interspinous process devices (IPD) alone versus decompression surgery for lumbar spinal stenosis(LSS): a systematic review and meta-analysis of randomized controlled trials. Int J Surg. 2017;39:57–64.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Maida G, Marcati E, Sarubbo S. Heterotopic ossi cation in vertebral interlaminar/interspinous instrumentation: report of a case. Case Rep Surg. 2012;2012:970642.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Tian NF, Wu AM, Wu LJ, et al. Incidence of heterotopic ossi cation after implantation of interspinous process devices. Neurosurg Focus. 2013;35:E3.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Parker SL, Anderson LH, Nelson T, et al. Cost-effectiveness of three treatment strategies for lumbar spinal stenosis: conservative care, laminectomy, and the Superion interspinous spacer. Int J Spine Surg. 2015;9:28.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    van den Akker-van Marle ME, Moojen WA, Arts MP, et al. Interspinous process devices versus standard conventional surgical decompression for lumbar spinal stenosis: cost utility analysis. Spine J. 2016;16(6):702–10.Google Scholar
  48. 48.
    Burnett MG, Stein SC, Bartels RH. Cost-effectiveness of current treatment strategies for lumbar spinal stenosis: nonsurgical care, laminectomy, and X-STOP. J Neurosurg Spine. 2010;13:39–46.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Kawaguchi Y, Matsui H, Tsuji H. Back muscle injury after pos- terior lumbar spine surgery. Part 1: histologic and histochemi- cal analyses in rats. Spine (Phila Pa 1976). 1994;19:2590–7.CrossRefGoogle Scholar
  50. 50.
    Kawaguchi Y, Matsui H, Tsuji H. Back muscle injury after pos- terior lumbar spine surgery. Part 2: histologic and histochemical analyses in humans. Spine (Phila Pa 1976). 1994;19:2598–602.CrossRefGoogle Scholar
  51. 51.
    Regev GJ, Lee YP, Taylor WR, Garfin SR, Kim CW. Nerve injury to the posterior rami medial branch during the insertion of pedicle screws: comparison of mini-open versus percutaneous pedicle screw insertion techniques. Spine (Phila Pa 1976). 2009;34:1239–42.CrossRefGoogle Scholar
  52. 52.
    Kim DY, Lee SH, Chung SK, Lee HY. Comparison of multifidus muscle atrophy and trunk extension muscle strength: percutaneous versus open pedicle screw xation. Spine (Phila Pa 1976). 2005;30:123–9.CrossRefGoogle Scholar
  53. 53.
    Wild MH, Glees M, Plieschnegger C, Wenda K. Five-year follow-up examination after purely minimally invasive poste- rior stabilization of thoracolumbar fractures: a comparison of minimally invasive percutaneously and conventionally open treated patients. Arch Orthop Trauma Surg. 2007;127:335–43.PubMedCrossRefGoogle Scholar
  54. 54.
    Jiang XZ, Tian W, Liu B, Li Q, Zhang GL, Hu L, et al. Comparison of a paraspinal approach with a percutaneous approach in the treatment of thoracolumbar burst fractures with posterior ligamentous complex injury: a prospective randomized controlled trial. J Int Med Res. 2012;40:1343–56.PubMedCrossRefGoogle Scholar
  55. 55.
    Koreckij T, Park DK, Fischgrund J. Minimally invasive spine surgery in the treatment of thoracolumbar and lumbar spine trauma. Neurosurg Focus. 2014;37(1):E11.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Raley DA, Mobbs RJ. Retrospective computed tomography scan analysis of percutaneously inserted pedicle screws for posterior transpedicular stabilization of the thoracic and lumbar spine: accuracy and complication rates. Spine (Phila Pa 1976). 2012;37:1092–100.CrossRefGoogle Scholar
  57. 57.
    Wiesner L, Kothe R, Schulitz KP, Rüther W. Clinical evaluation and computed tomography scan analysis of screw tracts after percutaneous insertion of pedicle screws in the lumbar spine. Spine (Phila Pa 1976). 2000;25:615–21.CrossRefGoogle Scholar
  58. 58.
    Mobbs RJ, Raley DA. Complications with K-wire insertion for percutaneous pedicle screws. J Spinal Disord Tech. 2014;27(7):390–4.PubMedCrossRefGoogle Scholar
  59. 59.
    Kwon B, Kim DH. Lateral lumbar interbody fusion: indications, outcomes, and complications. J Am Acad Orthop Surg. 2016;24(2):96–105.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Rodgers WB, Gerber EJ, Patterson J. Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine (Phila Pa 1976). 2011;36(1):26–32.CrossRefGoogle Scholar
  61. 61.
    Laws CJ, Coughlin DG, Lotz JC, Serhan HA, Hu SS. Direct lateral approach to lumbar fusion is a biomechanically equivalent alternative to the anterior approach: an in vitro study. Spine (Phila Pa 1976). 2012;37(10):819–25.CrossRefGoogle Scholar
  62. 62.
    Aichmair A, Fantini GA, Garvin S, et al. Aortic perforation during lateral lumbar interbody fusion. J Spinal Disord Tech. 2015;28:71–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Aichmair A, Lykissas MG, Girardi FP, et al. An institutional six-year trend analysis of the neurological outcome after lateral lumbar interbody fusion: a 6-year trend analysis of a single institution. Spine. 2013;38:E1483–90.PubMedCrossRefGoogle Scholar
  64. 64.
    Ahmadian A, Deukmedjian AR, Abel N, et al. Analysis of lumbar plexopathies and nerve injury after lateral retroperitoneal transpsoas approach: diagnostic standardization. J Neurosurg Spine. 2013;18:289–97.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Lykissas MG, Aichmair A, Hughes AP, et al. Nerve injury after lateral lumbar interbody fusion: a review of 919 treated levels with identification of risk factors. Spine J. 2014;14:749–58.PubMedCrossRefGoogle Scholar
  66. 66.
    Hijji FY, Narain AS, Bohl DD, Ahn J, Long WW, DiBattista JV, Kudaravalli KT, Singh K. Lateral lumbar interbody fusion: a systematic review of complication rates. Spine J. 2017;17(10):1412–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Pumberger M, Hughes AP, Huang RR, et al. Neurologic deficit following lateral lumbar interbody fusion. Eur Spine J. 2012;21:1192–9.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Tohmeh AG, Rodgers WB, Peterson MD. Dynamically evoked, discrete-threshold electromyography in the extreme lateral interbody fusion approach. J Neurosurg Spine. 2011;14:31–7.CrossRefGoogle Scholar
  69. 69.
    Rodgers WB, Gerber EJ, Patterson J. Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine. 2011;36:26–32.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Isaacs RE, Hyde J, Goodrich JA, et al. A prospective, nonrandomized, multicenter evaluation of extreme lateral interbody fusion for the treatment of adult degenerative scoliosis: perioperative outcomes and complications. Spine. 2010;35:S322–30.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Sofianos DA, Briseno MR, Abrams J, et al. Complications of the lateral transpsoas approach for lumbar interbody arthrodesis: a case series and literature review. Clin Orthop Relat Res. 2012;470:1621–32.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Berjano P, Lamartina C. Minimally invasive lateral transpsoas approach with advanced neurophysiologic monitoring for lumbar interbody fusion. Eur Spine J. 2011;20:1584–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Berjano P, Lamartina C. Far lateral approaches (XLIF) in adult scoliosis. Eur Spine J. 2013;22(Suppl. 2):S242–53.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Caputo AM, Michael KW, Chapman TM Jr, et al. Clinical outcomes of extreme lateral interbody fusion in the treatment of adult degenerative scoliosis. ScientificWorldJournal. 2012;2012:680643.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Lee CS, Hwang CJ, Lee DH, et al. Fusion rates of instrumented lumbar spinal arthrodesis according to surgical approach: a systematic review of randomized trials. Clin Orthop Surg. 2011;3:39–47.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Keorochana G, Setrkraising K, Woratanarat P, et al. Clinical outcomes after minimally invasive transforaminal lumbar interbody fusion and lateral lumbar interbody fusion for treatment of degenerative lumbar disease: a systematic review and meta-analysis. Neurosurg Rev. 2018;41(3):755–70.  https://doi.org/10.1007/s10143–016–0806–8.CrossRefPubMedGoogle Scholar
  77. 77.
    Wu RH, Fraser JF, Hartl R. Minimal access versus open transforaminal lumbar interbody fusion: meta-analysis of fusion rates. Spine. 2010;35:2273–81.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Ni J, Fang X, Zhong W, et al. Anterior lumbar interbody fusion for degenerative discogenic low back pain: evaluation of L4-S1 fusion. Medicine (Baltimore). 2015;94:e1851.CrossRefGoogle Scholar
  79. 79.
    Hsieh PC, Koski TR, O’Shaughnessy BA, et al. Anterior lumbar interbody fusion in comparison with transforaminal lumbar interbody fusion: im- plications for the restoration of foraminal height, local disc angle, lumbar lordosis, and sagittal balance. J Neurosurg Spine. 2007;7:379–86.CrossRefGoogle Scholar
  80. 80.
    Le TV, Baaj AA, Dakwar E, et al. Subsidence of polyetheretherketone intervertebral cages in minimally invasive lateral retroperitoneal transpsoas lumbar interbody fusion. Spine (Phila Pa 1976). 2012;37(14):1268–73.CrossRefGoogle Scholar
  81. 81.
    Marchi L, Abdala N, Oliveira L, Amaral R, Coutinho E, Pimenta L. Radiographic and clinical evaluation of cage subsidence after stand-alone lateral interbody fusion. J Neurosurg Spine. 2013;19(1):110–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Oliveira L, Marchi L, Coutinho E, et al. A radiographic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine. 2010;35:S331–7.CrossRefGoogle Scholar
  83. 83.
    Tan JS, Bailey CS, Dvorak MF, et al. Interbody device shape and size are important to strengthen the vertebra-implant interface. Spine. 2005;30:638–44.PubMedCrossRefGoogle Scholar
  84. 84.
    Dooris AP, Goel VK, Grosland NM, et al. Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc. Spine. 2001;26:E122–9.PubMedCrossRefGoogle Scholar
  85. 85.
    White AA 3rd. Clinical biomechanics of cervical spine implants. Spine. 1989;14:1040–5.PubMedCrossRefGoogle Scholar
  86. 86.
    Choi JY, Sung KH. Subsidence after anterior lumbar interbody fusion using paired stand-alone rectangular cages. Eur Spine J. 2006;15:16–22.PubMedCrossRefGoogle Scholar
  87. 87.
    Beutler WJ, Peppelman WC Jr. Anterior lumbar fusion with paired BAK standard and paired BAK Proximity cages: subsidence incidence, subsidence factors, and clinical outcome. Spine J. 2003;3:289–93.PubMedCrossRefGoogle Scholar
  88. 88.
    Foley KT, Holly LT, Schwender JD. Minimally invasive lumbar fusion. Spine (Phila Pa 1976). 2003;28(15):S26–35.Google Scholar
  89. 89.
    Wang MY, Cummock MD, Yu Y, Trivedi RA. An analysis of the differences in the acute hospitalization charges following minimally invasive versus open posterior lumbar interbody fusion. J Neurosurg Spine. 2010;12:694–9.CrossRefGoogle Scholar
  90. 90.
    Mobbs RJ, Sivabalan P, Li J. Minimally invasive surgery compared to open spinal fusion for the treatment of degenerative lumbar spine pathologies. J Clin Neurosci. 2012;19:829–35.PubMedCrossRefGoogle Scholar
  91. 91.
    Schizas C, Tzinieris N, Tsiridis E, Kosmopoulos V. Minimally invasive versus open transforaminal lumbar interbody fusion: evaluating initial experience. Int Orthop. 2009;33:1683–8.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Phan K, Rao PJ, Kam AC, Mobbs RJ. Minimally invasive versus open transforaminal lumbar interbody fusion for treatment of degenerative lumbar disease: systematic review and meta-analysis. Eur Spine J. 2015;24(5):1017–30.PubMedCrossRefGoogle Scholar
  93. 93.
    Joseph JR, Smith BW, La Marca F, Park P. Comparison of complication rates of minimally invasive transforaminal lumbar interbody fusion and lateral lumbar interbody fusion: a systematic review of the literature. Neurosurg Focus. 2015;39(4):E4.CrossRefGoogle Scholar
  94. 94.
    Rahn KA, Shugart RM, Wylie MW, Reddy KK, Morgan JA. The effect of lordosis, disc height change, subsidence, and transitional segment on stand-alone anterior lumbar interbody fusion using a nontapered threaded device. Am J Orthop. 2010;39:E124–9.PubMedGoogle Scholar
  95. 95.
    Min J-H, Jang J-S, Lee S-H. Comparison of anterior- and posterior approach instrumented lumbar interbody fusion for spondylolisthesis. J Neurosurg Spine. 2007;7:21–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Baker JK, Reardon PR, Reardon MJ, Heggeness MH. Vascular injury in anterior lumbar surgery. Spine. 1993;18:2227–30.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Lindley EM, McBeth ZL, Henry SE, Cooley R, Burger EL, Cain CM, et al. Retrograde ejaculation after anterior lumbar spine surgery. Spine. 2012;37:1785–9.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Than KD, Wang AC, Rahman SU, Wilson TJ, Valdivia JM, Park P, et al. Complication avoidance and management in anterior lumbar interbody fusion. Neurosurg Focus. 2011;31:E6.PubMedCrossRefGoogle Scholar
  99. 99.
    Inamasu J, Guiot BH. Laparoscopic anterior lumbar interbody fusion: a review of outcome studies. Minim Invasive Neurosurg. 2005;48(6):340–7.CrossRefGoogle Scholar
  100. 100.
    Liu JC, Ondra SL, Angelos P, Ganju A, Landers ML. Is laparoscopic anterior lumbar interbody fusion a useful minimally invasive procedure? Neurosurgery. 2002;51:S155–8.PubMedGoogle Scholar
  101. 101.
    Chung SK, Lee SH, Lim SR, et al. Comparative study of laparoscopic L5-S1 fusion versus open mini-ALIF, with a minimum 2-year follow-up. Eur Spine J. 2003;12:613–7.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Kaiser MG, Haid RW Jr, Subach BR, Miller JS, Smith CD, Rodts GE Jr. Comparison of the mini-open versus laparoscopic approach for anterior lumbar interbody fusion: a retrospective review. Neurosurgery. 2002;51:97–103; discussion 103–105PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Mayer HM. A new microsurgical technique for minimally invasive anterior lumbar interbody fusion. Spine (Phila Pa 1976). 1997;22:691–9; discussion 700CrossRefGoogle Scholar
  104. 104.
    Silvestre C, Mac-Thiong JM, Hilmi R, et al. Complications and morbidities of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lumbar interbody fusion in 179 patients. Asian Spine J. 2012;6:89–97.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Ohtori S, Orita S, Yamauchi K, et al. Mini-open anterior retroperitoneal lumbar Interbody fusion: oblique lateral interbody fusion for lumbar spinal degeneration disease. Yonsei Med J. 2015;56:1051–9.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Phan K, Mobbs RJ. Oblique lumbar interbody fusion for revision of non-union following prior posterior surgery: a case report. Orthop Surg. 2015;7:364.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Phan K, Maharaj M, Assem Y, Mobbs RJ. Review of early clinical results and complications associated with oblique lumbar interbody fusion (OLIF). J Clin Neurosci. 2016;31:23–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Aryan HE, Newman CB, Gold JJ, Acosta FL Jr, Coover C, Ames CP. Percutaneous axial lumbar interbody fusion (AxiaLIF) of the L5-S1 segment: initial clinical and radiographic experience. Minim Invasive Neurosurg. 2008;51:225–30.PubMedCrossRefGoogle Scholar
  109. 109.
    Gerszten PC, Tobler WD, Nasca RJ. Retrospective analysis of L5-S1 axial lumbar interbody fusion (AxiaLIF): a comparison with and without the use of recombinant human bone morphogenetic protein-2. Spine J. 2011;11:1027–32.PubMedCrossRefGoogle Scholar
  110. 110.
    Akesen B, Wu C, Mehbod AA, Transfeldt EE. Biomechanical evaluation of paracoccygeal transsacral xation. J Spinal Disord Tech. 2008;21:39–44.PubMedCrossRefGoogle Scholar
  111. 111.
    Ledet EH, Tymeson MP, Salerno S, Carl AL, Cragg A. Biomechanical evaluation of a novel lumbosacral axial xation device. J Biomech Eng. 2005;127:929–33.PubMedCrossRefGoogle Scholar
  112. 112.
    Schroeder GD, Kepler CK, Vaccaro AR. Axial interbody arthrodesis of the L5-S1 segment: a systematic review of the literature. J Neurosurg Spine. 2015;23(3):314–9.CrossRefGoogle Scholar
  113. 113.
    Schroeder GD, Kepler CK, Millhouse PW, Fleischman AN, Maltenfort MG, Bateman DK, Vaccaro AR. L5/S1 fusion rates in degenerative spine surgery: a systematic review comparing ALIF, TLIF, and axial interbody arthrodesis. Clin Spine Surg. 2016;29(4):150–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Joseph S. Butler
    • 1
    • 2
    • 3
    • 4
  • Mark F. Kurd
    • 5
  1. 1.National Spinal Injuries UnitDublinIreland
  2. 2.Mater Misericordiae University HospitalDublinIreland
  3. 3.Mater Private HospitalDublinIreland
  4. 4.Tallaght University HospitalDublinIreland
  5. 5.Rothman Institute, Thomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations