Advertisement

Selection of Appropriate Patients for Outpatient Spine Surgery

  • William D. Smith
  • Karishma Gupta
  • Maritza Kelesis
  • Joseph L. Laratta
Chapter

Abstract

For many years outpatient surgery centers have been used to perform procedures such as microlumbar discectomy, lumbar laminotomy, decompressions, and fusions. These procedures have been shown to be safe and cost-effective in the outpatient setting while also demonstrating better outcomes and patient satisfaction. An important component of outpatient spine surgery is patient selection and safety. Factors affecting patient safety include the patient’s general health status, the risk profile of the approach, and the familiarity of the surgeon with the operative procedure. Patient selection factors include age, comorbidities, diagnosis, treatment levels, hemoglobin levels, body mass index (BMI), and patient disposition. If a patient maintains anxiety about outpatient spine surgery, this should be considered a contraindication. Literature has shown that lumbar fusion surgery in outpatient settings has had positive outcomes when compared to traditional spine surgery or spine surgery in an inpatient setting, such as shorter operating room (OR) time, less blood loss, and reduced procedure cost. Those electing for outpatient surgery are also often discharged sooner and experience greater satisfaction with their outcomes.

Keywords

Lateral lumbar interbody fusion Outpatient selection factors for spine surgery Minimally invasive spine surgery Literature review of outpatient spine surgery Outpatient spine surgery Outpatient lumbar fusion Outpatient decompression Patient selection for lumbar fusion 

References

  1. 1.
    Zahrawi F. Microlumbar discectomy. Is it safe as an out-patient procedure? Spine. 1994;19:1070–4.PubMedCrossRefGoogle Scholar
  2. 2.
    An HS, Simpson JM, Stein R. Outpatient laminotomy and discectomy. J Spinal Disord. 1999;12:192–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Asch HL, Lewis PJ, Moreland DB, et al. Prospective multiple outcomes study of outpatient lumbar micro-discectomy: should 75 to 80% success rates be the norm? J Neurosurg. 2002;96(1 Suppl):S34–44.Google Scholar
  4. 4.
    Best NM, Sasso RC. Success and safety in outpatient microlumbar discectomy. J Spinal Disord Tech. 2006;19:334–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Bookwalter JW III, Busch MD, Nicely D. Ambulatory surgery is safe and effective in radicular disc disease. Spine. 1994;19:526–30.PubMedCrossRefGoogle Scholar
  6. 6.
    Davis GW, Onik G. Clinical experience with automated percutaneous lumbar discectomy. Clin Orthop Relat Res. 1989;238:98–103.CrossRefGoogle Scholar
  7. 7.
    Deyo RA, Mirza SK. Trends and variations in the use of spine surgery. Clin Orthop Relat Res. 2006;443:139–46.PubMedCrossRefGoogle Scholar
  8. 8.
    Fallah A, Massicotte EM, Fehlings MG, et al. Admission and acute complication rate for outpatient lumbar micro-discectomy. Can J Neurol Sci. 2010;37:49–53.PubMedCrossRefGoogle Scholar
  9. 9.
    Goldstein TB, Mink JH, Dawson EG. Early experience with automated percutaneous lumbar discectomy in the treatment of lumbar disc herniation. Clin Orthop Relat Res. 1989;238:77–82.CrossRefGoogle Scholar
  10. 10.
    Gray DT, Deyo RA, Kreuter W, et al. Population-based trends in volumes and rates of ambulatory lumbar spine surgery. Spine. 2006;31:1957–63.PubMedCrossRefGoogle Scholar
  11. 11.
    Hersht M, Massicotte EM, Bernstein M. Patient satisfaction with outpatient lumbar microsurgical discectomy: a qualitative study. Can J Surg. 2007;50:445–9.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Maroon JC, Onik G, Sternau L. Percutaneous automated discectomy. A new approach to lumbar surgery. Clin Orthop Relat Res. 1989;238:64–70.CrossRefGoogle Scholar
  13. 13.
    Newman MH. Outpatient conventional laminotomy and disc excision. Spine. 1995;20:353–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Singhal A, Bernstein M. Outpatient lumbar microdiscectomy: a prospective study in 122 patients. Can J Neurol Sci. 2002;29:249–52.PubMedCrossRefGoogle Scholar
  15. 15.
    Best NM, Sasso RC. Outpatient lumbar spine decom-pression in 233 patients 65 years of age or older. Spine. 2007;32:1135–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Holly LT, Moftakhar P, Khoo LT, et al. Minimally invasive 2-level posterior cervical foraminotomy: preliminary clinical results. J Spinal Disord Tech. 2007;20:20–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Fountas KN, Kapsalaki EZ, Nikolakakos LG, et al. Anterior cervical discectomy and fusion associated com-plications. Spine. 2007;32:2310–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Garringer SM, Sasso RC. Safety of anterior cervical discectomy and fusion performed as outpatient surgery. J Spinal Disord Tech. 2010;23:439–43.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Lied B, Sundseth J, Helseth E. Immediate (0–6 h), early (6–72 h) and late (72 h) complications after anterior cervical discectomy with fusion for cervical disc degeneration; discharge six hours after operation is feasible. Acta Neurochir. 2008;150:111–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Liu JT, Briner RP, Friedman JA. Comparison of inpatient vs outpatient anterior cervical discectomy and fusion: a retrospective case series. BMC Surg. 2009;9:3.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Nandoe Tewarie RD, Bartels RH, Peul WC. Long-term outcome after anterior cervical discectomy without fusion. Eur Spine J. 2007;16:1411–6.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Silvers HR, Lewis PJ, Suddaby LS, et al. Day surgery for cervical microdiscectomy: is it safe and effective? J Spinal Disord. 1996;9:287–93.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Trahan J, Abramova MV, Richter EO, et al. Feasibility of anterior cervical discectomy and fusion as an outpatient procedure. World Neurosurg. 2011;75:145–8.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Walid MS, Robinson JS III, Robinson ER, et al. Comparison of outpatient and inpatient spine surgery patients with regards to obesity, comorbidities and readmission for infection. J Clin Neurosci. 2010;17:1497–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Wohns R. Safety and cost-effectiveness of outpatient cervical disc arthroplasty. Surg Neurol Int. 2010;1:77.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Gray DT, Hollingworth W, Onwudiwe N, et al. Costs and state-specific rates of thoracic and lumbar vertebroplasty, 2001–2005. Spine. 2008;33:1905–12.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Ledlie JT, Renfro MB. Kyphoplasty treatment of vertebral fractures: 2-year outcomes show sustained benefits. Spine. 2006;31:57–64.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kalanithi PS, Patil CG, Boakye M. National complication rates and disposition after posterior lumbar fusion for acquired spondylolisthesis. Spine. 2009;34:1963–9.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Baker JK, Reardon PR, Reardon MJ, et al. Vascular injury in anterior lumbar surgery. Spine. 1993;18:2227–30.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Rajaraman V, Vingan R, Roth P, et al. Visceral and vascular complications resulting from anterior lumbar inter-body fusion. J Neurosurg. 1999;91(1 Suppl):60–4.Google Scholar
  31. 31.
    Turner JA, Ersek M, Herron L, et al. Patient outcomes after lumbar spinal fusions. JAMA. 1992;268:907–11.PubMedCrossRefGoogle Scholar
  32. 32.
    Wood KB, Devine J, Fischer D, et al. Vascular injury in elective anterior lumbosacral surgery. Spine. 2010;35(9 Suppl):S66–75.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Jutte PC, Castelein RM. Complications of pedicle screws in lumbar and lumbosacral fusions in 105 consecutive primary operations. Eur Spine J. 2002;11:594–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Okuda S, Miyauchi A, Oda T, et al. Surgical complications of posterior lumbar interbody fusion with total facetectomy in 251 patients. J Neurosurg Spine. 2006;4:304–9.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Potter BK, Freedman BA, Verwiebe EG, et al. Transforaminal lumbar interbody fusion: clinical and radiographic results and complications in 100 consecutive patients. J Spinal Disord Tech. 2005;18:337–46.PubMedCrossRefGoogle Scholar
  36. 36.
    Rihn JA, Patel R, Makda J, et al. Complications associated with single-level transforaminal lumbar interbody fusion. Spine J. 2009;9:623–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Scaduto AA, Gamradt SC, Yu WD, et al. Perioperative complications of threaded cylindrical lumbar interbody fusion devices: anterior versus posterior approach. J Spinal Disord Tech. 2003;16:502–7.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Villavicencio AT, Burneikiene S, Bulsara KR, et al. Peri-operative complications in transforaminal lumbar inter-body fusion versus anterior-posterior reconstruction for lumbar disc degeneration and instability. J Spinal Disord Tech. 2006;19:92–7.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Blue Cross Blue Shield. BCBS ASC guidance; 2011.Google Scholar
  40. 40.
    Centers for Medicare & Medicaid Services (CMS). Ambulatory surgery center billing guide; 2009.Google Scholar
  41. 41.
    MedPac. Ambulatory surgical centers payment system; 2007.Google Scholar
  42. 42.
    Brau SA. Mini-open approach to the spine for anterior lumbar interbody fusion: description of the procedure, results and complications. Spine J. 2002;2:216–23.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Chung SK, Lee SH, Lim SR, et al. Comparative study of laparoscopic L5-S1 fusion versus open mini-ALIF, with a minimum 2-year follow-up. Eur Spine J. 2003;12:613–7.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kaiser MG, Haid RW Jr, Subach BR, et al. Comparison of the mini-open versus laparoscopic approach for anterior lumbar interbody fusion: a retrospective review. Neurosurgery. 2002;51:97–103.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Ozgur BM, Aryan HE, Pimenta L, et al. Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006;6:435–43.CrossRefGoogle Scholar
  46. 46.
    Ozgur BM, Agarwal V, Nail E, et al. Two-year clinical and radiographic success of minimally invasive lateral trans-psoas approach for the treatment of degenerative lumbar conditions. SAS J. 2010;1:41–6.CrossRefGoogle Scholar
  47. 47.
    Gray R, Fehlings M, Lewis S, et al. Direct economic impact of posterior minimally invasive compared to conventional open fusion procedures for lumbar spondylolisthesis. Presented at the SMISS 2009 Annual Conference, Las Vegas, NV.Google Scholar
  48. 48.
    Rodgers WB, Gerber EJ, Patterson J. Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine. 2011;36:26–32.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Smith WD, Christian G, Serrano S, et al. A comparison of perioperative charges and outcome between open anterior and mini-open lateral approaches for lumbar discectomy and fusion. J Clin Neurosci. 2012;19:673–80.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Wang MY, Cummock MD, Yu Y, et al. An analysis of the differences in the acute hospitalization charges following minimally invasive versus open posterior lumbar inter-body fusion. J Neurosurg Spine. 2010;12:694–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Youssef JA, McAfee PC, Patty CA, et al. Minimally invasive surgery: lateral approach interbody fusion: results and review. Spine. 2010;35(26 Suppl):S302–11.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Zdeblick TA, David SM. A prospective comparison of surgical approach for anterior L4-L5 fusion: laparoscopic versus mini anterior lumbar interbody fusion. Spine. 2000;25:2682–7.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Yeung AT, Yeung CA. Minimally invasive techniques for the management of lumbar disc herniation. The Orthopedic clinics of North America. U.S. National Library of Medicine; 2007. Available from: https://www.ncbi.nlm.nih.gov/pubmed/17629984. Accessed 3 Apr 2018.
  54. 54.
    Rasouli MR, Rahimi-Moyaghar V, Shokraneh F, Moradi-Lakeh M, Chou R. Minimally invasive discectomy versus microdiscectomy/open discectomy for symptomatic lumbar disc herniation. Cochrane Database Syst Rev. 2014;9:CD010328.Google Scholar
  55. 55.
    Ammendolia C. Degenerative lumbar spinal stenosis and its imposters: three case studies. J Can Chirop Assoc. U.S. National Library of Medicine; 2014. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25202160. Accessed 21 Mar 2018.
  56. 56.
    Low Back Pain and Sciatica in Over 16s: Assessment and Management. National Center for Biotechnology Information. U.S. National Library of Medicine; 2016. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27929617. Accessed 13 Apr 2018.
  57. 57.
    Anjarwalla NK, Brown LC, Mcgregor AH. The outcome of spinal decompression surgery 5 years on. Eur Spine J. 2007;16(11):1842–7.  https://doi.org/10.1007/s00586–007–0393-z.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Pimenta L, Vigna F, Bellera F, Schaffa T, Malcolm J, McAfee P. A new minimally invasive surgical technique for adult lumbar degenerative scoliosis. Proceedings of the 11th International Meeting on Advanced Spine Techniques (IMAST), Southampton, Bermuda, July 2004.Google Scholar
  59. 59.
    Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006;6(4):435–43.  https://doi.org/10.1016/j.spinee.2005.08.012.CrossRefGoogle Scholar
  60. 60.
    Kanter AS, Tempel ZJ, Agarwal N, Hamilton DK, Zavatsky JM, Mundis GM, et al. Curve laterality for lateral lumbar interbody fusion in adult scoliosis surgery: the concave versus convex controversy. Neurosurgery. U.S. National Library of Medicine; 2018. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29361052. Accessed 17 Apr 2018.
  61. 61.
    Mcafee PC, Shucosky E, Chotikul L, Salari B, Chen L, Jerrems D. Multilevel extreme lateral interbody fusion (XLIF) and osteotomies for 3-dimensional severe deformity: 25 consecutive cases. Int J Spine Surg. 2013;7(1):e8.  https://doi.org/10.1016/j.ijsp.2012.10.001.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Isaacs RE, Hyde J, Goodrich JA, Rodgers WB, Phillips FM. A prospective, nonrandomized, multicenter evaluation of extreme lateral interbody fusion for the treatment of adult degenerative scoliosis: perioperative outcomes and complications. Spine. U.S. National Library of Medicine; 2010. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21160396. Accessed 18 Apr 2018.
  63. 63.
    Li G, Patil CG, Lad SP, et al. Effects of age and comorbidities on complication rates and adverse outcomes after lumbar laminectomy in elderly patients. Spine. 2008;33:1250–5.PubMedCrossRefGoogle Scholar
  64. 64.
    Cahill KS, Chi JH, Day A, et al. Prevalence, complications, and hospital charges associated with use of bone-morphogenetic proteins in spinal fusion procedures. JAMA. 2009;302:58–66.CrossRefGoogle Scholar
  65. 65.
    Dekutoski MB, Norvell DC, Dettori JR, et al. Surgeon perceptions and reported complications in spine surgery. Spine. 2010;35(9. Suppl):S9–S21.PubMedCrossRefGoogle Scholar
  66. 66.
    Patel N, Bagan B, Vadera S, et al. Obesity and spine surgery: relation to perioperative complications. J Neurosurg Spine. 2007;6:291–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Rodgers WB, Gerber EJ, Rodgers JA. Lumbar fusion in octogenarians: the promise of minimally invasive surgery. Spine. 2010;35(26 Suppl):S355–60.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Rodgers WB, Cox CS, Gerber EJ. Early complications of extreme lateral interbody fusion in the obese. J Spinal Disord Tech. 2010;23:393–7.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    O’Toole JE, Eichholz KM, Fessler RG. Surgical site infection rates after minimally invasive spinal surgery. J Neurosurg Spine. 2009;11:471–6.CrossRefGoogle Scholar
  70. 70.
    Khoo LT, Beisse R, Potulski M. Thoracoscopic-assisted treatment of thoracic and lumbar fractures: a series of 371 consecutive cases. Neurosurgery. 2002;51(5 Suppl):S104–17.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Why Pain Control is Important [Internet]. Healthgrades Press Release. Healthgrades; 2009. Available from: https://www.healthgrades.com/about/press-room/press-releases. Accessed 15 May 2018.
  72. 72.
    Smith WD, Wohns R, Christian G, Rodgers EJ, Rodgers WB. Outpatient minimally invasive lumbar interbody fusion. Spine. 2016:1.  https://doi.org/10.1097/brs.0000000000001479.
  73. 73.
    Helseth Ø, Lied B, Halvorsen CM, Ekseth K, Helseth E. Outpatient cervical and lumbar spine surgery is feasible and safe. Neurosurgery. 2015;76(6):728–38.  https://doi.org/10.1227/neu.0000000000000746.CrossRefPubMedGoogle Scholar
  74. 74.
    Chin KR, Coombs AV, Seale JA. Feasibility and patient-reported outcomes after outpatient single-level instrumented posterior lumbar interbody fusion in a surgery center. Spine. 2015;40(1):E36.  https://doi.org/10.1097/brs.0000000000000604.CrossRefPubMedGoogle Scholar
  75. 75.
    Chin KR, Pencle FJ, Coombs AV, Packer CF, Hothem EA, Seale JA. Eligibility of outpatient spine surgery candidates in a single private practice. Clin Spine Surg. 2017;30(10):E1352.  https://doi.org/10.1097/bsd.0000000000000374.CrossRefPubMedGoogle Scholar
  76. 76.
    Mohandas A, Summa C, Worthington B, Lerner J, Foley K, Bohinski R, Lanford G, Holden C, Wohns R. Best practices for outpatient cervical surgery: results from a delphi panel. Spine. 2017;42:648–59.  https://doi.org/10.1097/BRS.0000000000001925.CrossRefGoogle Scholar
  77. 77.
    Miller EK, Scheer JK, Smith JS, Bess S, Urquiza FP, Ames CP. Risk stratification and the future of spine surgery. Spine. 2018;XIX:14–20. Accessed 15 May 2018.Google Scholar
  78. 78.
    Pettine K. Spine surgery in an ambulatory surgery center: single site experience. Presented at the Society of Ambulatory Spine Surgery Symposium, 2011, Chicago, IL.Google Scholar
  79. 79.
    Rodgers WB, Gerber EJ, Lehmen JA, et al. Predictors of early postoperative discharge following minimally invasive lateral interbody fusion (MI-LIF). Presented at the Annual Meeting of the International Society for the Advancement of Spine Surgery, 2012, Barcelona, Spain.Google Scholar
  80. 80.
    Smith WD, Christian G. MIS lumbar fusion in an ambulatory surgery center (ASC): safety, treatment outcomes, and comparison with inpatient lumbar fusion. Presented at the Annual Meeting of the International Society for the Advancement of Spine Surgery, 2012, Barcelona, Spain.Google Scholar
  81. 81.
    Wohns R. A comparison of the safety of lumbar fusions performed as outpatient (25 hour discharge) or inpatient (24 hour discharge) procedures. Presented at the Annual Meeting of the North American Spine Society (NASS), 2012, Dallas.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • William D. Smith
    • 1
    • 2
  • Karishma Gupta
    • 3
  • Maritza Kelesis
    • 3
  • Joseph L. Laratta
    • 4
    • 5
  1. 1.Department of NeurosurgeryUniversity Medical Center of Southern NevadaLas VegasUSA
  2. 2.Western Regional Center for Brain and Spine SurgeryLas VegasUSA
  3. 3.Western Regional Center for Brain and Spine SurgeryLas VegasUSA
  4. 4.Department of Orthopaedic SurgeryUniversity of Louisville Medical CenterLouisvilleUSA
  5. 5.Department of Orthopaedic SurgeryNorton Leatherman Spine CenterLouisvilleUSA

Personalised recommendations