Learning Curve for Minimally Invasive Spine Surgery

  • Victor P. Lo
  • Neel Anand


Minimally invasive spine surgery represents a fundamental shift in the way spine surgery is practiced. The minimally invasive approach has been applied in all aspects of spine surgery, from degenerative cases to complex deformity corrections. A challenge of minimally invasive spine surgery is the acquisition of the often unfamiliar skill set to perform the procedures. The procedures commonly require operating through narrow corridors and fluoroscopic visualization. This has led to the often stated “steep learning curve” in minimally invasive procedures. This chapter this will review a brief history of minimally invasive spine surgery, examine the learning curve in spine surgery, and explore methods to address the learning curve.


Minimally invasive Learning curve Innovation Dissection Challenge 


  1. 1.
    Kim CW, Sieminonow K, Anderson DG, Philips FM. The current state of minimally invasive spine surgery. J Bone Joint Surg Am. 2011;16:582–96.Google Scholar
  2. 2.
    McGirt MJ, Parker SL, Mummaneni P, Knightly J, Pfortmiller D, Foley K, et al. Is the use of minimally invasive fusion technologies associated with improved outcomes after elective interbody lumbar fusion? Analysis of a nationwide prospective patient reported outcomes registry. Spine J. 2017;17:922–32.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Feldtkeller E, Lemmel EM, Russel AS. Ankylosing spondylitis in the pharaohs of ancient Egypt. Rheumatol Int. 2003;23:1–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Marketos SG, Skiadas P. Hippocrates: the father of spine surgery. Spine. 1999;24:1381–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Naderi S, Benzel EC. History of Spine surgery. In: Benzel EC, editor. Spine surgery: techniques, complication avoidance and management. 4th ed. Philadelphia: Elsevier; 2016.Google Scholar
  6. 6.
    Patwardhan RV, Hadley MD. History of surgery for ruptured disk. Neurosurg Clin N Am. 2001;12:173–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Mixter WJ, Barr JS. Rupture of the intervertebral disc with involvement of the spinal canal. N Engl J Med. 1934;211:210–5.CrossRefGoogle Scholar
  8. 8.
    Cloward RB. The treatment of ruptured lumbar intervertebral discs by vertebral body fusion. I. Indications, operative technique, and after care. J Neurosurg. 1953;10:154–68.PubMedCrossRefGoogle Scholar
  9. 9.
    Yasargil MG, Krayenbuhl H. The use of binocular microscope in neurosurgery. Bibl Ophthalmol. 1970;82:62–5.Google Scholar
  10. 10.
    Imhof HG, von Ammon K, Yasargil MG. Use of the microscope in surgery of the lumbar disk hernia. Aktuelle Probl Chir Orthop. 1994;44:15–20.PubMedGoogle Scholar
  11. 11.
    Sachdev VP. Microsurgical lumbar discectomy: a personal series of 300 patients with at least 1 year follow up. Microsurgery. 1986;7:55–62.PubMedCrossRefGoogle Scholar
  12. 12.
    Yasargil MG. Microsurgical operation for herniated lumbar disc. Adv Neurosurg. 1977;4:81–2.CrossRefGoogle Scholar
  13. 13.
    Caspar W. A new surgical procedure for lumbar disc herniation causing less tissue damage through a microsurgical approach. Adv Neurosurg. 1977;4:74–80.CrossRefGoogle Scholar
  14. 14.
    Smith L. Enzyme dissolution of the nucleus pulposus in humans. JAMA. 1964;187:137–40.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Dabezies EJ, Langford K, Morris J, et al. Safety and efficacy of chymopapain (Disease) in the treatment of sciatic due to a herniated nucleus pulposus. Results of a randomized, double-blind study. Spine. 1988;13:561–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Fraser RD. Chymopapain for the treatment of intervertebral disc herniation. A preliminary report of a double-blind study. Spine. 1982;7:608–12.PubMedCrossRefGoogle Scholar
  17. 17.
    Javid MJ, Nordby EJ, Ford LT, Hejna WJ, Whisler WW, Burton C, et al. Safety and efficacy of chymopapain (Chymodiactin) in herniated nucleus pulposus with sciatica. Results of a randomized, double-blind study. JAMA. 1983;249:2489–94.PubMedCrossRefGoogle Scholar
  18. 18.
    Nordby EJ, Javid MJ. Continuing experience with chemonucleolysis. Mt Sinai J Med. 2000;67:311–3.PubMedGoogle Scholar
  19. 19.
    Nordby EJ, Brown MD. Present status of chymopapain and chemonucleolylsis. Clin Orthop. 1977;129:79–83.CrossRefGoogle Scholar
  20. 20.
    Nordby EJ, Lucas GL. A comparative analysis of lumbar disk disease treated by laminectomy or chemonucleolysis. Clin Orthop. 1973;90:119–29.Google Scholar
  21. 21.
    Hijakata S. Percutaneous nucleotomy. A new concept technique and 12 years’ experience. Clin Orthop. 1989;238:9–23.CrossRefGoogle Scholar
  22. 22.
    Kambin P, Brager MD. Percutaneous posterolateral discectomy. Anatomy and mechanism. Clin Orthop Relat Res. 1987;223:145–54.Google Scholar
  23. 23.
    Kambin P, Gellman H. Percutaneous lateral discectomy of the lumbar spine: a preliminary report. Clin Orthop. 1983;174:127–32.Google Scholar
  24. 24.
    Kambin P, Sampson S. Posterolateral percutaneous suction-excision of herniated lumbar intervertebral discs. Report of interim results. Clin Orthop. 1986;207:37–43.Google Scholar
  25. 25.
    Choy DS, Case RB, Fielding W, Hughes J, Liebler W, Ascher P. Percutaneous laser nucleolysis of lumbar disks. N Engl J Med. 1987;317:771–2.PubMedCrossRefGoogle Scholar
  26. 26.
    Saal JA, Saal JS. Intradiscal electrothermal treatment for chronic discogenic low back pain. Spine. 2000;25:2622–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Saal JS, Saal JA. Management of chronic discogenic low back pain with a thermal intradiscal catheter: a preliminary report. Spine. 2000;25:382–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Foley KT, Smith MM. Microendoscopic discectomy. Techniques in Neurosurgery, vol. 3; 1997. p. 301–7.Google Scholar
  29. 29.
    Foley KT, Gupta SK, Justis JR, Sherman MC. Percutaneous pedicle screw fixation of the lumbar spine. Neurosurg Focus. 2001;10:E10.PubMedCrossRefGoogle Scholar
  30. 30.
    Guiot BH, Khoo LT, Fessler RG. A minimally invasive technique for decompression of the lumbar spine. Spine. 2002;27:432–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Tredway TL, Musleh W, Christie SD, Khavkin Y, Fessler RG, Curry DJ. A novel minimally invasive technique for spine cord untethering. Neurosurgery. 2007;60:ONS70–4.PubMedGoogle Scholar
  32. 32.
    Tredway Santiago P, Hrubes MR, Song JK, Christie SD, Fessler RG. Minimally invasive resection of intradural-extramedullary spinal neoplasms. Neurosurgery. 2006;58:ONS52–8.PubMedGoogle Scholar
  33. 33.
    Ebbinghaus H. Memory: a contribution to experimental psychology. New York City: Teachers College, Columbia University; 1913.CrossRefGoogle Scholar
  34. 34.
    Bhattacharya K. Kurt Semm: a laparoscopic crusader. J Minim Access Surg. 2007;3:35–6.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Tsui C, Klein R, Garabrant M. Minimally invasive surgery: national trends in adoption and future directions for hospital strategy. Surg Endosc. 2013;27:2253–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Hopper AN, Jamison MH, Lewis WG. Learning curves in surgical practice. Postgrad Med J. 2007;83:777–9.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Lee JC, Jang H-D, Shin B-J. Learning curve and clinical outcomes of minimally invasive transforaminal lumbar interbody fusion. Our experience in 86 consecutive cases. Spine. 2012;37:1548–57.PubMedCrossRefGoogle Scholar
  38. 38.
    Silva PS, Pereira P, Monteiro P, Silva PA, Vaz R. Learning curve and complications of minimally invasive transforaminal lumbar interbody fusion. Neurosurg Focus. 2013;35:E7.PubMedCrossRefGoogle Scholar
  39. 39.
    Lee KH, Yeo W, Soeharno H, Yue WM. Learning curve of a complex surgical technique: minimally invasive transforaminal lumbar interbody fusion (MIS TLIF). J Spinal Disord Tech. 2014;27:E234–40.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Nomura K, Yoshida M. Assessment of the learning curve for microendoscopic decompression surgery for lumbar spinal canal stenosis through an analysis of 480 cases involving a single surgeon. Global Spine J. 2017;7:54–8.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Nowitzke AM. Assessment of the learning curve for lumbar microendoscopic discectomy. Neurosurgery. 2005;56:755–62.PubMedCrossRefGoogle Scholar
  42. 42.
    Rong LM, Xie PG, Shi DH, Dong JW, Liu B, Feng F, et al. Spinal surgeons’ learning curve for lumbar microendoscopic discectomy: a prospective study of our first 50 and latest 10 cases. Chin Med J. 2008;121:2148–51.PubMedCrossRefGoogle Scholar
  43. 43.
    Lee DY, Lee SH. Learning curve for percutaneous endoscopic lumbar discectomy. Neurol Med Chir (Tokyo). 2008;48:383–9.CrossRefGoogle Scholar
  44. 44.
    McLoughlin GS, Furney DR. The learning curve of minimally-invasive lumbar microdiscectomy. Can J Neurol Sci. 2008;25:75–8.CrossRefGoogle Scholar
  45. 45.
    Morgenstern R, Morgenstern C, Yeung AT. The learning curve in foraminal endoscopic discectomy: experience needed to achieve 90% success rate. SAS J. 2007;1:100–7.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Ng CLL, Pang BC, Medina PJA, Tan K-A, Dahshaini S, Liu L-Z. The learning curve of lateral access lumbar interbody fusion in an Asian population: a prospective study. Eur Spine J. 2015;24:S361–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Victor P. Lo
    • 1
    • 2
    • 3
  • Neel Anand
    • 4
  1. 1.Mischer Neuroscience AssociatesHoustonUSA
  2. 2.Memorial Hermann HospitalHoustonUSA
  3. 3.University of Texas Health Science Center at Houston, Vivian L. Smith Department of NeurosurgeryHoustonUSA
  4. 4.Department of Orthopedics/SpineCedars-Sinai Medical CenterLos AngelesUSA

Personalised recommendations