Adolescent Scoliosis

  • Daniel J. Miller
  • Todd J. Blumberg
  • Susan E. Nelson
  • Per D. Trobisch
  • Patrick J. CahillEmail author


Traditionally, scoliosis surgery has been associated with morbidity of large wounds, lengthy surgeries, and significant blood loss. Typical surgery for adolescent scoliosis involves wide exposure of bony anatomy to facilitate multi-segmental instrumentation and fusion, a fact that makes application of minimally invasive surgery (MIS) principles more challenging.

Although more common in adult spine surgery, MIS or less invasive surgery (LIS) techniques and principles are being applied to pediatric spinal deformity as well. Less invasive methods of performing traditional open anterior and posterior spinal fusions have been described. Thoracoscopic anterior spinal fusion allows for minimally invasive instrumentation and fusion and is associated with decrease surgical blood loss and quicker recovery compared to open spinal fusion. We also discuss our less invasive technique for posterior spinal fusion that includes transmuscular insertion of pedicle screws and rods with preservation of the midline attachments of the paraspinal muscles.

Several surgeons are also adapting the MIS principles of preservation of structural anatomy and motion in innovative ways, including vertebral body stapling and vertebral body tethering. We discuss our techniques for vertebral body stapling and tethering and present the available literature on outcomes and complications of these growth modulation techniques for idiopathic scoliosis.


Adolescent scoliosis Thoracoscopic surgery Growth modulation Vertebral stapling Vertebral tethering 


  1. 1.
    Cahill PJ, Marvil S, Cuddihy L, Schutt C, Idema J, Clements DH, et al. Autofusion in the immature spine treated with growing rods. Spine (Phila Pa 1976). 2010;35(22):E1199–203.CrossRefGoogle Scholar
  2. 2.
    Betz RR, Petrizzo AM, Kerner PJ, Falatyn SP, Clements DH, Huss GK. Allograft versus no graft with a posterior multisegmented hook system for the treatment of idiopathic scoliosis. Spine (Phila Pa 1976). 2006;31(2):121–7.CrossRefGoogle Scholar
  3. 3.
    Wimmer C, Pfandlsteiner T. [Indications for deformity correction with minimally invasive spondylodesis]. Orthopade. 2011;40(2):135–40.PubMedCrossRefGoogle Scholar
  4. 4.
    Durrani A, Desai R, Sharma V, Crawford AH, editors. Minimally invasive posterior spinal instrumentation for pediatric spinal deformity: one year follow-up with CT scans of first 30 cases. 17th International Meeting of Advanced Spine Techniques, 21–24 July 2010, Toronto. 2010.Google Scholar
  5. 5.
    Miyanji F, Samdani A, Ghag A, Marks M, Newton PO. Minimally invasive surgery for AIS: an early prospective comparison with standard open posterior surgery. J Spine. 2013;5:001.Google Scholar
  6. 6.
    Sarwahi V, Horn JJ, Kulkarni PM, Wollowick AL, Lo Y, Gambassi M, et al. Minimally invasive surgery in patients with adolescent idiopathic scoliosis: is it better than the standard approach? A 2-year follow-up study. Clin Spine Surg. 2016;29(8):331–40.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhu W, Sun W, Xu L, Sun X, Liu Z, Qiu Y, et al. Minimally invasive scoliosis surgery assisted by O-arm navigation for Lenke Type 5C adolescent idiopathic scoliosis: a comparison with standard open approach spinal instrumentation. J Neurosurg Pediatr. 2017;19(4):472–8.CrossRefGoogle Scholar
  8. 8.
    Rodriguez-Olaverri JC, Zimick NC, Merola A, Vicente J, Rodriguez J, Tabuenca A, et al. Comparing the clinical and radiological outcomes of pedicular transvertebral screw fixation of the lumbosacral spine in spondylolisthesis versus unilateral transforaminal lumbar interbody fusion (TLIF) with posterior fixation using anterior cages. Spine (Phila Pa 1976). 2008;33(18):1977–81.CrossRefGoogle Scholar
  9. 9.
    Dwyer AF, Newton NC, Sherwood AA. An anterior approach to scoliosis. A preliminary report. Clin Orthop Relat Res. 1969;62:192–202.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Zielke K, Stunkat R, Beaujean F. [Ventrale derotations-spondylodesis (author’s transl)]. Arch Orthop Unfallchir. 1976;85(3):257–77.Google Scholar
  11. 11.
    Longis PM, Odri G, Passuti N, Brossard D, Delecrin J. Does thoracoscopic anterior release of rigid idiopathic scolioses associated with correction by posterior instrumentation result in better long-term frontal and sagittal balance? Orthop Traumatol Surg Res. 2011;97(7):734–40.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Sucato DJ, Elerson E. A comparison between the prone and lateral position for performing a thoracoscopic anterior release and fusion for pediatric spinal deformity. Spine (Phila Pa 1976). 2003;28(18):2176–80.CrossRefGoogle Scholar
  13. 13.
    King AG, Mills TE, Loe WA Jr, Chutkan NB, Revels TS. Video-assisted thoracoscopic surgery in the prone position. Spine (Phila Pa 1976). 2000;25(18):2403–6.CrossRefGoogle Scholar
  14. 14.
    Bohm H, el Saghir H. [Minimally invasive ventral release and endoscopic ventral instrumentation in scoliosis]. Orthopade. 2000;29(6):535–42.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Sucato DJ, Erken YH, Davis S, Gist T, McClung A, Rathjen KE. Prone thoracoscopic release does not adversely affect pulmonary function when added to a posterior spinal fusion for severe spine deformity. Spine (Phila Pa 1976). 2009;34(8):771–8.CrossRefGoogle Scholar
  16. 16.
    Betz RR, Harms J, Clements DH 3rd, Lenke LG, Lowe TG, Shufflebarger HL, et al. Comparison of anterior and posterior instrumentation for correction of adolescent thoracic idiopathic scoliosis. Spine (Phila Pa 1976). 1999;24(3):225–39.CrossRefGoogle Scholar
  17. 17.
    Picetti GD 3rd, Ertl JP, Bueff HU. Endoscopic instrumentation, correction, and fusion of idiopathic scoliosis. Spine J. 2001;1(3):190–7.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Wong HK, Hee HT, Yu Z, Wong D. Results of thoracoscopic instrumented fusion versus conventional posterior instrumented fusion in adolescent idiopathic scoliosis undergoing selective thoracic fusion. Spine (Phila Pa 1976). 2004;29(18):2031–8; discussion 9.CrossRefGoogle Scholar
  19. 19.
    Lonner BS, Auerbach JD, Estreicher MB, Betz RR, Crawford AH, Lenke LG, et al. Pulmonary function changes after various anterior approaches in the treatment of adolescent idiopathic scoliosis. J Spinal Disord Tech. 2009;22(8):551–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Lee CS, Park SJ, Chung SS, Kang KC, Jung CH, Kim YT. A comparative study between thoracoscopic surgery and posterior surgery using all-pedicle-screw constructs in the treatment of adolescent idiopathic scoliosis. J Spinal Disord Tech. 2013;26(6):325–33.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Sucato DJ, Kassab F, Dempsey M. Analysis of screw placement relative to the aorta and spinal canal following anterior instrumentation for thoracic idiopathic scoliosis. Spine (Phila Pa 1976). 2004;29(5):554–9; discussion 9.CrossRefGoogle Scholar
  22. 22.
    Lonner BS, Ren Y, Cahill PJ, Shah SA, Betz RR, Samdani AF. Evolution of surgery for adolescent idiopathic scoliosis over 20 years: have outcomes improved? Spine J. 2016;16(10):S242.CrossRefGoogle Scholar
  23. 23.
    Lonstein JE, Carlson JM. The prediction of curve progression in untreated idiopathic scoliosis during growth. J Bone Joint Surg Am. 1984;66(7):1061–71.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Allington NJ, Bowen JR. Adolescent idiopathic scoliosis: treatment with the Wilmington brace. A comparison of full-time and part-time use. J Bone Joint Surg Am. 1996;78(7):1056–62.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Roach JW. Adolescent idiopathic scoliosis: nonsurgical treatment. In: Weinstein SL, editor. The pediatric spine: principles and practice. New York: Raven Press; 1994. p. 479.Google Scholar
  26. 26.
    Bridwell KH. Adolescent idiopathic scoliosis: surgical treatment. In: Weinstein SL, editor. The pediatric spine: principles and practice. New York: Raven Press; 1994. p. 511.Google Scholar
  27. 27.
    DiMeglio A, Canavese F, Charles YP. Growth and adolescent idiopathic scoliosis: when and how much? J Pediatr Orthop. 2011;31(1 Suppl):S28–36.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Weinstein SL, Ponseti IV. Curve progression in idiopathic scoliosis. J Bone Joint Surg Am. 1983;65(4):447–55.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Weinstein SL, Dolan LA, Wright JG, Dobbs MB. Effects of bracing in adolescents with idiopathic scoliosis. N Engl J Med. 2013;369(16):1512–21.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Karol LA. Effectiveness of bracing in male patients with idiopathic scoliosis. Spine (Phila Pa 1976). 2001;26(18):2001–5.CrossRefGoogle Scholar
  31. 31.
    Lonstein JE. Idiopathic scoliosis. In: Lonstein JE, Bredford DS, Winter RB, Ogilvie JW, editors. Moe’s textbook of scoliosis and other spinal deformities. 3rd ed. Philadelphia: W.B. Saunders; 1995.Google Scholar
  32. 32.
    Nachemson AL, Peterson LE. Effectiveness of treatment with a brace in girls who have adolescent idiopathic scoliosis. A prospective, controlled study based on data from the Brace Study of the Scoliosis Research Society. J Bone Joint Surg Am. 1995;77(6):815–22.PubMedCrossRefGoogle Scholar
  33. 33.
    Peterson LE, Nachemson AL. Prediction of progression of the curve in girls who have adolescent idiopathic scoliosis of moderate severity. Logistic regression analysis based on data from The Brace Study of the Scoliosis Research Society. J Bone Joint Surg Am. 1995;77(6):823–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Rowe DE, Bernstein SM, Riddick MF, Adler F, Emans JB, Gardner-Bonneau D. A meta-analysis of the efficacy of non-operative treatments for idiopathic scoliosis. J Bone Joint Surg Am. 1997;79(5):664–74.PubMedCrossRefGoogle Scholar
  35. 35.
    Karol LA, Virostek D, Felton K, Jo C, Butler L. The effect of the Risser stage on bracing outcome in adolescent idiopathic scoliosis. J Bone Joint Surg Am. 2016;98(15):1253–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Stokes IA. Mechanical effects on skeletal growth. J Musculoskelet Neuronal Interact. 2002;2(3):277–80.PubMedGoogle Scholar
  37. 37.
    Blount WP, Clarke GR. Control of bone growth by epiphyseal stapling; a preliminary report. J Bone Joint Surg Am. 1949;31A(3):464–78.PubMedCrossRefGoogle Scholar
  38. 38.
    Mente PL, Stokes IA, Spence H, Aronsson DD. Progression of vertebral wedging in an asymmetrically loaded rat tail model. Spine (Phila Pa 1976). 1997;22(12):1292–6.CrossRefGoogle Scholar
  39. 39.
    Stokes IA, Aronsson DD, Spence H, Iatridis JC. Mechanical modulation of intervertebral disc thickness in growing rat tails. J Spinal Disord. 1998;11(3):261–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Smith AD, Von Lackum WH, Wylie R. An operation for stapling vertebral bodies in congenital scoliosis. J Bone Joint Surg Am. 1954;36(A:2):342–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Braun JT, Hoffman M, Akyuz E, Ogilvie JW, Brodke DS, Bachus KN. Mechanical modulation of vertebral growth in the fusionless treatment of progressive scoliosis in an experimental model. Spine (Phila Pa 1976). 2006;31(12):1314–20.CrossRefGoogle Scholar
  42. 42.
    Wall EJ, Bylski-Austrow DI, Kolata RJ, Crawford AH. Endoscopic mechanical spinal hemiepiphysiodesis modifies spine growth. Spine (Phila Pa 1976). 2005;30(10):1148–53.CrossRefGoogle Scholar
  43. 43.
    Nachlas IW, Borden JN. The cure of experimental scoliosis by directed growth control. J Bone Joint Surg Am. 1951;33A(1):24–34.CrossRefGoogle Scholar
  44. 44.
    Sanders JO, Sanders AE, More R, Ashman RB. A preliminary investigation of shape memory alloys in the surgical correction of scoliosis. Spine (Phila Pa 1976). 1993;18(12):1640–6.CrossRefGoogle Scholar
  45. 45.
    Ricart O, editor. The use of a memory shape staple in cervical anterior fusion. Paper presented at: 2nd international conference on Shape Memory and Superelastic Technologies, Pacific Grove. 1997.Google Scholar
  46. 46.
    Tang RG, Dai KR, Chen YQ. Application of a NiTi staple in the metatarsal osteotomy. Biomed Mater Eng. 1996;6(4):307–12.PubMedGoogle Scholar
  47. 47.
    Veldhuizen AG, Sanders MM, Cool JC. A scoliosis correction device based on memory metal. Med Eng Phys. 1997;19(2):171–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Risser JC. The Iliac apophysis; an invaluable sign in the management of scoliosis. Clin Orthop. 1958;11:111–9.PubMedGoogle Scholar
  49. 49.
    Sanders JO, Khoury JG, Kishan S, Browne RH, Mooney JF 3rd, Arnold KD, et al. Predicting scoliosis progression from skeletal maturity: a simplified classification during adolescence. J Bone Joint Surg Am. 2008;90(3):540–53.PubMedCrossRefGoogle Scholar
  50. 50.
    Betz RR, D’Andrea LP, Mulcahey MJ, Chafetz RS. Vertebral body stapling procedure for the treatment of scoliosis in the growing child. Clin Orthop Relat Res. 2005;434:55–60.CrossRefGoogle Scholar
  51. 51.
    Betz RR, Ranade A, Samdani AF, Chafetz R, D’Andrea LP, Gaughan JP, et al. Vertebral body stapling: a fusionless treatment option for a growing child with moderate idiopathic scoliosis. Spine (Phila Pa 1976). 2010;35(2):169–76.CrossRefGoogle Scholar
  52. 52.
    Theologis AA, Cahill P, Auriemma M, Betz R, Diab M. Vertebral body stapling in children younger than 10 years with idiopathic scoliosis with curve magnitude of 30 degrees to 39 degrees. Spine (Phila Pa 1976). 2013;38(25):E1583–8.CrossRefGoogle Scholar
  53. 53.
    Bumpass DB, Fuhrhop SK, Schootman M, Smith JC, Luhmann SJ. Vertebral body stapling for moderate juvenile and early adolescent idiopathic scoliosis: cautions and patient selection criteria. Spine (Phila Pa 1976). 2015;40(24):E1305–14.CrossRefGoogle Scholar
  54. 54.
    O’Leary PT, Sturm PF, Hammerberg KW, Lubicky JP, Mardjetko SM. Convex hemiepiphysiodesis: the limits of vertebral stapling. Spine (Phila Pa 1976). 2011;36(19):1579–83.CrossRefGoogle Scholar
  55. 55.
    Laituri CA, Schwend RM, Holcomb GW 3rd. Thoracoscopic vertebral body stapling for treatment of scoliosis in young children. J Laparoendosc Adv Surg Tech A. 2012;22(8):830–3.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Cahill PJ, Auriemma M, Dakwar E, Gaughan JP, Samdani AF, Pahys JM, Betz RR. Factors predictive of outcomes in vertebral body stapling for idiopathic scoliosis. Spine Deform. 2018;6(1):28–37.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Cuddihy L, Danielsson AJ, Cahill PJ, Samdani AF, Grewal H, Richmond JM, et al. Vertebral body stapling versus bracing for patients with high-risk moderate idiopathic scoliosis. Biomed Res Int. 2015;2015:438452.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Crawford CH 3rd, Lenke LG. Growth modulation by means of anterior tethering resulting in progressive correction of juvenile idiopathic scoliosis: a case report. J Bone Joint Surg Am. 2010;92(1):202–9.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Samdani AF, Ames RJ, Kimball JS, Pahys JM, Grewal H, Pelletier GJ, et al. Anterior vertebral body tethering for immature adolescent idiopathic scoliosis: one-year results on the first 32 patients. Eur Spine J. 2015;24(7):1533–9.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Samdani AF, Ames RJ, Kimball JS, Pahys JM, Grewal H, Pelletier GJ, et al. Anterior vertebral body tethering for idiopathic scoliosis: two-year results. Spine (Phila Pa 1976). 2014;39(20):1688–93.CrossRefGoogle Scholar
  61. 61.
    Newton P, Saito W, Yaszay B, Bartley C, Bastrom T. Successes and failures following spinal growth tethering for scoliosis EPOS/POSNA combined annual meeting; May 3, 2017; Barcelona, Spain. J Child Orthop. 2017;11(Suppl 1):S79.Google Scholar
  62. 62.
    Newton PO, Marks MC, Bastrom TP, Betz R, Clements D, Lonner B, et al. Surgical treatment of Lenke 1 main thoracic idiopathic scoliosis: results of a prospective, multicenter study. Spine (Phila Pa 1976). 2013;38(4):328–38.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Daniel J. Miller
    • 1
  • Todd J. Blumberg
    • 2
  • Susan E. Nelson
    • 3
  • Per D. Trobisch
    • 4
  • Patrick J. Cahill
    • 5
    Email author
  1. 1.Department of Orthopaedic SurgeryGillette Children’s Specialty HealthcareSt. PaulUSA
  2. 2.Department of Orthopaedics and Sports MedicineUniversity of Washington/Seattle Children’s HospitalSeattleUSA
  3. 3.Department of Orthopaedic SurgeryChildren’s Hospital of PhiladelphiaPhiladelphiaUSA
  4. 4.Department of Spinal SurgeryEifelklinik St. BrigidaSimmerathGermany
  5. 5.Division of Orthopaedic SurgeryThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations