Advertisement

Lumbar Spondylolisthesis

  • Timothy Y. Wang
  • Vikram Mehta
  • John Berry-Candelario
  • Isaac O. Karikari
  • Robert E. IsaacsEmail author
Chapter

Abstract

Minimally invasive spine surgery continues to gain popularity to treat surgical pathology of the lumbar spine. In this chapter, the authors will focus on the history and growth of minimally invasive spine surgery as a treatment modality for lumbar spondylolisthesis and will compare the clinical and radiographic outcomes of two widely used minimally invasive techniques/transforaminal lumbar interbody fusion and extreme lateral interbody fusion.

Keywords

Minimally invasive Lateral Anterior Fusion Spondylolisthesis Technique 

References

  1. 1.
    Wiltse LL, Bateman JG, Hutchinson RH, Nelson WE. The paraspinal sacrospinalis-splitting approach to the lumbar spine. J Bone Joint Surg Am. 1968;50(5):919–26.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Wiltse LL, Spencer CW. New uses and refinements of the paraspinal approach to the lumbar spine. Spine (Phila Pa 1976). 1988;13(6):696–706.CrossRefGoogle Scholar
  3. 3.
    Pearson A, Blood E, Lurie J, et al. Degenerative spondylolisthesis versus spinal stenosis: does a slip matter? Comparison of baseline characteristics and outcomes (SPORT). Spine (Phila Pa 1976). 2010;35(3):298–305.CrossRefGoogle Scholar
  4. 4.
    Pao JL, Chen WC, Chen PQ. Clinical outcomes of microendoscopic decompressive laminotomy for degenerative lumbar spinal stenosis. Eur Spine J. 2009;18(5):672–8.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Sasai K, Umeda M, Maruyama T, Wakabayashi E, Iida H. Microsurgical bilateral decompression via a unilateral approach for lumbar spinal canal stenosis including degenerative spondylolisthesis. J Neurosurg Spine. 2008;9(6):554–9.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Kleeman TJ, Hiscoe AC, Berg EE. Patient outcomes after minimally destabilizing lumbar stenosis decompression: the “Port-Hole” technique. Spine (Phila Pa 1976). 2000;25(7):865–70.CrossRefGoogle Scholar
  7. 7.
    Pizzutillo PD, Hummer CD 3rd. Nonoperative treatment for painful adolescent spondylolysis or spondylolisthesis. J Pediatr Orthop. 1989;9(5):538–40.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Sailhan F, Gollogly S, Roussouly P. The radiographic results and neurologic complications of instrumented reduction and fusion of high-grade spondylolisthesis without decompression of the neural elements: a retrospective review of 44 patients. Spine (Phila Pa 1976). 2006;31(2):161–9; discussion 170.CrossRefGoogle Scholar
  9. 9.
    Hu SS, Bradford DS, Transfeldt EE, Cohen M. Reduction of high-grade spondylolisthesis using Edwards instrumentation. Spine (Phila Pa 1976). 1996;21(3):367–71.CrossRefGoogle Scholar
  10. 10.
    Petraco DM, Spivak JM, Cappadona JG, Kummer FJ, Neuwirth MG. An anatomic evaluation of L5 nerve stretch in spondylolisthesis reduction. Spine (Phila Pa 1976). 1996;21(10):1133–8; discussion 1139.CrossRefGoogle Scholar
  11. 11.
    Poussa M, Remes V, Lamberg T, et al. Treatment of severe spondylolisthesis in adolescence with reduction or fusion in situ: long-term clinical, radiologic, and functional outcome. Spine (Phila Pa 1976). 2006;31(5):583–90; discussion 591–2.CrossRefGoogle Scholar
  12. 12.
    Hresko MT, Labelle H, Roussouly P, Berthonnaud E. Classification of high-grade spondylolistheses based on pelvic version and spine balance: possible rationale for reduction. Spine (Phila Pa 1976). 2007;32(20):2208–13.CrossRefGoogle Scholar
  13. 13.
    Molinari RW, Bridwell KH, Lenke LG, Ungacta FF, Riew KD. Complications in the surgical treatment of pediatric high-grade, isthmic dysplastic spondylolisthesis. A comparison of three surgical approaches. Spine (Phila Pa 1976). 1999;24(16):1701–11.CrossRefGoogle Scholar
  14. 14.
    Shufflebarger HL, Geck MJ. High-grade isthmic dysplastic spondylolisthesis: monosegmental surgical treatment. Spine (Phila Pa 1976). 2005;30(6 Suppl):S42–8.CrossRefGoogle Scholar
  15. 15.
    Foley KT, Holly LT, Schwender JD. Minimally invasive lumbar fusion. Spine (Phila Pa 1976). 2003;28(15 Suppl):S26–35.Google Scholar
  16. 16.
    Holly LT, Schwender JD, Rouben DP, Foley KT. Minimally invasive transforaminal lumbar interbody fusion: indications, technique, and complications. Neurosurg Focus. 2006;20(3):E6.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Schwender JD, Holly LT, Rouben DP, Foley KT. Minimally invasive transforaminal lumbar interbody fusion (TLIF): technical feasibility and initial results. J Spinal Disord Tech. 2005;18(Suppl):S1–6.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Huang P, Wang Y, Xu J, Xiao B, Liu J, Che L, Mao K. Minimally invasive unilateral pedicle screws and a translaminar facet screw fixation and interbody fusion for treatment of single-segment lower lumbar vertebral disease: surgical technique and preliminary clinical results. J Orthop Surg Res. 2017;12(1):117.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Berjano P, Langella F, Damilano M, Pejrona M, Buric J, Ismael M, Vilafane JH, Lamartina C. Fusion rate following extreme lumbar interbody fusion. Eur Spine J. 2015;3:369–71.CrossRefGoogle Scholar
  20. 20.
    Lee YS, Kim YB, Park SW, Chung C. Comparison of transforaminal lumbar interbody fusion with direct lumbar interbody fusion: clinical and radiological results. J Korean Neurosurg Soc. 2014;56(6):469–74.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Minamide A, Akamaru T, Yoon ST, Tamaki T, Rhee JM, Hutton WC. Transdiscal L5-S1 screws for the fixation of isthmic spondylolisthesis: a biomechanical evaluation. J Spinal Disord Tech. 2003;16(2):144–9.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Anderson K, Sarwark JF, Conway JJ, Logue ES, Schafer MF. Quantitative assessment with SPECT imaging of stress injuries of the pars interarticularis and response to bracing. J Pediatr Orthop. 2000;20(1):28–33.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Blanda J, Bethem D, Moats W, Lew M. Defects of pars interarticularis in athletes: a protocol for nonoperative treatment. J Spinal Disord. 1993;6(5):406–11.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    d’Hemecourt PA, Zurakowski D, Kriemler S, Micheli LJ. Spondylolysis: returning the athlete to sports participation with brace treatment. Orthopedics. 2002;25(6):653–7.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Noggle JC, Sciubba DM, Samdani AF, Anderson DG, Betz RR, Asghar J. Minimally invasive direct repair of lumbar spondylolysis with a pedicle screw and hook construct. Neurosurg Focus. 2008;25(2):E15.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Hyun SJ, Kim YB, Kim YS, et al. Postoperative changes in paraspinal muscle volume: comparison between paramedian interfascial and midline approaches for lumbar fusion. J Korean Med Sci. 2007;22(4):646–51.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kawaguchi Y, Matsui H, Tsuji H. Back muscle injury after posterior lumbar spine surgery. A histologic and enzymatic analysis. Spine (Phila Pa 1976). 1996;21(8):941–4.CrossRefGoogle Scholar
  28. 28.
    Taylor H, McGregor AH, Medhi-Zadeh S, et al. The impact of self-retaining retractors on the paraspinal muscles during posterior spinal surgery. Spine (Phila Pa 1976). 2002;27(24):2758–62.CrossRefGoogle Scholar
  29. 29.
    Stevens KJ, Spenciner DB, Griffiths KL, et al. Comparison of minimally invasive and conventional open posterolateral lumbar fusion using magnetic resonance imaging and retraction pressure studies. J Spinal Disord Tech. 2006;19(2):77–86.CrossRefGoogle Scholar
  30. 30.
    Tsutsumimoto T, Shimogata M, Ohta H, Misawa H. Mini-open versus conventional open posterior lumbar interbody fusion for the treatment of lumbar degenerative spondylolisthesis: comparison of paraspinal muscle damage and slip reduction. Spine (Phila Pa 1976). 2009;34(18):1923–8.CrossRefGoogle Scholar
  31. 31.
    Sihvonen T, Herno A, Paljarvi L, Airaksinen O, Partanen J, Tapaninaho A. Local denervation atrophy of paraspinal muscles in postoperative failed back syndrome. Spine (Phila Pa 1976). 1993;18(5):575–81.CrossRefGoogle Scholar
  32. 32.
    Mayer TG, Vanharanta H, Gatchel RJ, et al. Comparison of CT scan muscle measurements and isokinetic trunk strength in postoperative patients. Spine (Phila Pa 1976). 1989;14(1):33–6.CrossRefGoogle Scholar
  33. 33.
    Peng CW, Yue WM, Poh SY, Yeo W, Tan SB. Clinical and radiological outcomes of minimally invasive versus open transforaminal lumbar interbody fusion. Spine (Phila Pa 1976). 2009;34(13):1385–9.CrossRefGoogle Scholar
  34. 34.
    Schizas C, Tzinieris N, Tsiridis E, Kosmopoulos V. Minimally invasive versus open transforaminal lumbar interbody fusion: evaluating initial experience. Int Orthop. 2009;33(6):1683–8.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Dhall SS, Wang MY, Mummaneni PV. Clinical and radiographic comparison of mini-open transforaminal lumbar interbody fusion with open transforaminal lumbar interbody fusion in 42 patients with long-term follow-up. J Neurosurg Spine. 2008;9(6):560–5.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    O’Toole JE, Eichholz KM, Fessler RG. Surgical site infection rates after minimally invasive spinal surgery. J Neurosurg Spine. 2009;11(4):471–6.CrossRefGoogle Scholar
  37. 37.
    Adogwa O, Parker SL, Bydon A, Cheng J, McGirt MJ. Comparative effectiveness of minimally invasive versus open transforaminal lumbar interbody fusion: 2-year assessment of narcotic use, return to work, disability, and quality of life. J Spinal Disord Tech. 2011;24(8):479–84.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006;6(4):435–43.CrossRefGoogle Scholar
  39. 39.
    Lee JC, Jang HD, Shin BJ. Learning curve and clinical outcomes of minimally invasive transforaminal lumbar interbody fusion: our experience in 86 consecutive cases. Spine (Phila Pa 1976). 2012;37(18):1548–57.CrossRefGoogle Scholar
  40. 40.
    Rampersaud YR, Foley KT, Shen AC, Williams S, Solomito M. Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine (Phila Pa 1976). 2000;25(20):2637–45.CrossRefGoogle Scholar
  41. 41.
    Bindal RK, Glaze S, Ognoskie M, Tunner V, Malone R, Ghosh S. Surgeon and patient radiation exposure in minimally invasive transforaminal lumbar interbody fusion. J Neurosurg Spine. 2008;9(6):570–3.CrossRefGoogle Scholar
  42. 42.
    Raley DA, Mobbs RJ. Retrospective computed tomography scan analysis of percutaneously inserted pedicle screws for posterior transpedicular stabilisation of the thoracic and lumbar spine: accuracy and complication rates. Spine (Phila Pa 1976). 2012;37:1092–100.CrossRefGoogle Scholar
  43. 43.
    Wang TY, Farber SH, Perkins SS, Back AG, Byrd SA, Chi D, Vincent D, Karikari IO. An internally randomized control trial of radiation exposure using ultra-low radiation imaging versus traditional C-arm fluoroscopy for patients undergoing single-level minimally invasive transforaminal lumbar interbody fusion. Spine. 2016;42(4):217–23.CrossRefGoogle Scholar
  44. 44.
    Villavicencio AT, Burneikiene S, Bulsara KR, Thramann JJ. Perioperative complications in transforaminal lumbar interbody fusion versus anterior-posterior reconstruction for lumbar disc degeneration and instability. J Spinal Disord Tech. 2006;19(2):92–7.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kwon BK, Berta S, Daffner SD, et al. Radiographic analysis of transforaminal lumbar interbody fusion for the treatment of adult isthmic spondylolisthesis. J Spinal Disord Tech. 2003;16(5):469–76.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Kim JS, Kang BU, Lee SH, et al. Mini-transforaminal lumbar interbody fusion versus anterior lumbar interbody fusion augmented by percutaneous pedicle screw fixation: a comparison of surgical outcomes in adult low-grade isthmic spondylolisthesis. J Spinal Disord Tech. 2009;22(2):114–21.CrossRefGoogle Scholar
  47. 47.
    Rosen DS, Ferguson SD, Ogden AT, Huo D, Fessler RG. Obesity and self-reported outcome after minimally invasive lumbar spinal fusion surgery. Neurosurgery. 2008;63(5):956–60.. discussion 960PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Park P, Upadhyaya C, Garton HJ, Foley KT. The impact of minimally invasive spine surgery on perioperative complications in overweight or obese patients. Neurosurgery. 2008;62(3):693–9; discussion 693–9.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Recnik G, Kosak R, Vengust R. Influencing segmental balance in isthmic spondylolisthesis using transforaminal lumbar interbody fusion. J Spinal Disord Tech. 2013;26:246–51.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Wang TY, Gautam N, Brown CR, Pimenta L, Karikari IO, Isaacs RE. Bony lateral recess stenosis and other radiographic predictors of failed indirect decompression via Extreme Lateral Interbody Fusion (XLIF): multi-institutional analysis of 101 consecutive spinal levels. World Neurosurg. 2017;106:819–26.  https://doi.org/10.1016/j.wneu.2017.07.045.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Anand N, Baron EM, Thaiyananthan G, Khalsa B, Goldstein TB. Minimally invasive multilevel percutaneous correction and fusion for adult lumbar degenerative scoliosis: a technique and feasibility study. J Spinal Disord Tech. 2008;21(7):459–67.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Anand N, Rosemann R, Khalsa B, Baron EM. Mid-term to long-term clinical and functional outcomes of minimally invasive correction and fusion for adults with scoliosis. Neurosurg Focus. 2010;28(3):article E6.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Dakwar E, Cardona RF, Smith DA, Uribe JS. Early outcomes and safety of the minimally invasive, lateral retroperitoneal transpsoas approach for adult degenerative scoliosis. Neurosurg Focus. 2010;28(3):article E8.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Glassman SD, Polly DW, Dimar JR, Carreon LY. The cost effectiveness of single-level instrumented posterolateral lumbar fusion at five years after surgery. Spine. 2012;37(9):769–74.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Guan J, Bisson EF, Dailey AT, Hood RS, Schmidt MH. Comparison of clinical outcomes in the national neurosurgery quality and outcomes database for open versus minimally invasive transforaminal lumbar interbody fusion. Spine. 2016;41(7):416–21.CrossRefGoogle Scholar
  56. 56.
    Khan NR, Clark AJ, Lee SL, Venable GT, Rossi NB, Foley KT. Surgical outcomes for minimally invasive vs open transforaminal lumbar interbody fusion: an updated systematic review and meta-analysis. Neurosurgery. 2015;77(6):847–74.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Barbagallo GM, Albanese V, Raich AL, Dettori JR, Sherry N, Balsano M. Lumbar lateral interbody fusion (LLIF): comparative effectiveness and safety versus PLIF/TLIF and predictive factors affecting LLIF outcome. Evid Based Spine Care J. 2014;5(1):28–37.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Sembrano JN, Tohmeh A, Isaacs RE. Two-year comparative outcomes of MIS lateral and MIS transforaminal interbody fuion in the treatment of degenerative spondylolisthesis, part I: clinical findings. Spine. 2016;41(8S):S123–32.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Glassman SD, Carreon LY, Djurasovich M, Dimar JR, Johnson JR, Puno RM, Campbell MJ. Lumbar fusion outcomes stratified by specific diagnostic indication. Spine J. 2009;9(1):13–21.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Khajavi K, Shen A, Hutchison A. Substantial clinical benefit of minimally invasive lateral interbody fusion for degenerative spondylolisthesis. Eur Spine J. 2015;(suppl 3):322–30.Google Scholar
  61. 61.
    Khajavi K, Shen A, Lagina M, Hutchison A. Comparison of clinical outcomes following minimally invasive lateral interbody fusion stratified by preoperative diagnosis. Eur Spine J. 2015;24(suppl 3):314–21.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Isaacs RE, Sembrano JN, Tomeh AG. Two-year comparative outcomes of MIS lateral and MIS transforaminal interbody fusion in the treatment of degenerative spondylolisthesis, part II: radiographic findings. Spine. 2016;41(8S):S133–44.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Elowitz EH, Yanni DS, Chwajol M, Starke RM, Perin NI. Evaluation of indirection decompression of the lumbar spinal canal following minimally invasive lateral transpsoas interbody fusion: radiographic and outcome analysis. Minim Invasive Neurosurg. 2011;54(5–6):201–6.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Kepler CK, Sharma AK, Huang RC, Meredith DS, Girardi FP, Cammisa P Jr, Sama AA. Indirect foraminal decompression after lateral transpsoas interbody fusion. J Neurosurg Spine. 2012;16(4):329–33.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Timothy Y. Wang
    • 1
  • Vikram Mehta
    • 1
  • John Berry-Candelario
    • 1
  • Isaac O. Karikari
    • 1
  • Robert E. Isaacs
    • 1
    Email author
  1. 1.Department of Neurological SurgeryDuke University Medical CenterDurhamUSA

Personalised recommendations