Endoscopic Spinal Fusion

  • Jason Ilias Liounakos
  • Gregory Basil
  • Karthik Madhavan
  • Michael Y. WangEmail author


Spinal fusion surgery has the potential to alleviate pain, improve functional ability, and maximize overall quality of life. Recognizing not only the importance to preserve as much normal human anatomy and physiology as possible but also to take into account the overwhelming economic, social, and psychological burden that open surgery may place on both patient and society, the concept of minimally invasive surgery (MIS) was born. The goals of MIS are to achieve the same results as conventional open surgery while striving to minimize soft tissue destruction, decrease intraoperative blood loss, reduce postoperative pain and hospital length of stay, and most importantly accelerate return to preoperative functional status. Endoscopic spinal fusion represents a step in the evolution of minimally invasive spine surgery that now allows us to even perform procedures such as the transforaminal lumbar interbody fusion (TLIF) without general anesthesia, removing yet another possible cause of surgical morbidity. Endoscopic techniques for fusion in the lumbar spine have been developed for every approach, and techniques also exist for both cervical and thoracic applications.


Endoscopy Minimally invasive Instrumented fusion Lumbar fusion Cervical fusion 


  1. 1.
    Pearson AM, Lurie JD, Tosteson TD, Zhao W, Abdu WA, Weinstein JN. Who should undergo surgery for degenerative spondylolisthesis? Treatment effect predictors in SPORT. Spine (Phila Pa 1976). 2013;38(21):1799–811.CrossRefGoogle Scholar
  2. 2.
    Telfeian AE, Veeravagu A, Oyelese AA, Gokaslan ZL. A brief history of endoscopic spine surgery. Neurosurg Focus. 2016;40(2):E2.CrossRefGoogle Scholar
  3. 3.
    Kim JS, Jung B, Lee SH. Instrumented minimally invasive spinal-transforaminal lumbar interbody fusion (MIS-TLIF); minimum 5-years follow-up with clinical and radiologic outcomes. Clin Spine Surg. 2018;31(6):E302–E309.CrossRefGoogle Scholar
  4. 4.
    Wang MY, Grossman J. Endoscopic minimally invasive transforaminal interbody fusion without general anesthesia: initial clinical experience with 1-year follow-up. Neurosurg Focus. 2016;40(2):E13.CrossRefGoogle Scholar
  5. 5.
    Kambin P, Schaffer JL. Percutaneous lumbar discectomy. Review of 100 patients and current practice. Clin Orthop Relat Res. 1989;238:24–34.CrossRefGoogle Scholar
  6. 6.
    Hardenbrook M, Lombardo S, Wilson MC, Telfeian AE. The anatomic rationale for transforaminal endoscopic interbody fusion: a cadaveric analysis. Neurosurg Focus. 2016;40(2):E12.CrossRefGoogle Scholar
  7. 7.
    Shunwu F, Xing Z, Fengdong Z, Xiangqian F. Minimally invasive transforaminal lumbar interbody fusion for the treatment of degenerative lumbar diseases. Spine (Phila Pa 1976). 2010;35(17):1615–20.CrossRefGoogle Scholar
  8. 8.
    Lee SH, Erken HY, Bae J. Percutaneous transforaminal endoscopic lumbar interbody fusion: clinical and radiological results of mean 46-month follow-up. Biomed Res Int. 2017;2017:3731983.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Ba Z, Pan F, Liu Z, Yu B, Fuentes L, Wu D, et al. Percutaneous endoscopical transforaminal approach versus PLF to treat the single-level adjacent segment disease after PLF/PLIF: 1–2 years follow-up. Int J Surg. 2017;42:22–6.CrossRefGoogle Scholar
  10. 10.
    Isaacs RE, Podichetty VK, Santiago P, Sandhu FA, Spears J, Kelly K, et al. Minimally invasive microendoscopy-assisted transforaminal lumbar interbody fusion with instrumentation. J Neurosurg Spine. 2005;3(2):98–105.CrossRefGoogle Scholar
  11. 11.
    Obenchain TG. Laparoscopic lumbar discectomy: case report. J Laparoendosc Surg. 1991;1(3):145–9.CrossRefGoogle Scholar
  12. 12.
    Zucherman JF, Zdeblick TA, Bailey SA, Mahvi D, Hsu KY, Kohrs D. Instrumented laparoscopic spinal fusion. Preliminary results. Spine (Phila Pa 1976). 1995;20(18):2029–34;discussion 34–5.CrossRefGoogle Scholar
  13. 13.
    McLaughlin MR, Zhang JY, Subach BR, Haid RW Jr, Rodts GE Jr. Laparoscopic anterior lumbar interbody fusion. Technical note. Neurosurg Focus. 1999;7(6):e8.CrossRefGoogle Scholar
  14. 14.
    Regan JJ, Yuan H, McAfee PC. Laparoscopic fusion of the lumbar spine: minimally invasive spine surgery. A prospective multicenter study evaluating open and laparoscopic lumbar fusion. Spine (Phila Pa 1976). 1999;24(4):402–11.CrossRefGoogle Scholar
  15. 15.
    Kaiser MG, Haid RW Jr, Subach BR, Miller JS, Smith CD, Rodts GE Jr. Comparison of the mini-open versus laparoscopic approach for anterior lumbar interbody fusion: a retrospective review. Neurosurgery. 2002;51(1):97–103; discussion -5.CrossRefGoogle Scholar
  16. 16.
    Zdeblick TA, David SM. A prospective comparison of surgical approach for anterior L4–L5 fusion: laparoscopic versus mini anterior lumbar interbody fusion. Spine (Phila Pa 1976). 2000;25(20):2682–7.CrossRefGoogle Scholar
  17. 17.
    Thalgott JS, Chin AK, Ameriks JA, Jordan FT, Daubs MD, Giuffre JM, et al. Gasless endoscopic anterior lumbar interbody fusion utilizing the B. E.R.G. approach. Surg Endosc. 2000;14(6):546–52.CrossRefGoogle Scholar
  18. 18.
    Vazquez RM, Gireesan GT. Balloon-assisted endoscopic retroperitoneal gasless (BERG) technique for anterior lumbar interbody fusion (ALIF). Surg Endosc. 2003;17(2):268–72.CrossRefGoogle Scholar
  19. 19.
    Gazzeri R, Tamorri M, Galarza M, Faiola A, Gazzeri G. Balloon-assisted endoscopic retroperitoneal gasless approach (BERG) for lumbar interbody fusion: is it a valid alternative to the laparoscopic approach? Minim Invasive Neurosurg. 2007;50(3):150–4.CrossRefGoogle Scholar
  20. 20.
    McAfee PC, Regan JJ, Geis WP, Fedder IL. Minimally invasive anterior retroperitoneal approach to the lumbar spine. Emphasis on the lateral BAK. Spine (Phila Pa 1976). 1998;23(13):1476–84.CrossRefGoogle Scholar
  21. 21.
    Bergey DL, Villavicencio AT, Goldstein T, Regan JJ. Endoscopic lateral transpsoas approach to the lumbar spine. Spine (Phila Pa 1976). 2004;29(15):1681–8.CrossRefGoogle Scholar
  22. 22.
    Moftakhar R, Trost GR. Anterior cervical plates: a historical perspective. Neurosurg Focus. 2004;16(1):E8.CrossRefGoogle Scholar
  23. 23.
    Cloward RB. The anterior approach for removal of ruptured cervical disks. J Neurosurg. 1958;15(6):602–17.CrossRefGoogle Scholar
  24. 24.
    Cloward RB. Treatment of acute fractures and fracture-dislocations of the cervical spine by vertebral-body fusion. A report of eleven cases. J Neurosurg. 1961;18:201–9.CrossRefGoogle Scholar
  25. 25.
    Smith GW, Robinson RA. The treatment of certain cervical-spine disorders by anterior removal of the intervertebral disc and interbody fusion. J Bone Joint Surg Am. 1958;40-A(3):607–24.CrossRefGoogle Scholar
  26. 26.
    Bohler J, Gaudernak T. Anterior plate stabilization for fracture-dislocations of the lower cervical spine. J Trauma. 1980;20(3):203–5.CrossRefGoogle Scholar
  27. 27.
    Yao N, Wang C, Wang W, Wang L. Full-endoscopic technique for anterior cervical discectomy and interbody fusion: 5-year follow-up results of 67 cases. Eur Spine J. 2011;20(6):899–904.CrossRefGoogle Scholar
  28. 28.
    Fountas KN, Kapsalaki EZ, Nikolakakos LG, Smisson HF, Johnston KW, Grigorian AA, et al. Anterior cervical discectomy and fusion associated complications. Spine (Phila Pa 1976). 2007;32(21):2310–7.CrossRefGoogle Scholar
  29. 29.
    Ruetten S, Komp M, Merk H, Godolias G. Full-endoscopic anterior decompression versus conventional anterior decompression and fusion in cervical disc herniations. Int Orthop. 2009;33(6):1677–82.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jason Ilias Liounakos
    • 1
  • Gregory Basil
    • 1
  • Karthik Madhavan
    • 1
  • Michael Y. Wang
    • 1
    Email author
  1. 1.Department of Neurological SurgeryUniversity of Miami/Jackson Memorial HospitalMiamiUSA

Personalised recommendations