Minimally Disruptive Lateral Transpsoas Approach for Thoracolumbar Anterior Interbody Fusion

  • Dorcas Chomba
  • W. C. RodgersIII
  • W. B. RodgersEmail author


It has been 15 years since the commercial introduction of the lateral transpsoas interbody fusion procedure, utilizing a specialized retractor system and dedicated intervertebral implants paired with, most importantly, real-time surgeon-directed neuromonitoring integrated into instrumentation to allow for identification and avoidance of the nerves of the lumbar plexus. Since then, hundreds of thousands of lateral interbody fusions have been performed globally for an increasingly complex set of pathologies, with incremental technological innovation being introduced regularly. This mini-open approach can be successfully used in the treatment of thoracic disc herniations and advanced coronal and sagittal plane deformities, in the treatment of spinal trauma and tumors, as well as in the more “routine” and common short-segment degenerative lumbar spinal disease. However, successful adoption and use of this detail-oriented technique requires knowledge and understanding of the regional anatomy, careful review of and incorporation of axial magnetic resonance imaging findings into surgical decision-making, adherence to the canonical surgical technique, and adherence to neuromonitoring feedback. This chapter will cover the background, surgical technique, and best practices of the lateral transpsoas approach as they are currently understood, based on a vast amount of preclinical and clinical evidence as well as collective surgical experience.


Lateral transpsoas interbody fusion Anterior to psoas approach Shallow docking Complications Outcomes Neural Alignment 


  1. 1.
    Brau SA. Mini-open approach to the spine for anterior lumbar interbody fusion: description of the procedure, results and complications. Spine J. 2002;2:216–23.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Baker JK, Reardon PR, Reardon MJ, et al. Vascular injury in anterior lumbar surgery. Spine. 1993;18:2227–30.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Mroz TE, Wang JC, Hashimoto R, et al. Complications related to osteobiologics use in spine surgery: a systematic review. Spine. 2010;35:S86–104.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Rajaraman V, Vingan R, Roth P, et al. Visceral and vascular complications resulting from anterior lumbar interbody fusion. J Neurosurg. 1999;91:60–4.PubMedGoogle Scholar
  5. 5.
    Scaduto AA, Gamradt SC, Yu WD, et al. Perioperative complications of threaded cylindrical lumbar interbody fusion devices: anterior versus posterior approach. J Spinal Disord Tech. 2003;16:502–7.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Faciszewski T, Winter RB, Lonstein JE, et al. The surgical and medical perioperative complications of anterior spinal fusion surgery in the thoracic and lumbar spine in adults. A review of 1223 procedures. Spine. 1995;20:1592–9.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Villavicencio AT, Burneikiene S, Bulsara KR, et al. Perioperative complications in transforaminal lumbar interbody fusion versus anterior-posterior reconstruction for lumbar disc degeneration and instability. J Spinal Disord Tech. 2006;19:92–7.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Okuda S, Miyauchi A, Oda T, et al. Surgical complications of posterior lumbar interbody fusion with total facetectomy in 251 patients. J Neurosurg Spine. 2006;4:304–9.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Potter BK, Kuklo TR, Lenke LG. Radiographic outcomes of anterior spinal fusion versus posterior spinal fusion with thoracic pedicle screws for treatment of Lenke type I adolescent idiopathic scoliosis curves. Spine. 2005;30:1859–66.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Rihn JA, Winegar CD, Donaldson WF 3rd, et al. Recurrent atlantoaxial instability due to fracture of the posterior C1 ring: a late finding following posterior C1-C2 fusion using the Halifax clamp. J Surg Orthop Adv. 2009;18:45–50.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Kawaguchi Y, Matsui H, Tsuji H. Back muscle injury after posterior lumbar spine surgery. Part 2: histologic and histochemical analyses in humans. Spine. 1994;19:2598–602.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Kim CW. Scientific basis of minimally invasive spine surgery: prevention of multifidus muscle injury during posterior lumbar surgery. Spine. 2010;35:S281–6.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Kim CW, Siemionow K, Anderson DG, et al. The current state of minimally invasive spine surgery. J Bone Joint Surg Am. 2011;93:582–96.Google Scholar
  14. 14.
    Mcafee PC, Phillips FM, Andersson G, et al. Minimally invasive spine surgery. Spine. 2010;35:S271–3.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Mcafee PC, Regan JR, Zdeblick T, et al. The incidence of complications in endoscopic anterior thoracolumbar spinal reconstructive surgery. A prospective multicenter study comprising the first 100 consecutive cases. Spine. 1995;20:1624–32.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Khoo LT, Beisse R, Potulski M. Thoracoscopic-assisted treatment of thoracic and lumbar fractures: a series of 371 consecutive cases. Neurosurgery. 2002;51:S104–17.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Cunningham BW, Kotani Y, Mcnulty PS, et al. Video-assisted thoracoscopic surgery versus open thoracotomy for anterior thoracic spinal fusion. A comparative radiographic, biomechanical, and histologic analysis in a sheep model. Spine. 1998;23:1333–40.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Hertlein H, Hartl WH, Dienemann H, et al. Thoracoscopic repair of thoracic spine trauma. Eur Spine J. 1995;4:302–7.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Kim SJ, Sohn MJ, Ryoo JY, et al. Clinical analysis of video-assisted thoracoscopic spinal surgery in the thoracic or thoracolumbar spinal pathologies. J Korean Neurosurg Soc. 2007;42:293–9.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Bergey DL, Villavicencio AT, Goldstein T, et al. Endoscopic lateral transpsoas approach to the lumbar spine. Spine. 2004;29:1681–8.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Ozgur BM, Aryan HE, Pimenta L, et al. Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006;6:435–43.CrossRefGoogle Scholar
  22. 22.
    Acosta FL, Liu J, Slimack N, et al. Changes in coronal and sagittal plane alignment following minimally invasive direct lateral interbody fusion for the treatment of degenerative lumbar disease in adults: a radiographic study. J Neurosurg Spine. 2011;15:92–6.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Voyadzis JM, Anaizi AN. Minimally invasive lumbar transfacet screw fixation in the lateral decubitus position after extreme lateral interbody fusion: a technique and feasibility study. J Spinal Disord Tech. 2013;26:98–106.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Pimenta L, Turner AW, Dooley ZA, et al. Biomechanics of lateral interbody spacers: going wider for going stiffer. Sci World J. 2012;2012:381814.CrossRefGoogle Scholar
  25. 25.
    Uribe JS. Neural anatomy, neuromonitoring and related complications in extreme lateral interbody fusion: video lecture. Eur Spine J. 2015;24(Suppl 3):445–6.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Uribe JS, Arredondo N, Dakwar E, et al. Defining the safe working zones using the minimally invasive lateral retroperitoneal transpsoas approach: an anatomical study. J Neurosurg Spine. 2010;13:260–6.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Tohmeh AG, Rodgers WB, Peterson MD. Dynamically evoked, discrete-threshold electromyography in the extreme lateral interbody fusion approach. J Neurosurg Spine. 2011;14:31–7.CrossRefGoogle Scholar
  28. 28.
    Uribe JS, Isaacs RE, Youssef JA, et al. Can triggered electromyography monitoring throughout retraction predict postoperative symptomatic neuropraxia after XLIF? Results from a prospective multicenter trial. Eur Spine J. 2015;24(Suppl 3):378–85.CrossRefGoogle Scholar
  29. 29.
    Elowitz EH. Central and foraminal indirect decompression in MIS lateral interbody fusion (XLIF): video lecture. Eur Spine J. 2015;24(Suppl 3):449–50.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Elowitz EH, Yanni DS, Chwajol M, et al. Evaluation of indirect decompression of the lumbar spinal canal following minimally invasive lateral transpsoas interbody fusion: radiographic and outcome analysis. Minim Invasive Neurosurg. 2011;54:201–6.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Rodgers WB, Gerber EJ, Patterson J. Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine. 2011;36:26–32.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Uribe JS, Deukmedjian AR. Visceral, vascular, and wound complications following over 13,000 lateral interbody fusions: a survey study and literature review. Eur Spine J. 2015;24(Suppl 3):386–96.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Pimenta L, Diaz RC, Guerrero LG. Charite lumbar artificial disc retrieval: use of a lateral minimally invasive technique. Technical note. J Neurosurg Spine. 2006;5:556–61.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Rodgers WB, Gerber EJ, Rodgers JA. Clinical and radiographic outcomes of extreme lateral approach to interbody fusion with beta-tricalcium phosphate and hydroxyapatite composite for lumbar degenerative conditions. Int J Spine Surg. 2012;6:24–8.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Lucio JC, Van Conia RB, Deluzio KJ, et al. Economics of less invasive spinal surgery: an analysis of hospital cost differences between open and minimally invasive instrumented spinal fusion procedures during the perioperative period. Risk Manag Healthc Policy. 2012;5:65–74.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Smith WD, Christian G, Serrano S, et al. A comparison of perioperative charges and outcome between open and mini-open approaches for anterior lumbar discectomy and fusion. J Clin Neurosci. 2012;19:673–80.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Berjano P, Cecchinato R, Sinigaglia A, et al. Anterior column realignment from a lateral approach for the treatment of severe sagittal imbalance: a retrospective radiographic study. Eur Spine J. 2015;24(Suppl 3):433–8.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Berjano P, Damilano M, Ismael M, et al. Anterior column realignment (ACR) technique for correction of sagittal imbalance. Eur Spine J. 2015;24(Suppl 3):451–3.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Berjano P, Garbossa D, Damilano M, et al. Transthoracic lateral retropleural minimally invasive microdiscectomy for T9-T10 disc herniation. Eur Spine J. 2014;23:1376–8.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Smith WD, Berjano P. Minimally invasive two-column correction of T10-L5 three-dimensional spinal deformity. Eur Spine J. 2015;24(Suppl 3):454–5.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Turner JD, Akbarnia BA, Eastlack RK, et al. Radiographic outcomes of anterior column realignment for adult sagittal plane deformity: a multicenter analysis. Eur Spine J. 2015;24(Suppl 3):427–32.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Uribe JS, Smith WD, Pimenta L, et al. Minimally invasive lateral approach for symptomatic thoracic disc herniation: initial multicenter clinical experience. J Neurosurg Spine. 2012;16:264–79.CrossRefGoogle Scholar
  43. 43.
    Arnold PM, Anderson KK, Mcguire RA Jr. The lateral transpsoas approach to the lumbar and thoracic spine: a review. Surg Neurol Int. 2012;3:S198–215.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Lehmen JA, Gerber EJ. MIS lateral spine surgery: a systematic literature review of complications, outcomes, and economics. Eur Spine J. 2015;24(Suppl 3):287–313.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Uribe JS, Myhre SL, Youssef JA. Preservation or restoration of segmental and regional spinal lordosis using minimally invasive interbody fusion techniques in degenerative lumbar conditions: a literature review. Spine. 2016;41(Suppl 8):S50–8.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Marchi L, Oliveira L, Amaral R, et al. Lateral interbody fusion for treatment of discogenic low back pain: minimally invasive surgical techniques. Adv Orthop. 2012;2012:282068.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Ozgur BM, Agarwal V, Nail E, et al. Two-year clinical and radiographic success of minimally invasive lateral transpsoas approach for the treatment of degenerative lumbar conditions. SAS J. 2010;4:41–6.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Ahmadian A, Verma S, Mundis GM Jr, et al. Minimally invasive lateral retroperitoneal transpsoas interbody fusion for L4–L5 spondylolisthesis: clinical outcomes. J Neurosurg Spine. 2013;19:314–20.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Isaacs RE, Sembrano JN, Tohmeh AG, et al. Two-year comparative outcomes of MIS lateral and MIS transforaminal interbody fusion in the treatment of degenerative spondylolisthesis: part II: radiographic findings. Spine. 2016;41(Suppl 8):S133–44.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Khajavi K, Shen A, Hutchison A. Substantial clinical benefit of minimally invasive lateral interbody fusion for degenerative spondylolisthesis. Eur Spine J. 2015;24(Suppl 3):314–21.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Marchi L, Abdala N, Oliveira L, et al. Stand-alone lateral interbody fusion for the treatment of low-grade degenerative spondylolisthesis. Sci World J. 2012;2012:456346.CrossRefGoogle Scholar
  52. 52.
    Rodgers WB, Lehmen JA, Gerber EJ, et al. Grade 2 spondylolisthesis at L4–L5 treated by XLIF: safety and midterm results in the “worst case scenario”. Sci World J. 2012;2012:356712.CrossRefGoogle Scholar
  53. 53.
    Sembrano JN, Tohmeh A, Isaacs R, et al. Two-year comparative outcomes of MIS lateral and MIS transforaminal interbody fusion in the treatment of degenerative spondylolisthesis: part I: clinical findings. Spine. 2016;41(Suppl 8):S123–32.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Amin BY, Mummaneni PV, Ibrahim T, et al. Four-level minimally invasive lateral interbody fusion for treatment of degenerative scoliosis. Neurosurg Focus. 2013;35:Video 10.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Berjano P, Lamartina C. Far lateral approaches (XLIFLATERAL TRANS PSOAS FUSION) in adult scoliosis. Eur Spine J. 2013;22(Suppl 2):S242–53.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Blizzard DJ, Gallizzi MA, Sheets C, et al. Sagittal balance correction in lateral interbody fusion for degenerative scoliosis. Int J Spine Surg. 2016;10:29.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Caputo AM, Michael KW, Chapman TM, et al. Extreme lateral interbody fusion for the treatment of adult degenerative scoliosis. J Clin Neurosci. 2013;20:1558–63.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Phillips FM, Isaacs RE, Rodgers WB, et al. Adult degenerative scoliosis treated with XLIF: clinical and radiographical results of a prospective multicenter study with 24-month follow-up. Spine. 2013;38:1853–61.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Khajavi K, Shen A, Lagina M, et al. Comparison of clinical outcomes following minimally invasive lateral interbody fusion stratified by preoperative diagnosis. Eur Spine J. 2015;24(Suppl 3):322–30.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Palejwala SK, Sheen WA, Walter CM, et al. Minimally invasive lateral transpsoas interbody fusion using a stand-alone construct for the treatment of adjacent segment disease of the lumbar spine: review of the literature and report of three cases. Clin Neurol Neurosurg. 2014;124:90–6.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Smith WD, Youssef JA, Christian G, et al. Lumbarized sacrum as a relative contraindication for lateral transpsoas interbody fusion at L5–6. J Spinal Disord Tech. 2012;25:285–91.CrossRefGoogle Scholar
  62. 62.
    Rasanen P, Ohman J, Sintonen H, et al. Cost-utility analysis of routine neurosurgical spinal surgery. J Neurosurg Spine. 2006;5:204–9.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Menezes CM, Mota de Andrade L, Pereira da Silva Herrero CF, Defino HL, Ferreira MA, Rodgers WB, Nogueira-Barbosa MH. Diffusion-weighted magnetic resonance (DW-MR) neurography of the lumbar plexus in the preoperative planning of lateral access lumbar surgery. Eur Spine J. 2015;24:817–26.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Rodgers EJ, Rodgers WB, Lateral Transpsoas. Retractor technology. In: Wang MY, Sama A, Uribe JS, editors. Lateral access minimally invasive spine surgery. Switzerland: Springer International Publishing; 2017.Google Scholar
  65. 65.
    Cheng I, Acosta F, Chang K, et al. Point-counterpoint: the use of neuromonitoring in lateral transpsoas surgery. Spine. 2016;41(Suppl 8):S145–51.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Cheng I, Briseno MR, Arrigo RT, et al. Outcomes of two different techniques using the lateral approach for lumbar interbody arthrodesis. Global Spine J. 2015;5:308–14.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Hardenbrook MA, Miller LE, Block JE. TranS1 VEO system: a novel psoas-sparing device for transpsoas lumbar interbody fusion. Med Devices (Auckl). 2013;6:91–5.Google Scholar
  68. 68.
    Peterson MD, Youssef JA. Extreme lateral interbody fusion (XLIF): lumbar surgical technique. In: Goodrich JA, Volcan IJ, editors. Extreme lateral interbody fusion (XLIF). St. Louis: Quality Medical Publishers; 2013. p. 159–78.Google Scholar
  69. 69.
    Uribe JS, Vale FL, Dakwar E. Electromyographic monitoring and its anatomical implications in minimally invasive spine surgery. Spine. 2010;35:S368–74.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Dakwar E, Vale FL, Uribe JS. Trajectory of the main sensory and motor branches of the lumbar plexus outside the psoas muscle related to the lateral retroperitoneal transpsoas approach. J Neurosurg Spine. 2011;14:290–5.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Buvanendran A, Thillainathan V. Preoperative and postoperative anesthetic and analgesic techniques for minimally invasive surgery of the spine. Spine. 2010;35:S274–80.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Dakwar E, Rifkin SI, Volcan IJ, et al. Rhabdomyolysis and acute renal failure following minimally invasive spine surgery: report of 5 cases. J Neurosurg Spine. 2011;14:785–8.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Dakwar E, Le TV, Baaj AA, et al. Abdominal wall paresis as a complication of minimally invasive lateral transpsoas interbody fusion. Neurosurg Focus. 2011;31:E18.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Calancie BM, Madsen P, Lebwhol N. Stimulus-evoked EMG monitoring during transpedicular lumbosacral spine instrumentation. Initial clinical results. Spine. 1994;19:2780–6.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Moro T, Kikuchi S, Konno S, et al. An anatomic study of the lumbar plexus with respect to retroperitoneal endoscopic surgery. Spine. 2003;28:423–8.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Papanastassiou ID, Eleraky M, Vrionis FD. Contralateral femoral nerve compression: an unrecognized complication after extreme lateral interbody fusion (XLIF). J Clin Neurosci. 2011;18:149–51.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Yen CP, Uribe JS. Procedural checklist for retroperitoneal transpsoas minimally invasive lateral interbody fusion. Spine. 2016;41(Suppl 8):S152–8.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Rodgers WB, Gerber EJ, Patterson JR. Fusion after minimally disruptive ALIF: analysis of XLIF by computed tomography. SAS J. 2010;4:63–6.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Duran S, Cavusoglu M, Hatipoglu HG, et al. Association between measures of vertebral endplate morphology and lumbar intervertebral disc degeneration. Can Assoc Radiol J. 2017;68:210–6.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    He X. The relationship between concave angle of vertebral endplate and lumbar intervertebral disc degeneration. Spine. 2012;79:1068–73.CrossRefGoogle Scholar
  81. 81.
    Lang G, Navarro-Ramirez R, Gandevia L, Hussain I, et al. Elimination of subsidence with 26-mm-wide cages in extreme lateral interbody fusion. World Neurosurg. 2017;104:644–52.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Acosta FL Jr, Drazin D, Liu JC. Supra-psoas shallow docking in lateral interbody fusion. Neurosurgery. 2013;73:ons48–51; discussion ons52.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Epstein NE. Extreme lateral lumbar interbody fusion: do the cons outweigh the pros? Surg Neurol Int. 2016;7:S692–700.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Epstein NE. High neurological complication rates for extreme lateral lumbar interbody fusion and related techniques: a review of safety concerns. Surg Neurol Int. 2016;7:S652–5.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Epstein NE. Learning curves for minimally invasive spine surgeries: are they worth it? Surg Neurol Int. 2017;8:61.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Epstein NE. More nerve root injuries occur with minimally invasive lumbar surgery, especially extreme lateral interbody fusion: a review. Surg Neurol Int. 2016;7:S83–95.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Epstein NE. More nerve root injuries occur with minimally invasive lumbar surgery: let’s tell someone. Surg Neurol Int. 2016;7:S96–S101.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Epstein NE. Non-neurological major complications of extreme lateral and related lumbar interbody fusion techniques. Surg Neurol Int. 2016;7:S656–9.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Kwon B, Kim DH. Lateral lumbar interbody fusion: indications, outcomes, and complications. J Am Acad Orthop Surg. 2016;24:96–105.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Patel AA. Lateral lumbar interbody fusion: a better, worse, and similar approach to lumbar arthrodesis. J Am Acad Orthop Surg. 2016;24:57–9.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Ahmadian A, Abel N, Uribe JS. Functional recovery of severe obturator and femoral nerve injuries after lateral retroperitoneal transpsoas surgery. J Neurosurg Spine. 2013;18:409–14.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Ahmadian A, Deukmedjian AR, Abel N, et al. Analysis of lumbar plexopathies and nerve injury after lateral retroperitoneal transpsoas approach: diagnostic standardization. J Neurosurg Spine. 2013;18:289–97.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Woods K, Billys J, Hines R. Technical description of oblique lateral interbody fusion at L1–L5 (OLIF25) and at L5–S1 (OLIF51) and evaluation of complication and fusion rates. Spine J. 2017;4:545–53.CrossRefGoogle Scholar
  94. 94.
    Cummock MD, Vanni S, et al. An analysis of postoperative thigh symptoms after minimally invasive transpsoas lumbar interbody fusion. J Neurosurg Spine. 2011;14:11–8.CrossRefGoogle Scholar
  95. 95.
    Davis T, Hynes RA, et al. Retroperitoneal oblique corridor to the L2-S1 intervertebral discs in the lateral position: an anatomic study. J Neurosurg Spine. 2014;16:785–93.CrossRefGoogle Scholar
  96. 96.
    Molinares D, Davis T, et al. Is the lateral jack-knife position responsible for cases of transient neurapraxia? J Neurosurg Spine. 2016;24:189–96.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Wolfla C, Maiman D, Coufal FJ, Wallace JR. Retroperitoneal lateral lumbar interbody fusion with titanium threaded fusion cages. J Neurosurg. 2002;96:50–5.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Abe K, Orita S, Mannoji C, et al. Perioperative complications in 155 patients who underwent oblique lateral interbody fusion surgery: perspectives and indications from a retrospective, multicenter survey. Spine. 2017;42:55–62.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Kanno K, Seiji O, Sumihisa O, et al. Miniopen oblique lateral L5-S1 interbody fusion: a report of 2 cases. Case Rep Orthop. 2014;2014:603531. Scholar
  100. 100.
    Silvestre C, Mac-Thiong JM, et al. Complications and morbidities of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lumbar interbody fusion in 179 patients. Asian Spine J. 2012;6:89–97.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Wakita H, Shiga Y, Ohtori S, et al. Less invasive corrective surgery using oblique lateral interbody fusion (OLIF) including L5-S1 fusion for severe lumbar kyphoscoliosis due to L4 compression fracture in a patient with Parkinson’s disease: a case report. BMC Res Notes. 2015;8:126.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Mcafee PC, Regan JJ, Geis WP, et al. Minimally invasive anterior retroperitoneal approach to the lumbar spine. Emphasis on the lateral BAK. Spine. 1998;23:1476–84.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Deukmedjian AR, Dakwar E, Ahmadian A, et al. Early outcomes of minimally invasive anterior longitudinal ligament release for correction of sagittal imbalance in patients with adult spinal deformity. Sci World J. 2012;2012:789698.CrossRefGoogle Scholar
  104. 104.
    Pimenta L, Fortti F, Oliveira L, et al. Anterior column realignment following lateral interbody fusion for sagittal deformity correction. Eur J Orthop Surg Traumatol. 2015;25(Suppl 1):S29–33.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Saigal R, Mundis GM Jr, Eastlack R, et al. Anterior column realignment (ACR) in adult sagittal deformity correction: technique and review of the literature. Spine. 2016;41(Suppl 8):S66–73.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Uribe JS, Harris JE, Beckman JM, et al. Finite element analysis of lordosis restoration with anterior longitudinal ligament release and lateral hyperlordotic cage placement. Eur Spine J. 2015;24(Suppl 3):420–6.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Gonzalez-Blohm SA, Doulgeris JJ, Aghayev K, Lee WE, et al. Biomechanical analysis of an interspinous fusion device as a stand-alone and as supplemental fixation to posterior expandable interbody cages in the lumbar spine. J Neurosurg Spine. 2014;20:387–95.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Rodgers CR, Rodgers WB. The role of MIS spine surgery in global health: a development critique. In: Phillips FM, Lieberman I, Polly D, Wang MY, editors. Minimally invasive spine surgery: surgical techniques and disease management. 2nd ed. New York: Springer; in press.Google Scholar
  109. 109.
    Wang Q, Xu Y, Chen R, et al. A novel indication for a method in the treatment of lumbar tuberculosis through minimally invasive extreme lateral interbody fusion (XLIF) in combination with percutaneous pedicle screws fixation in an elderly patient a case report. Medicine (Baltimore). 2016;95:e5303.CrossRefGoogle Scholar
  110. 110.
    Mwachaka PM, Ranketi SS, Nchafatsi OG, et al. Spinal tuberculosis among human immunodeficiency virus negative patients in a Kenyan tertiary hospital: a 5 year synopsis. Spine J. 2011;11:265–9.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Ravindra KG, Dilip S. Spinal tuberculosis: a review. J Spinal Cord Med. 2011;34:440–54.CrossRefGoogle Scholar
  112. 112.
    Mehta JS, Bhojraj SY. Tuberculosis of the thoracic spine. A classification based on the selection of surgical strategies. J Bone Joint Surg Br. 2001;83:859–63.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Oguz E, Sehirlioglu A, Altinmakas M, et al. A new classification and guide for surgical treatment of spinal tuberculosis. Int Orthop. 2008;32:127–33.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Rajasekaran S. The natural history of post-tubercular kyphosis in children: radiological signs which predict late increase in deformity. J Bone Joint Surg Br. 2001;83:954–62.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dorcas Chomba
    • 1
  • W. C. RodgersIII
    • 2
  • W. B. Rodgers
    • 3
    Email author
  1. 1.Department of Orthopaedic SurgeryUniversity of NairobiNairobiKenya
  2. 2.Department of Mechanical Engineering and Materials ScienceYale UniversityNew HavenUSA
  3. 3.University of Quadra, Heriot BayCanada

Personalised recommendations