Advertisement

Minimally Invasive Spinous Process Fixation and Fusion

  • Jonathan N. SellinEmail author
  • G. Damian Brusko
  • Michael Y. Wang
Chapter

Abstract

Minimally invasive spinal techniques have been developed to minimize the perioperative morbidity associated with traditional, open spinal procedures, all the while maintaining similar or superior clinical outcomes. Interspinous rigid fixation/fusion devices (IFDs), which can be implanted in the lumbar spine through small midline incisions with minimal soft tissue dissection, allow for rigid spinal fixation, most commonly when implanted to supplement anterior, lateral, or posterior interbody fusions. These devices are distinct from the class of interspinous “bumpers” or spacers designed to distract the interspinous space and provide dynamic fixation. While an abundance of biomechanical data exists to support the use of IFDs, particularly as compared to stand-alone interbody, unilateral, or bilateral pedicle screw constructs, clinical studies reporting of surgical morbidity and patient outcomes are more sparse. The familiar surgical approach and minimal soft tissue dissection required for implantation of IFDs may mitigate both the steep learning curve required for minimally invasive posterior pedicle screw placement and perioperative morbidity, though more study is required to draw definitive conclusions.

Keywords

Interspinous fusion Spinous process fixation Interspinous fixation device Minimally invasive 

References

  1. 1.
    Andersson GB. Epidemiological features of chronic low-back pain. Lancet. 1999;354(9178):581–5.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Frymoyer JW, Pope MH, Clements JH, Wilder DG, MacPherson B, Ashikaga T. Risk factors in low-back pain. An epidemiological survey. J Bone Joint Surg Am. 1983;65(2):213–8.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Herkowitz HN, Kurz LT. Degenerative lumbar spondylolisthesis with spinal stenosis. A prospective study comparing decompression with decompression and intertransverse process arthrodesis. J Bone Joint Surg Am. 1991;73(6):802–8.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Weinstein JN, Lurie JD, Tosteson TD, Zhao W, Blood EA, Tosteson AN, et al. Surgical compared with nonoperative treatment for lumbar degenerative spondylolisthesis. Four-year results in the Spine Patient Outcomes Research Trial (SPORT) randomized and observational cohorts. J Bone Joint Surg Am. 2009;91(6):1295–304.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Resnick DK, Choudhri TF, Dailey AT, Groff MW, Khoo L, Matz PG, et al. Guidelines for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 7: intractable low-back pain without stenosis or spondylolisthesis. J Neurosurg Spine. 2005;2(6):670–2.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Thomsen K, Christensen FB, Eiskjaer SP, Hansen ES, Fruensgaard S, Bunger CE. 1997 Volvo Award winner in clinical studies. The effect of pedicle screw instrumentation on functional outcome and fusion rates in posterolateral lumbar spinal fusion: a prospective, randomized clinical study. Spine (Phila Pa 1976). 1997;22(24):2813–22.CrossRefGoogle Scholar
  7. 7.
    Fischgrund JS, Mackay M, Herkowitz HN, Brower R, Montgomery DM, Kurz LT. 1997 Volvo Award winner in clinical studies. Degenerative lumbar spondylolisthesis with spinal stenosis: a prospective, randomized study comparing decompressive laminectomy and arthrodesis with and without spinal instrumentation. Spine (Phila Pa 1976). 1997;22(24):2807–12.CrossRefGoogle Scholar
  8. 8.
    Cloward RB. The treatment of ruptured lumbar intervertebral discs by vertebral body fusion. I. Indications, operative technique, after care. J Neurosurg. 1953;10(2):154–68.CrossRefGoogle Scholar
  9. 9.
    Harms JG, Jeszenszky D. Die posteriore, lumbale, interkorporelle Fusion in unilateraler transforaminaler Technik. Oper Orthop Traumatol. 1998;10(2):90–102.  https://doi.org/10.1007/s00064-006-0112-7.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Harmon PH. Anterior excision and vertebral body fusion operation for intervertebral disk syndromes of the lower lumbar spine: three-to five-year results in 244 cases. Clin Orthop Relat Res. 1963;26:107–27.PubMedGoogle Scholar
  11. 11.
    Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006;6(4):435–43.CrossRefGoogle Scholar
  12. 12.
    Karikari IO, Isaacs RE. Minimally invasive transforaminal lumbar interbody fusion: a review of techniques and outcomes. Spine (Phila Pa 1976). 2010;35(26 Suppl):S294–301.CrossRefGoogle Scholar
  13. 13.
    Parker SL, Adogwa O, Witham TF, Aaronson OS, Cheng J, McGirt MJ. Post-operative infection after minimally invasive versus open transforaminal lumbar interbody fusion (TLIF): literature review and cost analysis. Minim Invasive Neurosurg. 2011;54(1):33–7.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Allen RT, Garfin SR. The economics of minimally invasive spine surgery: the value perspective. Spine (Phila Pa 1976). 2010;35(26 Suppl):S375–82.CrossRefGoogle Scholar
  15. 15.
    Foley KT, Gupta SK. Percutaneous pedicle screw fixation of the lumbar spine: preliminary clinical results. J Neurosurg. 2002;97(1 Suppl):7–12.Google Scholar
  16. 16.
    Foley KT, Gupta SK, Justis JR, Sherman MC. Percutaneous pedicle screw fixation of the lumbar spine. Neurosurg Focus. 2001;10(4):E10.CrossRefGoogle Scholar
  17. 17.
    Kretzer RM, Molina C, Hu N, Umekoji H, Baaj AA, Serhan H, et al. A comparative biomechanical analysis of stand alone versus facet screw and pedicle screw augmented lateral interbody arthrodesis: an in vitro human cadaveric model. Clin Spine Surg. 2016;29(7):E336–43.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Kim JS, Choi WG, Lee SH. Minimally invasive anterior lumbar interbody fusion followed by percutaneous pedicle screw fixation for isthmic spondylolisthesis: minimum 5-year follow-up. Spine J. 2010;10(5):404–9.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Lau D, Lee JG, Han SJ, Lu DC, Chou D. Complications and perioperative factors associated with learning the technique of minimally invasive transforaminal lumbar interbody fusion (TLIF). J Clin Neurosci. 2011;18(5):624–7.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Lee JC, Jang HD, Shin BJ. Learning curve and clinical outcomes of minimally invasive transforaminal lumbar interbody fusion: our experience in 86 consecutive cases. Spine (Phila Pa 1976). 2012;37(18):1548–57.CrossRefGoogle Scholar
  21. 21.
    Lee KH, Yeo W, Soeharno H, Yue WM. Learning curve of a complex surgical technique: minimally invasive transforaminal lumbar interbody fusion (MIS TLIF). J Spinal Disord Tech. 2014;27(7):E234–40.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Nandyala SV, Fineberg SJ, Pelton M, Singh K. Minimally invasive transforaminal lumbar interbody fusion: one surgeon’s learning curve. Spine J. 2014;14(8):1460–5.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Silva PS, Pereira P, Monteiro P, Silva PA, Vaz R. Learning curve and complications of minimally invasive transforaminal lumbar interbody fusion. Neurosurg Focus. 2013;35(2):E7.CrossRefGoogle Scholar
  24. 24.
    Awad BI, Lubelski D, Shin JH, Carmody MA, Hoh DJ, Mroz TE, et al. Bilateral pedicle screw fixation versus unilateral pedicle and contralateral facet screws for minimally invasive transforaminal lumbar interbody fusion: clinical outcomes and cost analysis. Global Spine J. 2013;3(4):225–30.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Cao Y, Chen Z, Jiang C, Wan S, Jiang X, Feng Z. The combined use of unilateral pedicle screw and contralateral facet joint screw fixation in transforaminal lumbar interbody fusion. Eur Spine J. 2015;24(11):2607–13.PubMedCrossRefGoogle Scholar
  26. 26.
    Chen C, Cao X, Zou L, Hao G, Zhou Z, Zhang G. Minimally invasive unilateral versus bilateral technique in performing single-segment pedicle screw fixation and lumbar interbody fusion. J Orthop Surg Res. 2015;10:112.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Hsiang J, Yu K, He Y. Minimally invasive one-level lumbar decompression and fusion surgery with posterior instrumentation using a combination of pedicle screw fixation and transpedicular facet screw construct. Surg Neurol Int. 2013;4:125.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Liu F, Cao Y, Feng Z, Zhou X, Jiang C, Li X, et al. Comparison of three different posterior fixation techniques in transforaminal lumbar interbody fusion for two-level lumbar degenerative diseases: at a mean follow up time of 46 months. Clin Neurol Neurosurg. 2016;141:1–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Sethi A, Lee S, Vaidya R. Transforaminal lumbar interbody fusion using unilateral pedicle screws and a translaminar screw. Eur Spine J. 2009;18(3):430–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Epstein NE. A review of interspinous fusion devices: high complication, reoperation rates, and costs with poor outcomes. Surg Neurol Int. 2012;3:7.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Pintauro M, Duffy A, Vahedi P, Rymarczuk G, Heller J. Interspinous implants: are the new implants better than the last generation? A review. Curr Rev Musculoskelet Med. 2017;10(2):189–98.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Godzik J, Kalb S, Martinez-Del-Campo E, Newcomb AG, Singh V, Walker CT, et al. Biomechanical evaluation of the CD HORIZON Spire Z spinal system with pedicle and facet fixation. Spine (Phila Pa 1976). 2016;41(15):E902–7.CrossRefGoogle Scholar
  33. 33.
    Pradhan BB, Turner AW, Zatushevsky MA, Cornwall GB, Rajaee SS, Bae HW. Biomechanical analysis in a human cadaveric model of spinous process fixation with an interlaminar allograft spacer for lumbar spinal stenosis: laboratory investigation. J Neurosurg Spine. 2012;16(6):585–93.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Doulgeris JJ, Aghayev K, Gonzalez-Blohm SA, Lee WE 3rd, Vrionis FD. Biomechanical comparison of an interspinous fusion device and bilateral pedicle screw system as additional fixation for lateral lumbar interbody fusion. Clin Biomech (Bristol, Avon). 2015;30(2):205–10.CrossRefGoogle Scholar
  35. 35.
    Gonzalez-Blohm SA, Doulgeris JJ, Aghayev K, Lee WE 3rd, Volkov A, Vrionis FD. Biomechanical analysis of an interspinous fusion device as a stand-alone and as supplemental fixation to posterior expandable interbody cages in the lumbar spine. J Neurosurg Spine. 2014;20(2):209–19.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Kaibara T, Karahalios DG, Porter RW, Kakarla UK, Reyes PM, Choi SK, et al. Biomechanics of a lumbar interspinous anchor with transforaminal lumbar interbody fixation. World Neurosurg. 2010;73(5):572–7.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Techy F, Mageswaran P, Colbrunn RW, Bonner TF, McLain RF. Properties of an interspinous fixation device (ISD) in lumbar fusion constructs: a biomechanical study. Spine J. 2013;13(5):572–9.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Karahalios DG, Kaibara T, Porter RW, Kakarla UK, Reyes PM, Baaj AA, et al. Biomechanics of a lumbar interspinous anchor with anterior lumbar interbody fusion. J Neurosurg Spine. 2010;12(4):372–80.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Reis MT, Reyes PM, Bse AI, Newcomb AG, Singh V, et al. Biomechanical evaluation of lateral lumbar interbody fusion with secondary augmentation. J Neurosurg Spine. 2016;25(6):720–6.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Fogel GR, Parikh RD, Ryu SI, Turner AW. Biomechanics of lateral lumbar interbody fusion constructs with lateral and posterior plate fixation: laboratory investigation. J Neurosurg Spine. 2014;20(3):291–7.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Cardoso MJ, Dmitriev AE, Helgeson M, Lehman RA, Kuklo TR, Rosner MK. Does superior-segment facet violation or laminectomy destabilize the adjacent level in lumbar transpedicular fixation? An in vitro human cadaveric assessment. Spine (Phila Pa 1976). 2008;33(26):2868–73.CrossRefGoogle Scholar
  42. 42.
    Schulte TL, Leistra F, Bullmann V, Osada N, Vieth V, Marquardt B, et al. Disc height reduction in adjacent segments and clinical outcome 10 years after lumbar 360 degrees fusion. Eur Spine J. 2007;16(12):2152–8.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kim HJ, Bak KH, Chun HJ, Oh SJ, Kang TH, Yang MS. Posterior interspinous fusion device for one-level fusion in degenerative lumbar spine disease: comparison with pedicle screw fixation – preliminary report of at least one year follow up. J Korean Neurosurg Soc. 2012;52(4):359–64.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Chen MH, Chen JY. A novel nonpedicular screw-based fixation in lumbar spondylolisthesis. Biomed Res Int. 2017;2017:5619350.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Doherty P, Welch A, Tharpe J, Moore C, Ferry C. Transforaminal lumbar interbody fusion with rigid interspinous process fixation: a learning curve analysis of a surgeon team’s first 74 cases. Cureus. 2017;9(5):e1290.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Postacchini F, Postacchini R, Menchetti PP, Sessa P, Paolino M, Cinotti G. Lumbar interspinous process fixation and fusion with stand-alone interlaminar lumbar instrumented fusion implant in patients with degenerative spondylolisthesis undergoing decompression for spinal stenosis. Asian Spine J. 2016;10(1):27–37.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Vokshoor A, Khurana S, Wilson D, Filsinger P. Clinical and radiographic outcomes after spinous process fixation and posterior fusion in an elderly cohort. Surg Technol Int. 2014;25:271–6.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Tomii M, Itoh Y, Numazawa S, Watanabe K, Nakagawa H. Spinous process plate (S-plate) fixation after posterior interbody fusion for lumbar canal stenosis due to spondylolisthesis. Neurosurg Rev. 2013;36(1):139–43; discussion 43.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Wang JC, Haid RW Jr, Miller JS, Robinson JC. Comparison of CD HORIZON SPIRE spinous process plate stabilization and pedicle screw fixation after anterior lumbar interbody fusion. Invited submission from the Joint Section Meeting On Disorders of the Spine and Peripheral Nerves, March 2005. J Neurosurg Spine. 2006;4(2):132–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Kim DH, Tantorski M, Shaw J, Martha J, Li L, Shanti N, et al. Occult spinous process fractures associated with interspinous process spacers. Spine (Phila Pa 1976). 2011;36(16):E1080–5.CrossRefGoogle Scholar
  51. 51.
    Kim DH, Shanti N, Tantorski ME, Shaw JD, Li L, Martha JF, et al. Association between degenerative spondylolisthesis and spinous process fracture after interspinous process spacer surgery. Spine J. 2012;12(6):466–72.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jonathan N. Sellin
    • 1
    Email author
  • G. Damian Brusko
    • 1
  • Michael Y. Wang
    • 2
  1. 1.Department of NeurosurgeryUniversity of Miami Miller School of MedicineMiamiUSA
  2. 2.Department of Neurological SurgeryUniversity of Miami/Jackson Memorial HospitalMiamiUSA

Personalised recommendations