Advertisement

Minimally Invasive Midline Pars-Cortical Screw Techniques

  • Daniel L. Cavanaugh
  • Kunwar (Kevin) S. Khalsa
  • Nitin Khanna
  • Gurvinder S. DeolEmail author
Chapter

Abstract

The cortical screw trajectory is an evolution of the technique used for traditional pedicle screw placement. The novel cortical screw trajectory aims to increase screw purchase with the preferential capture of more cortical bone rather than cancellous bone located within the pedicles. This pathway also has the benefit of a smaller window of exposure required for placement, and thus lends itself for application in minimally invasive techniques. This chapter will explore the biomechanical advantages of cortical screw placement compared to traditional pedicle screws. It will also review the radiographic and anatomic landmarks required for safe insertion. Literature regarding clinical outcomes of cortical screw based procedures will be discussed.

Keywords

Cortical screw Cortical screw trajectory Minimally invasive fusion Pars screw trajectory 

References

  1. 1.
    Harrington PR. Treatment of scoliosis: correction and internal fixation by spine instrumentation. J Bone Surg [AM]. 1962;44:591–610.CrossRefGoogle Scholar
  2. 2.
    Harrington PR. The history and development of Harrington instrumentation: the classic. Clin Orthop. 1977;227:3–6.Google Scholar
  3. 3.
    Luque ER. Introduction to symposium: the anatomic basis and development of segmental spinal instrumentation. Spine. 1982;7(3):256–9. Reconstr Surg Traumatol. 1976;15:2–16.CrossRefGoogle Scholar
  4. 4.
    Roy-Camille R, Saillant G, Berteaux D, Salgado V. Osteosynthesis of thoraco-lumbar spine fractures with metal plates screwed through the vertebral pedicles. Spine (Phila Pa 1976). 1993;18(16):2452–6.CrossRefGoogle Scholar
  5. 5.
    Bischoff R, Bennett JT, Stuecker R, Davis JM, Whitecloud TS 3rd. The use of Texas Scottish-Rite instrumentation in idiopathic scoliosis. A preliminary report. Spine (Phila Pa 1976). 1993;18:2452–6.CrossRefGoogle Scholar
  6. 6.
    Santoni BG, Hynes RA, McGilvray KC, Rodriguez-Canessa G, Lyons AS, Henson MA, Womack WJ, Puttlitz CM. Cortical bone trajectory for lumbar pedicle screws. Spine J. 2009;9(5):366–73.  https://doi.org/10.1016/j.spinee.2008.07.008. Epub 2008 Sep 14.CrossRefPubMedGoogle Scholar
  7. 7.
    Cho W, Cho SK, Wu C. The biomechanics of pedicle screw-based instrumentation. J Bone Joint Surg Br. 2010;92(8):1061–5.  https://doi.org/10.1302/0301–620X.92B8.24237.CrossRefPubMedGoogle Scholar
  8. 8.
    Hirano T, Hasegawa K, Takahashi HE, et al. Structural characteristics of the pedicle and its role in screw stability. Spine. 1997;22:2504–9.CrossRefGoogle Scholar
  9. 9.
    Misenhimer GR, Peek RD, Wiltse LL, Rothman SL, Widell EH Jr. Anatomic analysis of pedicle cortical and cancellous diameter as related to screw size. Spine. 1989;14:367–72.CrossRefGoogle Scholar
  10. 10.
    Bogduk N, Wilson AS, Tynan W. The human lumbar dorsal rami. J Anat. 1982;134(2):383–97.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Oshino H, et al. A biomechanical comparison between cortical bone trajectory fixation and pedicle screw fixation. J Orthop Surg Res. 2015;10:125.CrossRefGoogle Scholar
  12. 12.
    Cheng WK, İnceoğlu S. Cortical and standard trajectory pedicle screw fixation techniques in stabilizing multisegment lumbar spine with low grade spondylolisthesis. Int J Spine Surg. 2015;31(9):46.  https://doi.org/10.14444/2046. eCollection 2015.CrossRefGoogle Scholar
  13. 13.
    Akpolat YT, İnceoğlu S, Kinne N, Hunt D, Cheng WK. Fatigue performance of cortical bone trajectory screw compared with standard trajectory pedicle screw. Spine (Phila Pa 1976). 2016;41(6):E335–41.CrossRefGoogle Scholar
  14. 14.
    Sansur CA, Caffes NM, Ibrahimi DM, Pratt NL, Lewis EM, Murgatroyd AA, Cunningham BW. Biomechanical fixation properties of cortical versus transpedicular screws in the osteoporotic lumbar spine: an in vitro human cadaveric model. J Neurosurg Spine. 2016;25(4):467–76.. Epub 2016 May 13CrossRefGoogle Scholar
  15. 15.
    Calvert GC, Lawrence BD, Abtahi AM, Bachus KN, Brodke DS. Cortical screws used to rescue failed lumbar pedicle screw construct: a biomechanical analysis. J Neurosurg Spine. 2015;22(2):166–72.  https://doi.org/10.3171/2014.10.SPINE14371. Epub 2014 Dec 5.CrossRefPubMedGoogle Scholar
  16. 16.
    Kasukawa Y, Miyakoshi N, Hongo M, Ishikawa Y, Kudo D, Shimada Y. Short-term results of Transforaminal lumbar interbody fusion using pedicle screw with cortical bone trajectory compared with conventional trajectory. Asian Spine J. 2015;9(3):440–8.  https://doi.org/10.4184/asj.2015.9.3.440. Epub 2015 Jun 8.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lee GW, Son JH, Ahn MW, Kim HJ, Yeom JS. The comparison of pedicle screw and cortical screw in posterior lumbar interbody fusion: a prospective randomized noninferiority trial. Spine J. 2015;15(7):1519–26.  https://doi.org/10.1016/j.spinee.2015.02.038. Epub 2015 Feb 26.CrossRefPubMedGoogle Scholar
  18. 18.
    Sakaura H, Miwa T, Yamashita T, Kuroda Y, Ohwada T. Posterior lumbar interbody fusion with cortical bone trajectory screw fixation versus posterior lumbar interbody fusion using traditional pedicle screw fixation for degenerative lumbar spondylolisthesis: a comparative study. J Neurosur: Spine. 2016;25(5):591–5.Google Scholar
  19. 19.
    Matsukawa K, Kato T, Yato Y, Sasao H, Imabayashi H, Hosogane N, Asazuma T, Chiba K. Incidence and risk factors of adjacent cranial facet joint violation following pedicle screw insertion using cortical bone trajectory technique. Spine (Phila Pa 1976). 2016;41(14):E851–6.CrossRefGoogle Scholar
  20. 20.
    Rampersaud YR, Gray R, Lewis SJ, Massicotte EM, Fehlings MG. Cost-utility analysis of posterior minimally invasive fusion compared with conventional open fusion for lumbar spondylolisthesis. SAS J. 2011;5(2):29–35.  https://doi.org/10.1016/j.esas.2011.02.001. eCollection 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Khanna N, Deol G, Poulter G, Ahuja A. Medialized, muscle-splitting approach for posterior lumbar interbody fusion: technique and multicenter perioperative results. Spine. 2016;41(supp8):S90–6.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Daniel L. Cavanaugh
    • 1
  • Kunwar (Kevin) S. Khalsa
    • 2
  • Nitin Khanna
    • 3
  • Gurvinder S. Deol
    • 4
    Email author
  1. 1.Department of Orthopaedic SurgeryUniversity of North CarolinaChapel HillUSA
  2. 2.Spine DepartmentOrthoArizonaScottsdaleUSA
  3. 3.Orthopaedic Specialists of Northwest IndianaMunsterUSA
  4. 4.Wake OrthopaedicsWakeMed Health and HospitalsRaleighUSA

Personalised recommendations