Advertisement

Philosophy and Biology of Minimally Invasive Spine Surgery

  • Pawel Glowka
  • Choll W. Kim
  • Kris Siemionow
Chapter

Abstract

The last decades have shown an ongoing progress in minimally invasive spine surgery (MISS). The development and introduction of new surgical instruments, smaller tissue retractors, advancements in microscopy, improvement in medical imaging capability, the sensitivity of C-arm, along with the introduction of intraoperative CT scanning and navigation, have allowed for less soft tissue morbidity and shorter lengths of stay. Multiple studies have demonstrated that MISS is associated with lowering the soft tissue injury, decreasing postoperative pain, and shortening lengths of stay and recovery time. The key to successfully performing MISS procedures is a thorough understanding of various anatomical relationships between soft tissue planes, approach corridors, bony anatomy, and neurological structures. Minimally invasive procedures are technically demanding and require advanced training and mentorship. This chapter focuses on the philosophy and biology of MISS.

Keywords

Minimally invasive surgery Minimally invasive spine surgery Open spine surgery Multifidus muscle anatomy Paraspinal muscle injury Iatrogenic paraspinal muscle injury Iatrogenic multifidus muscle injury Key concept of minimally invasive surgery Biology of minimally invasive surgery 

References

  1. 1.
    Kawaguchi Y, Matsui H, Tsuji H. Changes in serum creatinine phosphokinase MM isoenzyme after lumbar spine surgery. Spine (Phila Pa 1976). 1997;22:1018–23.CrossRefGoogle Scholar
  2. 2.
    Defour DR, Lott JA, Henry JB. Clinical enzymology. In: Henry JB, editor. Clinical diagnosis and management by laboratory tests. 20th ed. Philadelphia: Saunders; 2001. p. 292–4.Google Scholar
  3. 3.
    Defour DR, Lott JA, Henry JB. Clinical enzymology. In: Henry JB, editor. Clinical diagnosis and management by laboratory tests. 20th ed. Philadelphia: Saunders; 2001. p. 297–300.Google Scholar
  4. 4.
    Kawaguchi Y, Matsui H, Tsuji H. Back muscle injury after posterior lumbar spine surgery: Part 3. A histologic and enzymatic analysis. Spine (Phila Pa 1976). 1996;21(4):941–94.CrossRefGoogle Scholar
  5. 5.
    Smith JS, Shaffrey CI, Sansur CA, Berven SH, Fu KG, et al. Rates of infection after spine surgery based on 108,419 procedures: a report from the scoliosis research society morbidity and mortality committee. Spine (Phila Pa 1976). 2011;36(7):556–63.CrossRefGoogle Scholar
  6. 6.
    Park Y, Ha JW. Comparison of one-level posterior lumbar interbody fusion performed with a minimally invasive approach or a traditional open approach. Spine (Phila Pa 1976). 2007;32(5):537–43.CrossRefGoogle Scholar
  7. 7.
    Foley KT, Holly LT, Schwender JD. Minimally invasive lumbar fusion. Spine (Phila Pa 1976). 2003;15(suppl):26–35.Google Scholar
  8. 8.
    Hu ZJ, Fang XQ, Fan SW. Iatrogenic injury to the erector spinae during posterior lumbar spine surgery: underlying anatomical considerations, preventable root causes, and surgical tips and tricks. Eur J Orthop Surg Traumatol. 2014;24(2):127–35.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Kim DY, Lee SH, Chung SK, Lee HY. Comparison of multifidus muscle atrophy and trunk extension muscle strength: percutaneous versus open pedicle screw fixation. Spine (Phila Pa 1976). 2005;30(1):123–9.CrossRefGoogle Scholar
  10. 10.
    Hung CW, Wu MF, Hong RT, Weng MJ, Yu GF, Kao CH. Comparison of multifidus muscle atrophy after posterior lumbar interbody fusion with conventional and cortical bone trajectory. Clin Neurol Neurosurg. 2016;145:41–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Fan S, Hu Z, Zhao F, Zhao X, Huang Y, Fang X. Multifidus muscle changes and clinical effects of one-level posterior lumbar interbody fusion: minimally invasive procedure versus conventional open approach. Eur Spine J. 2010;19:316–24.PubMedCrossRefGoogle Scholar
  12. 12.
    Perez-Cruet MJ, Hussain NS, White GZ, Begun EM, Collins RA, Fahim DK, Yacob SA. Quality-of-life outcomes with minimally invasive transforaminal lumbar interbody fusion based on long-term analysis of 304 consecutive patients. Spine (Phila Pa 1976). 2014;39(3):191–8.CrossRefGoogle Scholar
  13. 13.
    Cholewicki J, Panjabi M, Khachatryan A. Stabilizing function of trunk flexor-extensor muscles around a neutral spine posture. Spine (Phila Pa 1976). 1997;22(19):2207–12.CrossRefGoogle Scholar
  14. 14.
    Panjabi MM. The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J Spinal Disord. 1992;5:390–6; discussion 7.PubMedCrossRefGoogle Scholar
  15. 15.
    Panjabi MM. The stabilizing system of the spine. Part I. function, dysfunction, adaptation, and enhancement. J Spinal Disord. 1992;5:383–9; discussion 97.PubMedCrossRefGoogle Scholar
  16. 16.
    Panjabi MM, Lydon C, Vasavada A, Grob D, Crisco JJ 3rd, Dvorak J. On the understanding of clinical instability. Spine (Phila Pa 1976). 1994;19:2642–50.CrossRefGoogle Scholar
  17. 17.
    Panjabi MM, White AA 3rd. Basic biomechanics of the spine. Neurosurgery. 1980;7:76–93.PubMedCrossRefGoogle Scholar
  18. 18.
    Donisch E, Basmajian J. Electromyography of deep back muscles in man. Am J Anat. 1972;133(1):25–36.PubMedCrossRefGoogle Scholar
  19. 19.
    Ward SR, Kim CW, Eng CM, Gottschalk LJ 4th, Tomiya A, Garfin SR, Lieber RL. Architectural analysis and intraoperative measurements demonstrate the unique design of the multifidus muscle for lumbar spine stability. J Bone Joint Surg Am. 2009;91:176–85.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Macintosh JE, Bogduk N. The biomechanics of the lumbar multifidus. Clin Biomech. 1986;1:205–13.CrossRefGoogle Scholar
  21. 21.
    Marras WS, Davis KG, Granata KP. Trunk muscle activities during asymmetric twisting motions. J Electromyogr Kinesiol. 1998;8:247–56.PubMedCrossRefGoogle Scholar
  22. 22.
    MacIntosh JE, Bogduk N. The morphology of the lumbar erector spinae. Spine (Phila Pa 1976). 1987;12:658–68.CrossRefGoogle Scholar
  23. 23.
    Macintosh JE, Bogduk N. The attachments of the lumbar erector spinae. Spine (Phila Pa 1976). 1991;16:783–92.CrossRefGoogle Scholar
  24. 24.
    Bogduk N, Macintosh JE, Pearcy MJ. A universal model of the lumbar back muscles in the upright position. Spine (Phila Pa 1976). 1992;17:897–913.CrossRefGoogle Scholar
  25. 25.
    Delp SL, Suryanarayanan S, Murray WM, Uhlir J, Triolo RJ. Architecture of the rectus abdominis, quadratus lumborum, and erector spinae. J Biomech. 2001;34(3):371–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Kim KT, Lee SH, Suk KS, Bae SC. The quantitative analysis of tissue injury markers after mini-open lumbar fusion. Spine (Phila Pa 1976). 2006;31:712–6.CrossRefGoogle Scholar
  27. 27.
    Waschke A, Hartmann C, Walter J, Dünisch P, Wahnschaff F, Kalff R, Ewald C. Denervation and atrophy of paraspinal muscles after open lumbar interbody fusion is associated with clinical outcome—electromyographic and CT-volumetric investigation of 30 patients. Acta Neurochir. 2014;156(2):235–44.PubMedCrossRefGoogle Scholar
  28. 28.
    Styf JR, Willén J. The effects of external compression by three different retractors on pressure in the erector spine muscles during and after posterior lumbar spine surgery in humans. Spine (Phila Pa 1976). 1998;23(3):354–8.CrossRefGoogle Scholar
  29. 29.
    Cawley DT, Alexander M, Morris S. Multifidus innervation and muscle assessment post-spinal surgery. Eur Spine J. 2014;23(3):320–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Kjaer P, Bendix T, Sorensen JS, Korsholm L, Leboeuf-Yde C. Are MRI-defined fat infiltrations in the multifidus muscles associated with low back pain. BMC Med. 2007;5(1):2.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Zoidl G, Grifka J, Boluki D, Willburger RE, Zoidl C, Krämer J, Faustmann PM. Molecular evidence for local denervation of paraspinal muscles in failed-back surgery/postdiscotomy syndrome. Clin Neuropathol. 2002;22(2):71–7.Google Scholar
  32. 32.
    Sihvonen T, Herno A, Paljärvi L, Airaksinen O, Partanen J, Tapaninaho A. Local denervation atrophy of paraspinal muscles in postoperative failed back syndrome. Spine (Phila Pa 1976). 1993;18(5):575–81.CrossRefGoogle Scholar
  33. 33.
    Kawaguchi Y, Matsui H, Tsuji H. Back muscle injury after posterior lumbar spine surgery: 2. Histologic and histochemical analyses in humans. Spine (Phila Pa 1976). 1994;19:2598–602.CrossRefGoogle Scholar
  34. 34.
    Rantanen J, Hurme M, Falck B, Alaranta H, Nykvist F, et al. The lumbar multifidus muscle five years after surgery for a lumbar intervertebral disc herniation. Spine (Phila Pa 1976). 1993;18:568–74.CrossRefGoogle Scholar
  35. 35.
    Matsukawa K, Yato Y, Kato T, Imabayashi H, Asazuma T, Nemoto K. In vivo analysis of insertional torque during pedicle screwing using cortical bone trajectory technique. Spine (Phila Pa 1976). 2014;39:240–5.CrossRefGoogle Scholar
  36. 36.
    Bogduk N. The lumbar mamilloaccessory ligament. Its anatomical and neurosurgical significance. Spine (Phila Pa 1976). 1981;6:162–16.CrossRefGoogle Scholar
  37. 37.
    Bogduk N, Wilson AS, Tynan W. The human lumbar dorsal rami. J Anat. 1982;134:383–97.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Malis LI. Electrosurgery: technical note. J Neurosurg. 1996;85(5):970–5.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Konno S, Olmarker K, Byröd G, Nordborg C, Strömqvist B, Rydevik B. Acute thermal nerve root injury. Eur Spine J. 1994;3(6):299–302.PubMedCrossRefGoogle Scholar
  40. 40.
    Kim CW. Scientific basis of minimally invasive spine surgery: prevention of multifidus muscle injury during posterior lumbar surgery. Spine (Phila Pa 1976). 2010;35(26S):281–6.CrossRefGoogle Scholar
  41. 41.
    Kim CW, Siemionow K, Anderson DG, Phillips FM. The current state of minimally invasive spine surgery. J Bone Joint Surg Am. 2011;93(6):582–96.PubMedCrossRefGoogle Scholar
  42. 42.
    Regev GJ, Lee YP, Taylor WR, Garfin SR, Kim CW. Nerve injury to the posterior rami medial branch during the insertion of pedicle screws: comparison of mini-open versus percutaneous pedicle screw insertion techniques. Spine (Phila Pa 1976). 2009;34(11):1239–42.CrossRefGoogle Scholar
  43. 43.
    Styf J, Lysell E. Chronic compartment syndrome in the erector spinae muscle. Spine (Phila Pa 1976). 1987;12(7):680–2.CrossRefGoogle Scholar
  44. 44.
    Gejo R, Matsui H, Kawaguchi Y, Ishihara H, Tsuji H. Serial changes in trunk muscle performance after posterior lumbar surgery. Spine (Phila Pa 1976). 1999;24:1023–8.CrossRefGoogle Scholar
  45. 45.
    Kawaguchi Y, Matsui H, Tsuji H. Back muscle injury after posterior lumbar spine surgery: 1. Histologic and histochemical analyses in humans. Spine (Phila Pa 1976). 1994;19:2590–7.CrossRefGoogle Scholar
  46. 46.
    Boelderl A, Daniaux H, Kathrein A, Maurer H. Danger of damaging the medial branches of the posterior rami of spinal nerves during a dorsomedian approach to the spine. Clin Anat. 2002;15(2):77–81.PubMedCrossRefGoogle Scholar
  47. 47.
    Hayashi N, Tamaki T, Yamada H. Experimental study of denervated muscle atrophy following severance of posterior rami of the lumbar spinal nerves. Spine (Phila Pa 1976). 1992;17:1361–7.CrossRefGoogle Scholar
  48. 48.
    Peng CWB, Yue WM, Poh SY, Yeo W, Tan SB. Clinical and radiological outcomes of minimally invasive versus open transforaminal lumbar interbody fusion. Spine (Phila Pa 1976). 2009;34(13):1385–9.CrossRefGoogle Scholar
  49. 49.
    Baggiolini M, Dewald B, Moser B. Interleukin-8 and related chemotactic cytokines—CXC and CC chemokines. Adv Immunol. 1994;55:97–179.PubMedCrossRefGoogle Scholar
  50. 50.
    Hirano T, Yasukawa K, Harada H, Taga T, Watanabe Y, Matsuda T, Kashiwamura S, Nakajima K, Koyama K, Iwamatsu A, et al. Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature. 1986;324:73–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Igonin AA, Armstrong VW, Shipkova M, Lazareva NB, Kukes VG, Oellerich M. Circulating cytokines as markers of systemic inflammatory response in severe community-acquired pneumonia. Clin Biochem. 2004;37:204–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Santoni BG, Hynes RA, McGilvray KC, Rodriguez-Canessa G, Lyons AS, Henson MA, Womack WJ, Puttlitz CM. Cortical bone trajectory for lumbar pedicle screws. Spine (Phila Pa 1976). 2009;9:366–73.Google Scholar
  53. 53.
    Hyun SJ, Kim YB, Kim YS, Park SW, Nam TK, Hong HJ, Kwon JT. Postoperative changes in paraspinal muscle volume: comparison between paramedian interfascial and midline approaches for lumbar fusion. J Korean Med Sci. 2007;22(4):646–51.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Stevens KJ, Spenciner DB, Griffiths KL, Kim KD, Zwienenberg-Lee M, Alamin T, Bammer R. Comparison of minimally invasive and conventional open posterolateral lumbar fusion using magnetic resonance imaging and retraction pressure studies. J Spinal Disord Tech. 2006;19(2):77–86.PubMedCrossRefGoogle Scholar
  55. 55.
    Abumi K, Panjabi MM, Kramer KM, Duranceau J, Oxland T, Crisco JJ. Biomechanical evaluation of lumbar spinal stability after graded facetectomies. Spine (Phila Pa 1976). 1990;15:1142–7.CrossRefGoogle Scholar
  56. 56.
    Tuite GF, Doran SE, Stern JD, McGillicuddy JE, Papadopoulos SM, Lundquist CA, Oyedijo DI, Grube SV, Gilmer HS, Schork MA, et al. Outcome after laminectomy for lumbar spinal stenosis. Part II: radiographic changes and clinical correlations. J Neurosurg. 1994;81:707–15.PubMedCrossRefGoogle Scholar
  57. 57.
    Johnsson KE, Willner S, Johnsson K. Postoperative instability after decompression for lumbar spinal stenosis. Spine (Phila Pa 1976). 1986;11:107–10.CrossRefGoogle Scholar
  58. 58.
    Palmer S. Use of a tubular retractor system in microscopic lumbar discectomy: 1 year prospective results in 135 patients. Neurosurg Focus. 2002;13:E5.PubMedGoogle Scholar
  59. 59.
    Guiot BH, Khoo LT, Fessler RG. A minimally invasive technique for decompression of the lumbar spine. Spine (Phila Pa 1976). 2002;27:432–8.CrossRefGoogle Scholar
  60. 60.
    Bresnahan L, Ogden AT, Natarajan RN, Fessler RG. A biomechanical evaluation of graded posterior element removal for treatment of lumbar stenosis: comparison of a minimally invasive approach with two standard laminectomy techniques. Spine (Phila Pa 1976). 2009;34:17–23.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pawel Glowka
    • 1
    • 2
  • Choll W. Kim
    • 3
  • Kris Siemionow
    • 2
  1. 1.Department of Spine Disorders and Pediatric OrthopedicsUniversity of Medical SciencesPoiznaPoland
  2. 2.Department of OrthopaedicsUniversity of Illinois at ChicagoChicagoUSA
  3. 3.Minimally Invasive Spine Center of Excellence, Spine Institute of San DiegoSan DiegoUSA

Personalised recommendations