Advertisement

Influence of Native Arbuscular Mycorrhizal Fungi and Pseudomonas fluorescens on Tamarix Shrubs Under Different Salinity Levels

  • Karima Bencherif
  • Yolande Dalpé
  • Anissa Lounès-Hadj Sahraoui
Chapter
Part of the Soil Biology book series (SOILBIOL, volume 56)

Abstract

Tamarix articulata and Tamarix gallica are salt-tolerant shrubs naturally associated with arbuscular mycorrhizal fungi (AMF). A greenhouse experiment was conducted to evaluate the mycorrhizal dependency of two Tamarix species using Rhizophagus irregularis (DAOM 197198) as arbuscular mycorrhizal inoculant. T. articulata mycorrhizal dependency reached twice the one found for T. gallica. Based on those results, a second greenhouse experiment aimed to compare the effectiveness of native AMF inoculum originating from saline soil of Algerian arid and semiarid areas, while combined or not with a native endophytic bacteria Pseudomonas fluorescens, with commercial AMF inoculum (Symbivit) on T. articulata growth under three soil salinity levels, non-saline (0.6 ds m−1), moderately saline (2.33 ds m−1), and saline soils (7.52 ds m−1). Root mycorrhizal rates were improved by the co-inoculation with native AMF and P. fluorescens and with the native inoculum more than commercial inoculum in saline and moderately saline soils. They were about four folds higher with the co-inoculum and two folds with native AMF inoculum. Improvements of shoot biomasses were about 1.4-fold higher with native AMF inoculum and co-inoculum as compared to commercial inoculum in moderately saline soil. The positive effect on plant growth of the co-inoculation in moderately saline soil was associated with enhancement of phosphorus and nitrogen contents in all soil salinity level. These findings highlight the efficiency of native co-inoculation (AMF/P. fluorescens) in improving plant growth under saline conditions and suggest potential use of native inoculum for increasing T. articulata plantation in disturbed soils.

Keywords

AMF inoculation Nutrient uptake Tamarix growth Mycorrhizal dependency Soil salinity Pseudomonas fluorescens 

Notes

Acknowledgments

This study was supported by the Algerian Ministry of Higher Education and Scientific Research. We thank the technical staff of NFRI (National Forest Research Institute) for their assistance in soil sampling and the Science of Nature and Life Faculty of Djelfa University (Algeria) for the facilities provided.

References

  1. Akram A (2008) Elicitation de la résistance systémique induite chez la tomate et le concombre et activation de la voie de la lipoxygénase par des rhizobactéries non-pathogènes. Dissertation, Université de LiègeGoogle Scholar
  2. Al-Karaki GN, Hammad R, Russan M (2001) Response of two tomato cultivars differing in salt stress. Mycorrhiza 11:43–47CrossRefGoogle Scholar
  3. Artursson V, Finlay R, Jansson J (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10CrossRefGoogle Scholar
  4. Badda N, Aggarwal A, Kadian N, Sharma N (2014) Influence of arbuscular mycorrhizal fungi and different salinity levels on growth enhancement and nutrient uptake of Gossypium arboreum L. Kavaka 43:14–21Google Scholar
  5. Baslam M, Esteban R, Garcia-Plazaola JI, Giocoechea N (2013) Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Appl Microbiol Biotechnol 97:3119–3128CrossRefGoogle Scholar
  6. Beauchamp V, Stromberg JC, Stutz J (2005) Interaction between Tamarix ramosissima (Saltcedar), Populus fremontii (Cottonwood), and mycorrhizal fungi: effects on seedling growth and plant species coexistence. Plant Soil 275:221–231CrossRefGoogle Scholar
  7. Belarouci LN (1991) Les reboisements en Algérie et leurs perspectives d’avenir. V1 et V2 OPU, Alger, p 641Google Scholar
  8. Bencherif K, Boutekrabt A, Fontaine J, Laruelle F, Dalpè Y, Lounes-Hadj Sahraoui A (2015) Impact of soil salinity on arbuscular mycorrhizal biodivesity and microflora biomass associated to Tamarix articulata Vahll rhizosphere in arid and semiarid Algerian areas. Sci Total Environ 533:488–494CrossRefGoogle Scholar
  9. Blaszkowski J (2012) Glomeromycota. IB Publisher Polish Academy of Sciences, Poland, p 274Google Scholar
  10. Bona E, Lingua G, Manassero P, Cantamessa S (2015) AM fungi and PGPR pseudomonas increase flowering, fruit producing, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Mycorrhiza 25:181–193CrossRefGoogle Scholar
  11. Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi and bacteria: a network of interactions. Ann Rev Microbiol 63:363–383CrossRefGoogle Scholar
  12. Chaudhry MS, Saeed M, Nasim FUH (2013) Soil chemical heterogeneity may affect the diversity of arbuscular mycorrhizal fungi in the rhizosphere of Tamarix aphylla under arid climate. An Stiint Univ AI I Cuza Iasi S Iia Biol Veg 59:53–63Google Scholar
  13. Dalpé Y, Monreal M (2004) Arbuscular mycorrhizal inoculum to support sustainable cropping systems. Symposium great plains inoculant from proceeding crop management. Crop Manag 3:301–309CrossRefGoogle Scholar
  14. Dalpé Y, Seguin SM (2013) Microwave-assisted technology for the clearing and staining of arbuscular mycorrhizal fungi in roots. Mycorrhiza 23:333–340CrossRefGoogle Scholar
  15. Decklerck S, Plenchette C, Strullu DG (1995) Mycorrhizal dependency of banana (Musa acuminata, AAA group) cultivar. Plant Soil 176:183–187CrossRefGoogle Scholar
  16. Dey R, Pal KK, Tilak KVBR (2006) Interaction of plant growth promoting rhizobacteria and AM fungi: present status and future prospects. In: Podila GK, Varma A (eds) Basic research applications of mycorrhizae. Kent UK, Anshan, pp 83–110Google Scholar
  17. Drogba SA (2011) Propriétés physico-chimique et fonctionnelles des tubercules et des amidons d’igname (Discorea) Envireonnment, p 154Google Scholar
  18. Dupponois R, Hafidi M, Ndoye I, Galiana A, Dreyfus B, Prin Y (2011) Gestion et valorisation des ressources microbiennes des sols pour une revégétalisation durable des milieux sahéliens. Le projet majeur africain de la Grande Muraille Verte, p 12Google Scholar
  19. ERGR (2013) Entreprise régional du génie rurale. Rapport de travaux des projet ERGR Atlas Djelfa (ex SAFA) Bilan d’activités et rapports d’évaluation 2011–2013Google Scholar
  20. Estrada B, Aroca R, Azcon Aguilar C, Barea JM, Ruiz-Lozano JM (2013) Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Sci 201–202:42–51CrossRefGoogle Scholar
  21. Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot. 104:1263–1280CrossRefGoogle Scholar
  22. Fages J, Mulard D (1988) Isolement de bacteries rhizospheriques et effet de leur inoculation en pots chez Zea mays. Agronomie 4:309–314CrossRefGoogle Scholar
  23. Ferrol N, Pérez-Tienda J (2009) Coordinated nutrient exchange in arbuscular mycorrhiza interface. In: Azcon-Aguilar et al (eds) Mycorrhizas: functional processes and ecological impact. Springer, Berlin, pp 73–87CrossRefGoogle Scholar
  24. Fortin JA, Plenchette C, Piché Y (2008) Les mycorhizes: la nouvelle révolution verte. In: Multi mondes-Quea (eds), p 126Google Scholar
  25. Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36CrossRefGoogle Scholar
  26. Garg N, Pandey R (2015) Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L. (Millsp.) genotypes. Mycorrhiza 25:165–180CrossRefGoogle Scholar
  27. Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244CrossRefGoogle Scholar
  28. Giri B (2017) Mycorrhizal dependency and growth response of Gliricidia sepium (Jacq.) Kunth ex Walp. under saline condition. Plant Sci Today 4(4):154–160CrossRefGoogle Scholar
  29. Hamel C (2004) Impact of arbuscular mycorrhizal fungi on N and P cycling in the root zone. Can J Soil Sci 84:383–395CrossRefGoogle Scholar
  30. Hetrick BAD, Wilson GWT, Cox TS (1992) Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors. Can J Bot 70:2032–2040CrossRefGoogle Scholar
  31. Hoeksma JD, Chaudhary VB, Gehring CA (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorhizal fungi. Ecol Lett 13:394–407CrossRefGoogle Scholar
  32. Johnson NC (2010) Resources stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647CrossRefGoogle Scholar
  33. Kohl L, Lukasiewicz CE, VanderHeijden MGA (2016) Establishment and effectiveness of inoculated arbuscular mycorrhizal fungi in agricultural soil. Plant Cell Environ 39:136–146CrossRefGoogle Scholar
  34. Lingua G, Bona E, Todeschini V, Cattanea C, Marsano F, Berta G, Cavaletto M (2012) Effects of heavy metals and arbuscular mycorrhiza on the leaf proteome of a selected poplar clone: a time course analysis. Conf Proc PLoS One 7:e38662CrossRefGoogle Scholar
  35. Liu S, Guo X, Feng G, Maimaitiaili B, Fan J, He X (2016) Indigenous arbuscular mycorrhizal fungi can alleviate salt stress and promote growth of cotton and maize in saline fields. Plant Soil 398:195–206CrossRefGoogle Scholar
  36. Mathr N, Vyas A (2000) Mycorrhizal dependency of Tamarix aphylla in saline areas of Thar Desert. J Nat 25:105–110Google Scholar
  37. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol 115:495–501CrossRefGoogle Scholar
  38. Meinhardt KA, Gehring CA (2012) Disrupting mycorrhizal mutualisms: a potential mechanism by which exotic tamarisk outcompetes native cottonwoods. Ecol Appl 22:532–549CrossRefGoogle Scholar
  39. Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653CrossRefGoogle Scholar
  40. Muñoz-Huerta RF, Guevara-Gonzalez RG, Contreras-Medina LM, Torres-Pacheco I, Prado-Olivarez J, Ocampo-Velazquez RV (2013) A review of methods for sensing the nitrogen status in plants: advantages, disadvantages and recent advances. Sensors 13:10823–10843CrossRefGoogle Scholar
  41. Ortiz N, Armada E, Duque E, Roldan A, Azcon R (2015) Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. J Plant Physiol 174:87–96CrossRefGoogle Scholar
  42. Panneerselvam P, Mohandas SS, Saritha B, Upreti KK, Poovarasan, Monnappa A, Sulladmath VV (2012) Glomus mosseae associated bacteria and their influence on stimulation of mycorrhizal colonization, sporulation, and growth promotion in guava (Psidium guajava L.) seedlings. Biol Agric Hortic 28:267–279CrossRefGoogle Scholar
  43. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161CrossRefGoogle Scholar
  44. Ramasamy K, Joe MM, Kim K, Lee S, Shagol C, Rangasamy A, Chung J, Islam MR, Sa T (2011) Synergistic effects of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria for sustainable agricultural production. Korean J Soil Sci Fert 44:637–649CrossRefGoogle Scholar
  45. Renuka G, Rao MS, Praveen Kumar V, Ramesh M, Sanditi Ram R (2012) Arbuscular mycorrhizal dependency of Acacia melanoxylon R.Br. Proc Natl Acad Sci India Sect B: Biol Sci 82:441–446CrossRefGoogle Scholar
  46. Sangabriel-Conde W, Negrete-Yankelevich S, Maldonado-Mendoza IE, Trejo-Aguilar D (2014) Native maize landraces from Los Tuxtlas, Mexico show varying mycorrhizal dependency for P uptake. Biol Fertil Soils 50:405–414CrossRefGoogle Scholar
  47. Sanon A, Andrianjaka Z, Prin Y, Bally R, ThioulousnJ CG, Duponnois R (2009) Rhizosphere microbiota interferes with plant-plant interactions. Plant Soil 321:259–278CrossRefGoogle Scholar
  48. Sharma D, Kapoor R, Bhatnagar AK (2009) Differential growth response of Curculigo orchioides to native arbuscular mycorrhizal fungal (AMF) communities varying in number and fungal components. Eur J Soil Biol 45:328–333CrossRefGoogle Scholar
  49. Sikes BA, Maherali H, Klironomos JN (2014) Mycorrhizal fungal growth responds to soil characteristics, but not host plant identity, during a primary lacustrine dune. Mycorrhiza 24:219–226CrossRefGoogle Scholar
  50. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, San DiegoGoogle Scholar
  51. Symanczik S, Courty PE, Bolleri T, Wiemken A, Al-Yahya MN (2015) Impact of water regimes on an experimental community of four desert arbuscular mycorrhizal fungal (AMF) species, as affected by the introduction of a non-native AMF species. Mycorrhiza 25:639–647CrossRefGoogle Scholar
  52. Taniguchi T, Acharya K, Imada S, Iwanaga FYN (2015) Arbuscular mycorrhizal colonization of Tamarix ramosissima along a salinity gradient in the southwestern United States. Landsc Ecol Eng 11:221–225CrossRefGoogle Scholar
  53. Varma A (1999) Fungi in arid and semi-arid soils. In: Hock B (ed) Mycorrhiza structure, function, molecular biology and biotechnology, 2nd edn. Springer, Berlin, pp 521–556Google Scholar
  54. Vyas M, Vyas A (2014) Field response of Capsicum annuum dually inoculated with AM fungi and PGPR in Western Rajasthan. Int J Res Stud Biosci 2:21–26Google Scholar
  55. Xun F, Xie B, Liu S, Guo C (2015) Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on Oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environ Sci Pollut Res Int 22:598–608CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Karima Bencherif
    • 1
    • 2
  • Yolande Dalpé
    • 3
  • Anissa Lounès-Hadj Sahraoui
    • 1
    • 2
  1. 1.Faculté des sciences de la Nature et de la vieUniversité de DjelfaDjelfaAlgeria
  2. 2.Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV)Université du Littoral Côte d’OpaleCalaisFrance
  3. 3.Agriculture et agroalimentaire CanadaCentre de recherche et développement d’OttawaOttawaCanada

Personalised recommendations