Advertisement

Anabolic and Anticatabolic Agents in Burns

  • Roohi Vinaik
  • Eduardo I. Gus
  • Marc G. JeschkeEmail author
Chapter

Abstract

Burn results in a substantial release of inflammatory mediators, which leads to significant metabolic derangements and the introduction of a post-injury stress environment, hypermetabolic response. This hypermetabolic response is characterized by vast catabolism, and if untreated, it leads to substantial physiological exhaustion, organ failure, and even death. Particularly, an important feature of the post-burn hypermetabolic response is generalized catabolism. Hypercatabolism can be attributed to a shift in the production of anabolic to catabolic factors. Increased levels of proinflammatory cytokines occur immediately after injury and are intimately associated with augmented catabolic hormones, principally cortisol and catecholamines. Furthermore, hypermetabolism is associated with a suppression of the endocrine axis, which can result in a substantial decrease in serum levels of endogenous anabolic hormones. Indeed, burn patients exhibit diminished levels of hormones such as human growth hormone (hGH), IGF-I, and testosterone post-trauma. Non-pharmacologic interventions such as exercise, appropriate nutrition, and heating the environment have been employed to manage post-trauma hypermetabolism. While they improve hypermetabolic catabolism, pharmacologic interventions appear critical for clinical efficacy. Various pharmacological strategies have been used to prevent catabolism and promote anabolism in thermally injured patients. This chapter analyzes the anticatabolic and anabolic pharmacologic interventions currently utilized. It will cover propranolol, growth hormone (GH), insulin growth factor 1 (IGF-1), insulin growth factor binding protein 3 (IGFBP-3), insulin, metformin, testosterone, oxandrolone, and thyroid hormones. Furthermore, novel therapeutics utilized in other conditions, such as cancer-related cachexia, are discussed.

Keywords

Hypermetabolism Anabolism Catabolism Inflammation Growth factors Hormones IGF-1 Growth hormone Propranolol Metformin Testosterone Oxandrolone Pathophysiology Hyperinflammation Edema 

Notes

Conflicts of Interest and Source of Funding

This study was supported by National Institutes of Health R01-GM087285-01, CFI Leader’s Opportunity Fund: Project #25407, and Canadian Institutes of Health Research (CIHR) grant #123336. The authors have no conflicts of interest to declare.

References

  1. 1.
    Williams FN, Herndon DN, Jeschke MG. The hypermetabolic response to burn injury and interventions to modify this response. Clin Plast Surg. 2009;36(4):583–96.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Williams FN, Jeschke MG, Chinkes DL, et al. Modulation of the hypermetabolic response to trauma: temperature, nutrition, and drugs. J Am Coll Surg. 2009;208:489–502.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Ipaktchi K, Arbabi S. Advances in burn care. Crit Care Med. 2006;34(9S):S239–44.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Rojas Y, Finnerty CC, Radhakrishnana RS, Herndon DN. Burns: and update on current pharmacotherapy. Expert Opin Pharmacother. 2012;13(17):2485–94.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Ferrando AA, Sheffield-Moore M, Wolf SE, et al. Testosterone administration in severe burn patients ameliorates muscle catabolism. Crit Care Med. 2001;29:1936–42.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Pereira C, Murphy K, Jeschke MG, Herndon DN. Post burn muscle wasting and the effects of treatment. Int J Biochem Cell Biol. 2005;37(10):1948–61.CrossRefGoogle Scholar
  7. 7.
    Breitenstein E, Chioléro RL, Jéquier E, et al. Effects of beta-blockade on energy metabolism following burns. Burns. 1990;16:259–64.CrossRefGoogle Scholar
  8. 8.
    Finnerty CC, Herndon DN. Is propranolol of benefit in pediatric burn patients? Adv Surg. 2013;47:177–97.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Mohammadi AA, Bakhshaeekia A, Alibeigi P, et al. Efficacy of propranolol in wound healing for hospitalized burn patients. J Burn Care Res. 2009;30(6):1013–7.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Manzano-Nunez R, García-Perdomo HA, Ferrada P, et al. Safety and effectiveness of propranolol in severely burned patients: systematic review and meta-analysis. World J Emerg Surg. 2017;12:11.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Herndon DN, Hart DW, Wolf SE, et al. Reversal of catabolism by beta-blockade after severe burns. N Engl J Med. 2001;345:1223–9.CrossRefGoogle Scholar
  12. 12.
    Williams FN, Herndon DN, Kulp GA, Jeschke MG. Propranolol decreases cardiac work in a dose-dependent manner in severely burned children. Surgery. 2011;149:231–9.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Williams FN, Branski LK, Jeschke MG. What, how and how much should burn patients be fed. Surg Clin North Am. 2011;91(3):609–29.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Wischmeyer PE, San-Millan I. Winning of the war against ICU-acquired weakness: new innovations in nutrition and exercise physiology. Crit Care. 2015;19:S6.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Hart DW, Wolf SE, Chinkes DL, et al. β-Blockade and growth hormone after burn. Ann Surg. 2002;236(4):450–7.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Jeschke MG, Finnerty CC, Kulp GA, et al. Combination of recombinant human growth hormone and propranolol decreases hypermetabolism and inflammation in severely burned children. Pediatr Crit Care Med. 2008;9(2):209–16.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Peña R, Ramirez LL, Crandall CG, et al. Effects of community-based exercise in children with severe burns: a randomized trial. Burns. 2016;42(1):41–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Herndon DN, Rodriguez NA, Diaz EC, et al. Long-term propranolol use in severely burned pediatric patients: a randomized controlled study. Ann Surg. 2012;256(3):402–11.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Jeschke MG, Boehning DF, Finnerty CC, Herndon DN. Effect of insulin on the inflammatory and acute phase response after burn injury. Crit Care Med. 2007;35(9S):S519–23.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Jeschke MG, Norbury WB, Finnerty CC, et al. Propranolol does not increase inflammation, sepsis, or infectious episodes in severely burned children. J Trauma. 2007;62:676–81.PubMedCrossRefGoogle Scholar
  21. 21.
    Jeschke M, Finnerty CC, Suman OE, et al. The effect of oxandrolone on the endocrinologic, inflammatory, and hypermetabolic responses during the acute phase postburn. Ann Surg. 2007;246:351–62.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Martinez R, Rogers A, Numanoglu A, Rode H. Fatal non-occlusive mesenteric ischemia and the use of propranolol in pediatric burns. Burns. 2016;42:e70–3.PubMedCrossRefGoogle Scholar
  23. 23.
    Arbabi S, Ahrns KS, Wahl WL, et al. Beta-blocker use is associated with improved outcomes in adult burn patients. J Trauma. 2004;56(2):265–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Flores O, Stockton K, Robers JA, et al. The efficacy and safety of adrenergic blockade after burn injury: a systematic review and meta-analysis. J Trauma Acute Care Surg. 2016;80(1):146–55.PubMedCrossRefGoogle Scholar
  25. 25.
    Brown DA, Gibbons J, Honari S, et al. Propranolol dosing practices in adult burn patients: implications for safety and efficacy. J Burn Care Res. 2016;37:e218–26.PubMedCrossRefGoogle Scholar
  26. 26.
    LeCompte MT, Rae L, Kahn SA. A survey of the use of propranolol in burn centers: who, what, when, why. Burns. 2017;34:121–6.CrossRefGoogle Scholar
  27. 27.
    Nuñez-Villaveirán T, Sánches M, Millán P, García-de-Lorenzo A. Systematic review of the effect of propranolol on hypermetabolism in burn injuries. Med Intensiva. 2015;39(2):101–13.PubMedCrossRefGoogle Scholar
  28. 28.
    Demling RH. The role of anabolic hormones for wound healing in catabolic states. J Burns Wounds. 2007;4:46–62.Google Scholar
  29. 29.
    Klein GL. Burn-induced bone loss: importance, mechanisms, and management. J Burns Wounds. 2006;1:32–8.Google Scholar
  30. 30.
    Jeschke MG, Barrow RE, Suzuki F, et al. IGF-1/IGFBP-3 equilibrates ratios of pro- to anti-inflammatory cytokines, which are predictors for organ function in severely burned pediatric patients. Mol Med. 2002;8(5):238–46.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Kim JB, Cho YS, Jang KU, et al. Effects of sustained release growth hormone treatment during the rehabilitation of adult severe burn survivors. Growth Horm IGF Res. 2016;27:1–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Branski LK, Herndon DN, Barrow RE, et al. Randomized controlled trial to determine the efficacy of long-term growth hormone treatment in severely burned children. Ann Surg. 2009;250:514–23.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Connolly CM, Barrow RE, Chinkes DL, et al. Recombinant human growth hormone increases thyroid hormone-binding sites in recovering severely burned children. Shock. 2003;19(5):399–402.PubMedCrossRefGoogle Scholar
  34. 34.
    Breederveld RS, Tuinebreijer WE. Recombinant human growth hormone for treating burns and donor sites (Cochrane Systematic Review). Cochrane Database Syst Rev. 2014;(9):CD008990.Google Scholar
  35. 35.
    Takala J, Ruokonen E, Webster NR, et al. Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med. 1999;341(11):785–92.CrossRefGoogle Scholar
  36. 36.
    Lang CH, Frost RA. Role of growth hormone, insulin-like growth factor-I, and insulin-like growth factor binding proteins in the catabolic response to injury and infection. Curr Opin Clin Nutr Metab Care. 2002;5:271–9.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Carroll PV. Treatment with growth hormone and insulin-like growth factor-I in critical illness. Best Pract Res Clin Endocrinol Metab. 2001;15(4):435–51.PubMedCrossRefGoogle Scholar
  38. 38.
    Froesch ER, Schmid C, Schwander J, Zapf J. Actions of insulin-like growth factors. Annu Rev Physiol. 1985;47:443–67.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Gauglitz GG, Herndon DN, Kulp GA, et al. Abnormal insulin sensitivity persists up to three years in pediatric patients post-burn. J Clin Endocrinol Metab. 2009;94:1656–64.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Wolf SE, Woodside KJ, Ramirez RJ, et al. Insulin-like growth factor-1/insulin-like growth factor binding protein-3 alters lymphocyte responsiveness following severe burn. J Surg Res. 2004;117:255–61.PubMedCrossRefGoogle Scholar
  41. 41.
    Jeschke MG, Barrow RE, Herndon DN. Recombinant human growth hormone treatment in pediatric burn patients and its role during the hepatic acute phase response. Crit Care Med. 2000;28:1578–84.PubMedCrossRefGoogle Scholar
  42. 42.
    Jeschke MG, Barrow RE, Herndon DN. Insulin-like growth factor I plus insulin-like growth factor binding protein 3 attenuates the proinflammatory acute phase response in severely burned children. Ann Surg. 2000;231(2):246–52.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Spies M, Wolf SE, Barrow RE, et al. Modulation of types I and II acute phase reactants with insulin-like growth factor-1/binding protein-3 complex in severely burned children. Crit Care Med. 2002;30:83–8.CrossRefGoogle Scholar
  44. 44.
    Hasselbren PO. Burns and metabolism. J Am Coll Surg. 1999;188(2):98–103.CrossRefGoogle Scholar
  45. 45.
    Van den Berghe G. On the neuroendocrinopathy of critical illness. Am J Respir Crit Care Med. 2016;194(11):1337–48.PubMedCrossRefGoogle Scholar
  46. 46.
    Debroy MA, Wolf SE, Zhang XJ, et al. Anabolic effects of insulin-like growth factor in combination with insulin-like growth factor binding protein-3 in severely burned adults. J Trauma. 1999;47(5):904.PubMedCrossRefGoogle Scholar
  47. 47.
    Heszele MF, Price SR. Insulin-like growth factor 1: the yin and yang of muscle atrophy. Endocrinology. 2004;145:4803–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Jeschke MG, Kraft R, Emdad F, et al. Glucose control in severely thermally injured pediatric patients: what glucose range should be the target? Ann Surg. 2010;252(3):521–7.PubMedGoogle Scholar
  49. 49.
    Jeschke MG, Kulp GA, Kraft R, et al. Intensive insulin therapy in severely burned pediatric patients – a prospective randomized trial. Am J Respir Crit Care Med. 2010;182:352–9.CrossRefGoogle Scholar
  50. 50.
    Jeschke MG. Clinical review: glucose control in severely burned patients – current best practice. Crit Care. 2013;17(4):232.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Diaz EC, Herndon DN, Porter C, et al. Effects of pharmacological interventions on muscle protein synthesis and breakdown in recovery from burns. Burns. 2015;41(4):649–57.CrossRefGoogle Scholar
  52. 52.
    Van den Berghe G. How does blood glucose control with insulin save lives in intensive care? J Clin Invest. 2004;114(9):1187–25.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Mesotten D, Wouters PJ, Peeters RP, et al. Regulation of the somatotropic axis by intensive insulin therapy during protracted critical illness. J Clin Endocrinol Metab. 2004;89(7):3105–13.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Branco RG, Garcia PC, Piva JP, et al. Pilot mechanistic study of insulin modulation of somatotrophic hormones, inflammation, and lipid metabolism during critical illness in children. Pediatr Crit Care Med. 2017;18:e35–41.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Marijke G, Mesotten D, Brugts M, et al. Effect of intensive insulin therapy on the somatotropic axis of critically ill children. Clin Endocrinol Metab. 2011;96:2558–66.CrossRefGoogle Scholar
  56. 56.
    Fisher JG, Sparks EA, Khan FA, et al. Tight glycemic control with insulin does not affect skeletal muscle degradation during the early post-operative period following pediatric cardiac surgery. Pediatr Crit Care Med. 2015;16(6):515–21.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Codère-Maruyama T, Schricker T, Shum-Tim D, et al. Hyperinsulinemic-normoglycemic clamp administered together with amino acids induces anabolism after cardiac surgery. Am J Physiol Regul Integr Comp Physiol. 2016;311:1085–92.CrossRefGoogle Scholar
  58. 58.
    Jeschke MG, Klein D, Herndon DN. Insulin treatment improves the systemic inflammatory reaction to severe trauma. Ann Surg. 2004;239:553–60.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Gore DC, Wolf SE, Herndon DN, Wolfe RR. Relative influence of glucose and insulin on peripheral amino acid metabolism in severely burned patients. JPEN J Parenter Enteral Nutr. 2002;26(5):272–7.CrossRefGoogle Scholar
  60. 60.
    Gore DC, Wolf SE, Sanford AP, et al. Extremity hyperinsulinemia stimulates muscle protein synthesis in severely injured patients. Am J Physiol Endocrinol Metab. 2004;286:E529–34.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Ferrando AA, Chinkes DL, Wolf SE, et al. A submaximal dose of insulin promotes net skeletal muscle protein synthesis in patients with severe burns. Ann Surg. 1999;229(1):11–8.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Fram RY. Intensive insulin therapy improves insulin sensitivity and mitochondrial function in severely burned children. Crit Care Med. 2010;38(6):1475–83.CrossRefGoogle Scholar
  63. 63.
    Gibson BR, Galiatsatos P, Rabiee A, et al. Intensive insulin therapy confers a similar survival benefit in the burn intensive care unit to the surgical intensive care unit. Surgery. 2009;146:922–30.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Hemmila MR, Taddonio MA, Arbabi S, et al. Intensive insulin therapy is associated with reduced infectious complications in burn patients. Surgery. 2008;144(4):629–37.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Pham TN, Warren AJ, Phan HH, et al. Impact of tight glycemic control in severely burned children. J Trauma. 2005;59:1148–54.CrossRefGoogle Scholar
  66. 66.
    Gore DC, Wolf SE, Herndon DN, Wolfe RR. Metformin blunts stress-induced hyperglycemia after thermal injury. J Trauma. 2003;54:555–61.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Kanto K, Ito H, Noso S, et al. Effects of dosage and dosing frequency on the efficacy and safety of high-dose metformin in Japanese patients with type 2 diabetes mellitus. J Diabetes Investig. 2018;9:587–93.CrossRefGoogle Scholar
  68. 68.
    Ali S, Fonseca V. Overview of metformin: special focus on metformin extended release. Drug Eval. 2012;13:1797–805.Google Scholar
  69. 69.
    Miller RA, Chu Q, Xie J, et al. Biguanides suppress hepatic glucagon signaling by decreasing production of cyclic AMP. Nature. 2013;494(7436):256–60.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Gore DC, Herndon DN, Wolfe RR. Comparison of peripheral metabolic effects of insulin and metformin following severe burn injury. J Trauma. 2005;59:316–23.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Gore DC, Wolf SE, Sanford A, et al. Influence of metformin on glucose intolerance and muscle catabolism following severe burn injury. Ann Surg. 2005;241:334–42.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Salpeter SR, Greyber E, Pasternak GA, Salpeter EE. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus: systematic review and meta-analysis. Arch Intern Med. 2003;163:2594–02.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Riesenman PJ, Braithwaite SS, Cairns BA. Metformin-associated lactic acidosis in a burn patient. J Burn Care Res. 2007;28:342–7.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Sears B, Perry M. The role of fatty acids in insulin resistance. Lipids Health Dis. 2015;14:121.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Auger C, Samadi O, Jeschke MG. The biochemical alterations underlying post-burn hypermetabolism. Biochim Biophys Acta. 2016;10:2633–44.Google Scholar
  76. 76.
    Ferrando AA. Anabolic hormones in critically ill patients. Curr Opin Clin Nutr Metab Care. 1999;2(2):171–5.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Ferrando AA, Wolfe RR. Restoration of hormonal action and muscle protein. Crit Care Med. 2007;35:S630–4.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Spratt DI. Altered gonadal steroidogenesis in critical illness: is treatment with anabolic steroids indicated? Best Pract Res Clin Endocrinol Metab. 2001;15(4):479–94.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Basaria S, Coviello AD, Travison TG, et al. Adverse events associated with testosterone administration. N Engl J Med. 2010;363(2):109–22.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Hart DW, Wolf SE, Ramzy PI, et al. Anabolic effects of oxandrolone after severe burn. Ann Surg. 2001;233(4):556–64.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Real DS, Reis RP, Piccolo MS, et al. Oxandrolone use in adult burn patients. Systematic review and meta-analysis. Acta Cir Bras. 2014;29(3):68–76.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Di Girolamo FG, Situlin R, Biolo G. What factors influence protein synthesis and degradation in critical illness? Curr Opin Clin Nutr Metab Care. 2017;20:124–30.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Barrow RE, Dasu MR, Ferrando AA, et al. Gene expression patterns in skeletal muscle of thermally injured children treated with oxandrolone. Ann Surg. 2003;237(3):422–8.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Wolf SE, Thomas SJ, Dasu MR, et al. Improved net protein balance, lean mass, and gene expression changes with oxandrolone treatment in the severely burned. Ann Surg. 2003;237(6):801–11.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Tuvdendorj D, Zhang X-J, Chinkes DL, et al. Intensive insulin treatment increases donor site wound protein synthesis in burn patients. Surgery. 2011;149(4):512–8.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Cochran A, Thuet W, Holt B, et al. The impact of oxandrolone on length of stay following major burn injury: a clinical practice evaluation. Burns. 2013;39:1374–9.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Wolf SE, Edelman LS, Kemalyan N, et al. Effects of oxandrolone on outcome measures in the severely burned: a multicenter prospective randomized double-blind trial. J Burn Care Res. 2006;27:131–9.CrossRefGoogle Scholar
  88. 88.
    Pham TN, Klein MB, Gibran NS, et al. Impact of oxandrolone treatment on acute outcomes after severe burn injury. J Burn Care Res. 2008;29(6):902–6.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Porro LJ, Herndon DN, Rodriguez NA, et al. Five-year outcomes after oxandrolone administration in severely burned children: a randomized clinical trial of safety and efficacy. J Am Coll Surg. 2012;214(4):489–502.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Li H, Guo Y, Yang Z, et al. The efficacy and safety of oxandrolone treatment for patients with severe burns: a systematic review and meta-analysis. Burns. 2016;42:717–27.CrossRefGoogle Scholar
  91. 91.
    Miller JT, Btaiche IF. Oxandrolone treatment in adults with severe thermal injury. Pharmacotherapy. 2009;29(2):213–26.PubMedCrossRefGoogle Scholar
  92. 92.
    McCullough MC, Namias N, Schulman C, et al. Incidence of hepatic dysfunction is equivalent in burn patients receiving oxandrolone and controls. J Burn Care Res. 2007;28:412–20.PubMedCrossRefGoogle Scholar
  93. 93.
    Ellger B, Debaveye Y, Van den Berghe G. Endocrine interventions in the ICU. Eur J Intern Med. 2005;16:71–82.PubMedCrossRefGoogle Scholar
  94. 94.
    Van den Berghe G. Novel insights into the neuroendocrinology of critical illness. Eur J Endocrinol. 2000;143:1–13.PubMedCrossRefGoogle Scholar
  95. 95.
    Van den Berghe G, Wouters P, Weekers F, et al. Reactivation of pituitary hormone release and metabolic improvement by infusion of growth hormone-releasing peptide and thyrotropin-releasing hormone in patients with protracted critical illness. J Clin Endocrinol Metab. 1999;84:1311–23.PubMedGoogle Scholar
  96. 96.
    Stathatos N, Levetan C, Burman KD, Wartofsky L. The controversy of the treatment of critically ill patients with thyroid hormone. Best Pract Res Clin Endocrinol Metab. 2001;15(4):465–78.PubMedCrossRefGoogle Scholar
  97. 97.
    Molfino A, Amabile MI, Rossi Fanelli F, Muscaritoli M. Novel therapeutic options for cachexia and sarcopenia. Expert Opin Biol Ther. 2016;16(10):1239–44.PubMedCrossRefGoogle Scholar
  98. 98.
    Dobs AS, Boccia RV, Croot CC, et al. Effects of enobosarm on muscle wasting and physical function in patients with cancer: a double-blind, randomised controlled phase 2 trial. Lancet Oncol. 2013;14(4):335–45.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Dalton JT. The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: results of a double-blind, placebo-controlled phase II trial. J Cachexia Sarcopenia Muscle. 2011;2:153–61.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Crawford J, Prado CM, Johnston MA, et al. Study design and rationale for the phase 3 clinical development program of enobosarm, a selective androgen receptor modulator, for the prevention and treatment of muscle wasting in cancer patients (POWER Trials). Curr Oncol Rep. 2016;18:37–48.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Srinath R, Dobs A. Enobosarm (GTx024, S22): a potential treatment for cachexia. Future Oncol. 2014;10:187.PubMedCrossRefGoogle Scholar
  102. 102.
    Von Haehling S, Anker SD. Treatment of cachexia: an overview of recent developments. Int J Cardiol. 2015;184:736–42.CrossRefGoogle Scholar
  103. 103.
    Esposito A, Criscitiello C, Gelao L, et al. Mechanisms of anorexia–cachexia syndrome and rational for treatment with selective ghrelin receptor agonist. Cancer Treat Rev. 2015;41:793–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Bai Y, Hu Y, Zhao Y, et al. Anamorelin for cancer anorexia-cachexia syndrome: a systematic review and meta-analysis. Support Care Cancer. 2017;25:1651–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Ebner N, Steinbeck L, Doehner W, et al. Highlights from the 7th Cachexia Conference: muscle wasting pathophysiological detection and novel treatment strategies. J Cachexia Sarcopenia Muscle. 2014;5:27–34.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Garcia JM. Therapeutic potential of anamorelin, a novel, oral ghrelin mimetic, in patients with cancer-related cachexia: a multicenter, randomized, double-blind, crossover, pilot study. Support Care Cancer. 2013;21:129–37.PubMedCrossRefGoogle Scholar
  107. 107.
    Garcia JM, Boccia RV, Graham CD, et al. Anamorelin for patients with cancer cachexia: an integrated analysis of two phase 2, randomised, placebo-controlled, double-blind trials. Lancet Oncol. 2015;16:108–16.PubMedCrossRefGoogle Scholar
  108. 108.
    Su J, Geng J, Bao J, et al. Two ghrelin receptor agonists for adults with malnutrition: a systematic review and meta-analysis. Nutr J. 2016;15:97.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Greig CA, Johns N, Gray C, et al. Phase I/II trial of formoterol furmarate combined with megestrol acetate in cachectic patients with advanced malignancy. Support Care Cancer. 2014;22:1269–75.PubMedCrossRefGoogle Scholar
  110. 110.
    Ryall JG, Lynch GS. The potential and the pitfalls of β-adrenoreceptor agonists for the management of skeletal muscle wasting. Pharmacol Ther. 2008;120:219–32.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Roohi Vinaik
    • 1
  • Eduardo I. Gus
    • 1
  • Marc G. Jeschke
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    Email author
  1. 1.Faculty of MedicineUniversity of TorontoTorontoCanada
  2. 2.Faculty of MedicineInstitute of Medical Science, University of TorontoTorontoCanada
  3. 3.Biological SciencesSunnybrook Research InstituteTorontoCanada
  4. 4.Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Sunnybrook HospitalTorontoCanada
  5. 5.Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of MedicineUniversity of TorontoTorontoCanada
  6. 6.Department of Immunology, Faculty of MedicineUniversity of TorontoTorontoCanada

Personalised recommendations