Status and Prospects of Bacterial Inoculants for Sustainable Management of Agroecosystems

  • Rasheed A. AdelekeEmail author
  • Adekunle R. Raimi
  • Ashira Roopnarain
  • Sharon M. Mokubedi
Part of the Soil Biology book series (SOILBIOL, volume 55)


Bacterial inoculants are bacterial species that are applied directly or indirectly to enhance the growth and yield of plants. The application of bacterial inoculants is largely due to their compatibility and complementarity with natural processes of nutrient cycling, plant protection and other related biological processes in agroecosystems. As a nature-based solution, bacterial inoculants are able to drive many beneficial biological processes in agroecosystems with little or no negative impacts. However, their applications have been limited by factors such as awareness, production quality and quantity, storage and compatibility. Although there are studies that are already investigating many of these challenges, the future prospects of the application of bacterial inoculants will be determined by the adoption of new technologies that include multi-omics approach for improving the quality as well as applicability of these beneficial microorganisms.


Bacterial inoculants Agroecosystems Applications Challenges Beneficial microorganisms 



The authors are grateful to the National Research Foundation (NRF) and the Department of Agriculture, Forestry and Fisheries (DAFF) for funding our inoculant research work.


  1. Adeleke RA (2014) Getting rid of the unwanted: highlights of developments and challenges of biobeneficiation of iron ore minerals – a review. J Ind Microbiol Biotechnol 41(12):1731–1741PubMedCrossRefGoogle Scholar
  2. Adeleke R, Cloete T, Bertrand A, Khasa D (2010) Mobilisation of potassium and phosphorus from iron ore by ectomycorrhizal fungi. World J Microbiol Biotechnol 26(10):1901–1913CrossRefGoogle Scholar
  3. Adeleke R, Cloete T, Khasa D (2012) Culturable microorganisms associated with Sishen iron ore and their potential roles in biobeneficiation. World J Microbiol Biotechnol 28(3):1057–1070PubMedCrossRefGoogle Scholar
  4. Adeleke R, Nwangburuka C, Oboirien B (2017) Origins, roles and fate of organic acids in soils: a review. S Afr J Bot 108:393–406CrossRefGoogle Scholar
  5. Ahemad M, Khan M (2010) Phosphate solubilizing Enterobacter asburiae strain PS2. Afr J Microbiol Res 5:849–857CrossRefGoogle Scholar
  6. Ahemad M, Khan MS (2011) Effects of insecticides on plant-growth-promoting activities of phosphate solubilizing rhizobacterium Klebsiella sp. strain PS19. Pestic Biochem Physiol 100(1):51–56CrossRefGoogle Scholar
  7. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. JKSUS 26(1):1–20Google Scholar
  8. Ahmad F, Ahmad I, Khan MS (2005) Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turk J Biol 29(1):29–34Google Scholar
  9. Ahmad F, Ahmad I, Khan M (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163(2):173–181PubMedCrossRefGoogle Scholar
  10. Ahmed HF, El-Araby MM (2012) Evaluation of the influence of nitrogen fixing, phosphate solubilizing and potash mobilizing biofertilizers on growth, yield, and fatty acid constituents of oil in peanut and sunflower. Afr J Biotechnol 11(43):10079–10088Google Scholar
  11. Ahmed E, Holmström SJ (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7(3):196–208PubMedPubMedCentralCrossRefGoogle Scholar
  12. Akgül D, Mirik M (2008) Biocontrol of Phytophthora capsici on pepper plants by Bacillus megaterium strains. J Plant Pathol 90(1):29–34Google Scholar
  13. Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971PubMedPubMedCentralCrossRefGoogle Scholar
  14. Altomare C, Norvell W, Björkman T, Harman G (1999) Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol 65(7):2926–2933PubMedPubMedCentralGoogle Scholar
  15. Ambrosini A, de Souza R, Passaglia L (2015) Ecological role of bacterial inoculants and their potential impact on soil microbial diversity. Plant Soil 400(1–2):193–207Google Scholar
  16. Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38(1):145–180PubMedCrossRefGoogle Scholar
  17. Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204(1):57–67CrossRefGoogle Scholar
  18. Arora NK, Khare E, Maheshwari DK (2010) Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Microbiology monographs, vol 18, pp 97–116CrossRefGoogle Scholar
  19. Aseri G, Jain N, Panwar J, Rao A, Meghwal P (2008) Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of pomegranate (Punica granatum L.) in Indian Thar Desert. Sci Hortic 117(2):130–135CrossRefGoogle Scholar
  20. Barea J, Navarro E, Montoya E (1976) Production of plant growth regulators by rhizosphere phosphate-solubilizing bacteria. J Appl Bacteriol 40(2):129–134PubMedCrossRefGoogle Scholar
  21. Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16(4):729–770CrossRefGoogle Scholar
  22. Bello-Akinosho M, Adeleke R, Swanevelder D, Thantsha M (2015) Draft genome sequence of Pseudomonas sp. strain 10-1B, a polycyclic aromatic hydrocarbon degrader in contaminated soil. Genome Announc 3(3):e00325-00315CrossRefGoogle Scholar
  23. Bello-Akinosho M, Makofane R, Adeleke R, Thantsha M, Pillay M, Chirima G (2016) Potential of polycyclic aromatic hydrocarbon-degrading bacterial isolates to contribute to soil fertility. Biomed Res Int 2016:1–10CrossRefGoogle Scholar
  24. Bello-Akinosho M, Adeleke R, Thantsha MS, Maila M (2017a) Pseudomonas sp.(strain 10–1B): a potential inoculum candidate for green and sustainable remediation. Remediat J (3):75–79CrossRefGoogle Scholar
  25. Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4):1044–1051PubMedPubMedCentralCrossRefGoogle Scholar
  26. Berraho E, Lesueur D, Diem HG, Sasson A (1997) Iron requirement and siderophore production in Rhizobium ciceri during growth on an iron-deficient medium. World J Microbiol Biotechnol 13(5):501–510CrossRefGoogle Scholar
  27. Bhattacharjee R, Dey U (2014) Biofertilizer, a way towards organic agriculture: a review. Afr J Microbiol Res 8(24):2332–2343CrossRefGoogle Scholar
  28. Bhattacharyya P, Jha D (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350PubMedCrossRefGoogle Scholar
  29. Bloem JF, Trytsman G, Smith HJ (2009) Biological nitrogen fixation in resource-poor agriculture in South Africa. Symbiosis 48(1):18–24CrossRefGoogle Scholar
  30. Boonkerd N (1998) Symbiotic association between Frankia and actinorhizal plants. In: Malik KA, Mirza MS, Ladha JK (eds) Nitrogen fixation with non-legumes. Developments in plant and soil sciences, vol 79. Springer, DordrechtGoogle Scholar
  31. Braun V, Hantke K (2011) Recent insights into iron import by bacteria. Curr Opin Chem Bio 15:328–334CrossRefGoogle Scholar
  32. Callaham D, Deltredici P, Torrey JG (1978) Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science 199(4331):899–902PubMedCrossRefGoogle Scholar
  33. Catroux G, Hartmann A, Revellin C (2001) Trends in rhizobial inoculant production and use. Plant Soil 230(1):21–30CrossRefGoogle Scholar
  34. Chaiharn M, Lumyong S (2011) Screening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growth. Curr Microbiol 62(1):173–181PubMedCrossRefGoogle Scholar
  35. Chianu JN, Nkonya EM, Mairura F, Chianu JN, Akinnifesi F (2010) Biological nitrogen fixation and socioeconomic factors for legume production in sub-Saharan Africa: a review. Agron Sustain Dev 31:139CrossRefGoogle Scholar
  36. Chianu JN, Chianu JN, Mairura F (2012) Mineral fertilizers in the farming systems of sub-Saharan Africa. A review. Agron Sustain Dev 32(2):545–566CrossRefGoogle Scholar
  37. Chorom M, Sharifi H, Motamedi H (2010) Bioremediation of a crude oil-polluted soil by application of fertilizers. Iranian J Environ Health Sci Eng 7(4):319Google Scholar
  38. Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37(10):1970–1974CrossRefGoogle Scholar
  39. Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19(2):292–305CrossRefGoogle Scholar
  40. Cruz-Martínez K, Suttle KB, Brodie EL, Power ME, Andersen GL, Banfield JF (2009) Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland. ISME J 3(6):738PubMedCrossRefGoogle Scholar
  41. Dastager SG, Deepa C, Pandey A (2011) Potential plant growth-promoting activity of Serratia nematodiphila NII-0928 on black pepper (Piper nigrum L.). World J Microbiol Biotechnol 27(2):259–265CrossRefGoogle Scholar
  42. Dent D, Cocking E (2017) Establishing symbiotic nitrogen fixation in cereals and other non-legume crops: the greener nitrogen revolution. Agric Food Secur 6(1):7CrossRefGoogle Scholar
  43. Duarah I, Deka M, Saikia N, Boruah HD (2011) Phosphate solubilizers enhance NPK fertilizer use efficiency in rice and legume cultivation. 3 Biotech 1(4):227–238PubMedPubMedCentralCrossRefGoogle Scholar
  44. Duval BD, Hungate BA (2008) Soil science: scavenging for scrap metal. Nat Geosci 1(4):213CrossRefGoogle Scholar
  45. Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36(2–3):184–189CrossRefGoogle Scholar
  46. El-Kabbany S (1999) Evaluation of four biofertilizer for bioremediation of pesticide contaminated soil. Proceedings of the international conference on hazardous waste sources, effects and management. Paper presented at the The First Conference of the Central Agricultural Pesticide Lab, Egypt, p 1555Google Scholar
  47. Elkan G (1992) Biological nitrogen fixation systems in tropical ecosystems: an overview. In: Biological nitrogen fixation and sustainability of tropical agriculture. Wiley, Chichester, pp 27–40Google Scholar
  48. Esitken A, Yildiz HE, Ercisli S, Donmez MF, Turan M, Gunes A (2010) Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Sci Hortic 124(1):62–66CrossRefGoogle Scholar
  49. Figueiredo MDVB, Seldin L, De Araujo FF, Mariano RDLR (2010) Plant growth promoting rhizobacteria: fundamentals and applications. In: Maheshwari D (ed) Plant growth and health promoting bacteria. Microbiology monographs, vol 18. Springer, Berlin, pp 21–43CrossRefGoogle Scholar
  50. Fukushima T, Allred BE, Sia AK, Nichiporuk R, Andersen UN, Raymond KN (2013) Gram-positive siderophore-shuttle with iron-exchange from Fe-siderophore to apo-siderophore by Bacillus cereus YxeB. Proc Natl Acad Sci USA 110:13821–13826PubMedCrossRefGoogle Scholar
  51. Fulchieri M, Lucangeli C, Bottini R (1993) Inoculation with Azospirillum lipoferum affects growth and gibberellin status of corn seedling roots. Plant Cell Physiol 34(8):1305–1309Google Scholar
  52. Fulekar M, Sharma J, Tendulkar A (2012) Bioremediation of heavy metals using biostimulation in laboratory bioreactor. Environ Monit Assess 184(12):7299–7307PubMedCrossRefGoogle Scholar
  53. García-Fraile P, Menéndez E, Rivas R (2015) Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng 2(3):183–205CrossRefGoogle Scholar
  54. Geetha S, Joshi SJ (2013) Engineering rhizobial bioinoculants: a strategy to improve iron nutrition. Sci World J 2013:1–15Google Scholar
  55. Ghosh PK, Kumar De T, Maiti TK (2015) Production and metabolism of indole acetic acid in root nodules and symbiont (Rhizobium undicola) isolated from root nodule of aquatic medicinal legume Neptunia oleracea Lour. J Bot 2015:575067Google Scholar
  56. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39PubMedCrossRefGoogle Scholar
  57. Goldstein A, Krishnaraj P (2007) Phosphate solubilizing microorganisms vs. phosphate mobilizing microorganisms: what separates a phenotype from a trait? In: Velázquez E, Rodríguez-Barrueco C (eds) First International Meeting on Microbial Phosphate Solubilization. Developments in plant and soil sciences, vol 102. Springer, Dordrecht, pp 203–213CrossRefGoogle Scholar
  58. Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131(3):872–877PubMedPubMedCentralCrossRefGoogle Scholar
  59. Guinness P, Walpole B (2012) Environmental systems and societies for the IB Diploma. Cambridge University Press, CambridgeGoogle Scholar
  60. Gupta RP, Kalia A, Kapoor S (2007) Bioinoculants: a step towards sustainable agriculture. New India Publishing, Pitam Pura, New Delhi, pp V, 306Google Scholar
  61. Gupta G, Panwar J, Akhtar MS, Jha PN (2012) Endophytic nitrogen-fixing bacteria as biofertilizer. In: Lichtfouse E (ed) Sustainable agriculture reviews, vol 11. Springer, DordrechtCrossRefGoogle Scholar
  62. Gupta P, Ravi I, Sharma V (2013) Induction of β-1, 3-glucanase and chitinase activity in the defense response of Eruca sativa plants against the fungal pathogen Alternaria brassicicola. J Plant Interact 8(2):155–161CrossRefGoogle Scholar
  63. Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Park SW (2013) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul 32(2):245–258CrossRefGoogle Scholar
  64. Han HS, Lee KD (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res J Agric Biol Sci 1(2):176–180Google Scholar
  65. Han HS, Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52(3):130–136CrossRefGoogle Scholar
  66. Hassen AI, Bopape F, Sanger L (2016) Microbial inoculants as agents of growth promotion and abiotic stress tolerance in plants. In: Singh D, Singh H, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, vol 1. Springer, New Delhi, pp 23–36CrossRefGoogle Scholar
  67. Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598CrossRefGoogle Scholar
  68. Hermary H (2007) Effects of some synthetic fertilizers on the soil ecosystem. pp 1–6Google Scholar
  69. Herridge D, Gemell G, Hartley E (2002) Legume inoculants and quality control. Australian Centre for International Agricultural Research Proceedings 109c, pp 105–115Google Scholar
  70. Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol 97(20):8859–8873PubMedCrossRefGoogle Scholar
  71. Herrmann L, Atieno M, Brau L, Lesueur D (2015) Microbial quality of commercial inoculants to increase BNF and nutrient use efficiency. In: De Bruijn Frans J (ed) Biological nitrogen fixation, vol 2. Wiley, Hoboken, pp 1031–1040CrossRefGoogle Scholar
  72. Huang X-F, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities 1. Botany 92(4):267–275CrossRefGoogle Scholar
  73. Hutchens E, Valsami-Jones E, Mceldowney S, Gaze W, Mclean J (2003) The role of heterotrophic bacteria in feldspar dissolution–an experimental approach. Mineralog Mag 67(6):1157–1170CrossRefGoogle Scholar
  74. Insam H, Seewald MS (2010) Volatile organic compounds (VOCs) in soils. Biol Fertil Soils 46(3):199–213CrossRefGoogle Scholar
  75. Jain P, Khichi DS (2014) Phosphate solubilizing microorganism (PSM): an eco-friendly biofertilizer and pollution manager. J Dyn Agric Res 1(4):23–28Google Scholar
  76. James E (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crops Res 65(2–3):197–209CrossRefGoogle Scholar
  77. Jenkins T, Jenkins V (2005) The future of phosphorus in agriculture and the environment. The 1st International Congress of Ecologists, University of Business Studies, Banja Luka, Bosnia and Herzegovina, pp 1481–1497Google Scholar
  78. Jiang C-y, Sheng X-f, Qian M, Wang Q-y (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72(2):157–164PubMedCrossRefGoogle Scholar
  79. Jiao H, Luo J, Zhang Y, Xu S, Bai Z, Huang Z (2015) Bioremediation of petroleum hydrocarbon contaminated soil by Rhodobacter sphaeroides biofertilizer and plants. Pak J Pharm Sci 28(5):1881–1886PubMedGoogle Scholar
  80. Johri BN, Sharma A, Virdi J (2003) Rhizobacterial diversity in India and its influence on soil and plant health. Adv Biochem Eng Biotechnol 84:49–89PubMedGoogle Scholar
  81. Karadeniz A, Topcuoğlu Ş, Inan S (2006) Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J Microbiol Biotechnol 22(10):1061–1064CrossRefGoogle Scholar
  82. Kaushal M, Wani SP (2016) Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol 66(1):35–42CrossRefGoogle Scholar
  83. Kempel A, Brandl R, Schädler M (2009) Symbiotic soil microorganisms as players in aboveground plant-herbivore interactions-the role of rhizobia. Oikos 118(4):634–640CrossRefGoogle Scholar
  84. Khan MZA (2014) Microbiological solution to environmental problems – a review on bioremediation. Int J Pure App Biosci 2(6):295–303Google Scholar
  85. Khan AL, Halo BA, Elyassi A, Ali S, Al-Hosni K, Hussain J, Al-Harrasi A, Lee I-J (2016a) Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electron J Biotechnol 21:58–64CrossRefGoogle Scholar
  86. Khan Z, Rho H, Firrincieli A, Hung SH, Luna V, Masciarelli O, Doty SL (2016b) Growth enhancement and drought tolerance of hybrid poplar upon inoculation with endophyte consortia. Curr Plant Biol 6:38–47CrossRefGoogle Scholar
  87. Klotz MG, Stein LY (2008) Nitrifier genomics and evolution of the nitrogen cycle. FEMS Microbiol Lett 278(2):146–156PubMedCrossRefGoogle Scholar
  88. Kox MA, Jetten MS (2015) The nitrogen cycle principles of plant-microbe interactions. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer International Publishing, Berlin, pp 205–214Google Scholar
  89. Krasilinikov N (1957) On the role of soil micro-organism in plant nutrition. Microbiologiya 26:659–672Google Scholar
  90. Kumar H, Bajpai VK, Dubey R, Maheshwari D, Kang SC (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Prot 29(6):591–598CrossRefGoogle Scholar
  91. Kumar A, Biswas T, Singh N, Lal E (2014) Effect of Gibberellic acid on growth, quality and yield of tomato (Lycopersicon esculentum Mill.). J Agric Vet Sci 7(4):28–30Google Scholar
  92. Lesueur D, Deaker R, Herrmann L, Bräu L, Jansa J (2016) The production and potential of biofertilizers to improve crop yields. In: Arora N, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer, New Delhi, pp 71–92Google Scholar
  93. Lichtfouse E, Navarrete M, Debaeke P, Souchère V, Alberola C, Ménassieu J (2009) Agronomy for sustainable agriculture: a review. Agron Sustain Dev 29(1):1–6CrossRefGoogle Scholar
  94. Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69(4):1875–1883PubMedPubMedCentralCrossRefGoogle Scholar
  95. Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek 86(1):1–25PubMedCrossRefGoogle Scholar
  96. Lupwayi N, Olsen P, Sande E, Keyser H, Collins M, Singleton P, Rice W (2000) Inoculant quality and its evaluation. Field Crops Res 65(2–3):259–270CrossRefGoogle Scholar
  97. Ma W, Ma L, Li J, Wang F, Sisák I, Zhang F (2011) Phosphorus flows and use efficiencies in production and consumption of wheat, rice, and maize in China. Chemosphere 84(6):814–821PubMedCrossRefGoogle Scholar
  98. Mahdi SS, Hassan G, Samoon S, Rather H, Dar SA, Zehra B (2010) Bio-fertilizers in organic agriculture. J Phytol 2(10)Google Scholar
  99. Malusá E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J 2012:491206CrossRefGoogle Scholar
  100. Malusà E, Pinzari F, Canfora L (2016) Efficacy of biofertilizers: challenges to improve crop production. In: Microbial inoculants in sustainable agricultural productivity. Springer, pp 17–40Google Scholar
  101. Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11(3):843–872CrossRefGoogle Scholar
  102. Martínez-Romero E (2009) Coevolution in Rhizobium-legume symbiosis? DNA Cell Biol 28(8):361–370PubMedCrossRefGoogle Scholar
  103. Mathew A, Eberl L, Carlier AL (2014) A novel siderophore-independent strategy of iron uptake in the genus Burkholderia. Mol Microbiol 91(4):805–820PubMedCrossRefGoogle Scholar
  104. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166(2):525–530CrossRefGoogle Scholar
  105. Meena VS, Maurya B, Verma JP (2014) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169(5–6):337–347PubMedPubMedCentralCrossRefGoogle Scholar
  106. Megali L, Schlau B, Rasmann S (2015) Soil microbial inoculation increases corn yield and insect attack. Agron Sustainable Dev 35(4):1511–1519CrossRefGoogle Scholar
  107. Mirza BS, Rodrigues JL (2012) Development of a direct isolation procedure for free-living diazotrophs under controlled hypoxic conditions. Appl Environ Microbiol 78(16):5542–5549PubMedPubMedCentralCrossRefGoogle Scholar
  108. Mohammadi K (2012) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. Resour Environ 2(1):80–85Google Scholar
  109. Mohammadi K, Sohrabi Y (2012) Bacterial biofertilizers for sustainable crop production: a review. ARPN J Agric Biol Sci 7(5):307–316Google Scholar
  110. Molina-Romero D, Baez A, Quintero-Hernández V, Castañeda-Lucio M, Fuentes-Ramírez L, Bustillos-Cristales M et al (2017) Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth. PLoS One 12(11):e0187913PubMedPubMedCentralCrossRefGoogle Scholar
  111. Mukhuba M, Roopnarain A, Adeleke R, Moeletsi M, Makofane R (2018) Comparative assessment of bio-fertiliser quality of cow dung and anaerobic digestion effluent. Cogent Food Agric 4(1):1435019Google Scholar
  112. Mulongoy K, Gianinazzi S, Roger P-A, Dommergues Y (1992) Biofertilizers: agronomic and environmental impacts and economics. In: Da Silva EJ, Ratledge C, Sasson A (eds) Biotechnology: economic and social aspects. Issues for developing countries. Cambridge University Press, Cambridge, pp 55–69CrossRefGoogle Scholar
  113. N2Africa (2015) N2Africa revitalizes legume production in Nigeria. IITA Research to Nourish Africa (06/01/2016)Google Scholar
  114. Naylor D, Coleman-Derr D (2018) Drought stress and root-associated bacterial communities. Front Plant Sci 8:2223PubMedPubMedCentralCrossRefGoogle Scholar
  115. Ndakidemi PA, Bambara S, Makoi JH (2011) Micronutrient uptake in common bean (Phaseolus vulgaris L.) as affected by Rhizobium inoculation, and the Supply of Molybdenum and Lime. Plant Omics 4(1):40Google Scholar
  116. Noinaj N, Guillier M, Barnard TJ, Buchanan SK (2010) TonB-dependent transporters: regulation, structure and function. Annu Rev Microbiol 64:43–60PubMedPubMedCentralCrossRefGoogle Scholar
  117. O’hara G, Yates R, Howieson J (2002) Selection of strains of root nodule bacteria to improve inoculant performance and increase legume productivity in stressful environments. In: Herridge D (ed) Inoculants and nitrogen fixation of legumes in Vietnam. ACIAR ProceedingsGoogle Scholar
  118. Ohyama T, Momose A, Ohtake N, Sueyoshi K, Sato T, Nakanishi Y, Ando S (2014) Nitrogen fixation in sugarcane. Advances in biology and ecology of nitrogen fixation. pp 47–70CrossRefGoogle Scholar
  119. Oldroyd GE, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45:119–144PubMedCrossRefGoogle Scholar
  120. Oliveira C, Alves V, Marriel I, Gomes E, Scotti M, Carneiro N, Guimaraes C, Schaffert R, Sa N (2009) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol Biochem 41(9):1782–1787CrossRefGoogle Scholar
  121. Olsen PE, Rice WA, Bordeleau LM, Demidoff A, Collins MM (1996) Levels and identities of nonrhizobial microorganisms found in commercial legume inoculant made with nonsterile peat carrier. Can J Microbiol 42(1):72–75PubMedCrossRefGoogle Scholar
  122. Onofre-Lemus J, Hernández-Lucas I, Girard L, Caballero-Mellado J (2009) ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Appl Environ Microbiol 75(20):6581–6590PubMedPubMedCentralCrossRefGoogle Scholar
  123. Panda SP, Mishra CSK (2007) Bioremediation of environmental degradation a feasible option for ecorestoration. In: Environmental biotechnology. APH Publishing Corporation, New Delhi, pp 153–164Google Scholar
  124. Parani K, Saha B (2012) Prospects of using phosphate solubilizing Pseudomonas as bio fertilizer. Eur J Biol Sci 4(2):40–44Google Scholar
  125. Parmar P, Sindhu S (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3(1):25–31Google Scholar
  126. Parnell JJ, Berka R, Young HA, Sturino JM, Kang Y, Barnhart DM, DiLeo MV (2016) From the lab to the farm: An industrial perspective of plant beneficial microorganisms. Front Plant Sci 7:1110PubMedPubMedCentralCrossRefGoogle Scholar
  127. Patel N, Patel Y, Pandya H (2014) Bio fertilizer: a promising tool for sustainable farming. IJIRSET 3(9):15838, 15842CrossRefGoogle Scholar
  128. Pathak DV, Kumar M, Rani K (2017) Microorganisms for green revolution. In: Panpatte DG, Jhala YK, Vyas RV, Shelat HN (eds) Microbes for sustainable crop production, vol 1. Springer Nature, SingaporeGoogle Scholar
  129. Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42(3):207–220PubMedCrossRefGoogle Scholar
  130. Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68(8):3795–3801PubMedPubMedCentralCrossRefGoogle Scholar
  131. Peoples M, Brockwell J, Herridge D, Rochester I, Alves B, Urquiaga S, Boddey R, Dakora F, Bhattarai S, Maskey S (2009) The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48(1–3):1–17CrossRefGoogle Scholar
  132. Pérombelon M (2002) Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathol 51(1):1–12CrossRefGoogle Scholar
  133. Piechulla B, Lemfack MC, Kai M (2017) Effects of discrete bioactive microbial volatiles on plants and fungi. Plant Cell Environ 40(10):2042–2067PubMedCrossRefGoogle Scholar
  134. Pindi PK, Satyanarayana S (2012) Liquid microbial consortium-a potential tool for sustainable soil health. J Biofertil Biopestic 03(04)Google Scholar
  135. Radzki W, Manero FG, Algar E, García JL, García-Villaraco A, Solano BR (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie van Leeuwenhoek 104(3):321–330PubMedPubMedCentralCrossRefGoogle Scholar
  136. Raimi A, Adeleke R (2018) Quality assessment of commercial biofertilisers and the awareness of smallholder farmers in Gauteng province, South Africa. Masters Dissertation, University of South Africa, South AfricaGoogle Scholar
  137. Raimi A, Adeleke R, Roopnarain A (2017) Soil fertility challenges and biofertiliser as a viable alternative for increasing smallholder farmer crop productivity in sub-Saharan Africa. Cogent Food Agric 3:1–26Google Scholar
  138. Rascio N, Rocca NL (2013) Biological nitrogen fixation. In: Reference module in earth systems and environmental sciences. Encyclopedia of ecology. Google Scholar
  139. Raza W, Ling N, Liu D, Wei Z, Huang Q, Shen Q (2016) Volatile organic compounds produced by Pseudomonas fluorescens WR-1 restrict the growth and virulence traits of Ralstonia solanacearum. Microbiol Res 192:103–113PubMedCrossRefGoogle Scholar
  140. Reddy L, Giller K (2008) How effective are effective micro-organisms. LEISA Magazine 24:18–19Google Scholar
  141. Reinhold-Hurek B, Hurek T, Gillis M, Hoste B, Vancanneyt M, Kersters K, De Ley J (1993) Azoarcus gen. nov., nitrogen-fixing proteobacteria associated with roots of kallar grass (Leptochloa fusca (L.) Kunth), and description of two species, Azoarcus indigens sp. nov. and Azoarcus communis sp. nov. Int J Syst Evol Microbiol 43(3):574–584Google Scholar
  142. Reis VM, Teixeira KRDS (2015) Nitrogen fixing bacteria in the family Acetobacteraceae and their role in agriculture. J Basic Microbiol 55(8):931–949PubMedCrossRefGoogle Scholar
  143. Ribaudo CM, Krumpholz EM, Cassán FD, Bottini R, Cantore ML, Curá JA (2006) Azospirillum sp. promotes root hair development in tomato plants through a mechanism that involves ethylene. J Plant Growth Regul 25(2):175–185CrossRefGoogle Scholar
  144. Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156(3):989–996PubMedPubMedCentralCrossRefGoogle Scholar
  145. Richardson AE, Barea J-M, Mcneill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1–2):305–339CrossRefGoogle Scholar
  146. Rodrigues EP, Rodrigues LS, de Oliveira ALM, Baldani VLD, dos Santos Teixeira KR, Urquiaga S, Reis VM (2008) Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa L.). Plant Soil 302(1–2):249–261CrossRefGoogle Scholar
  147. Rokhbakhsh-Zamin F, Sachdev D, Kazemi-Pour N, Engineer A, Pardesi KR, Zinjarde S, Chopade BA (2011) Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. J Microbiol Biotechnol 21(6):556–566PubMedGoogle Scholar
  148. Roy R, Finck A, Blair G, Tandon H (2006) Plant nutrition for food security. A guide for integrated nutrient management. FAO Fertil Plant Nutr Bull 16:368Google Scholar
  149. Rudrappa T, Splaine RE, Biedrzycki ML, Bais HP (2008) Cyanogenic Pseudomonads influence multitrophic interactions in the rhizosphere. PLoS One 3(4):e2073PubMedPubMedCentralCrossRefGoogle Scholar
  150. Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134(3):1017–1026PubMedPubMedCentralCrossRefGoogle Scholar
  151. Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34(10):635–648PubMedCrossRefGoogle Scholar
  152. Sangeeth K, Bhai RS, Srinivasan V (2012) Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. JOSAC 21(2):118–124Google Scholar
  153. Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111(5):743–767PubMedCrossRefPubMedCentralGoogle Scholar
  154. Santoro MV, Zygadlo J, Giordano W, Banchio E (2011) Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Plant Physiol Biochem 49(10):1177–1182PubMedCrossRefGoogle Scholar
  155. Sarkar A, Saha M, Meena VS (2017) Plant Beneficial Rhizospheric Microbes (PBRMs): prospects for increasing productivity and sustaining the resilience of soil fertility. In: Meena V, Mishra P, Bisht J, Pattanayak A (eds) Agriculturally important microbes for sustainable agriculture. Springer, Singapore, pp 3–29CrossRefGoogle Scholar
  156. Sayyed R, Gangurde N, Patel P, Joshi S, Chincholkar S (2010) Siderophore production by Alcaligenes faecalis and its application for growth promotion in Arachis hypogaea. Indian J Biotechnol 9:302–307Google Scholar
  157. Sayyed RZ, Reddy MS, Vijay Kumar K, Yellareddygari SKR, Deshmukh AM, Patel PR, Gangurde NS (2012) Potential of plant growth-promoting rhizobacteria for sustainable agriculture. In: Maheshwari DK (ed) Bacteria in agrobiology: plant probiotics. Springer, Berlin, pp 287–293CrossRefGoogle Scholar
  158. Schulz-Bohm K, Martín-Sánchez L, Garbeva P (2017) Microbial volatiles: small molecules with an important role in intra-and inter-kingdom interactions. Front Microbiol 8:2484PubMedCrossRefGoogle Scholar
  159. Sellstedt A, Richau KH (2013) Aspects of nitrogen-fixing Actinobacteria, in particular free-living and symbiotic Frankia. FEMS Microbiol Lett 342(2):179–186PubMedCrossRefGoogle Scholar
  160. Shaharoona B, Naveed M, Arshad M, Zahir ZA (2008) Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl Microbiol Biotechnol 79(1):147–155PubMedCrossRefGoogle Scholar
  161. Shanmugaiah V, Nithya K, Harikrishnan H, Jayaprakashvel M, Balasubramanian N (2015) Biocontrol mechanisms of siderophores against bacterial plant pathogens. In: Sustainable approaches to controlling plant pathogenic bacteria. CRC Press, pp 182–205Google Scholar
  162. Shanware AS, Kalkar SA, Trivedi MM (2014) Potassium solublisers: occurrence, mechanism and their ole as competent biofertilizers. IJCMAS 3:622–629Google Scholar
  163. Sharma A, Johri B, Sharma A, Glick B (2003) Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol Biochem 35(7):887–894CrossRefGoogle Scholar
  164. Sharma M, Ghosh R, Telangre R, Rathore A, Saifulla M, Mahalinga DM, Saxena DR, Jain YK (2016) Environmental influences on pigeonpea-Fusarium udum interactions and stability of genotypes to Fusarium wilt. Front Plant Sci 7:253PubMedPubMedCentralGoogle Scholar
  165. Sheng X (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37(10):1918–1922CrossRefGoogle Scholar
  166. Shridhar BS (2012) Review: Nitrogen fixing microorganisms. Microbiol Res J Int 3(1):46–52Google Scholar
  167. Sickerman NS, Hu Y, Ribbe MW (2017) Nitrogenase assembly: strategies and procedures. Methods Enzymol 595:261–302PubMedCrossRefGoogle Scholar
  168. Singh DP, Singh HB, Prabha R (2016) Book review: Microbial inoculants in sustainable agricultural productivity (vol 2). Functional application. Front Microbiol 7:2105PubMedCentralPubMedGoogle Scholar
  169. Singh M, Kumar A, Singh R, Pandey KD (2017) Endophytic bacteria: a new source of bioactive compounds. 3 Biotech 7(5):315PubMedPubMedCentralCrossRefGoogle Scholar
  170. Smaling E, Roscoe R, Lesschen J, Bouwman A, Comunello E (2008) From forest to waste: assessment of the Brazilian soybean chain, using nitrogen as a marker. Agric Ecosyst Environ 128(3):185–197CrossRefGoogle Scholar
  171. Solaiman ZM, Anawar HM (2015) Rhizosphere microbes interactions in medicinal plants. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant-Growth-Promoting Rhizobacteria (PGPR) and medicinal plants. Soil biology, vol 42. Springer, Cham, pp 19–41CrossRefGoogle Scholar
  172. Solanki MK, Kumar S, Pandey AK, Srivastava S, Singh RK, Kashyap PL, Srivastava AK, Arora DK (2012) Diversity and antagonistic potential of Bacillus spp. associated to the rhizosphere of tomato for the management of Rhizoctonia solani. Biocontrol Sci Technol 22(2):203–217CrossRefGoogle Scholar
  173. Soltani AA, Khavazi K, Asadi-Rahmani H, Omidvari M, Dahaji PA, Mirhoseyni H (2010) Plant growth promoting characteristics in some Flavobacterium spp. isolated from soils of Iran. J Agric Sci 2(4):106Google Scholar
  174. Somasegaran P, Hoben HJ (2012) Handbook for rhizobia: methods in legume-Rhizobium technology. Springer Science & Business Media, New YorkGoogle Scholar
  175. Srinivasan R, Yandigeri MS, Kashyap S, Alagawadi AR (2012) Effect of salt on survival and P-solubilization potential of phosphate solubilizing microorganisms from salt affected soils. Saudi J Biol Sci 19(4):427–434PubMedPubMedCentralCrossRefGoogle Scholar
  176. Stephens J, Rask H (2000) Inoculant production and formulation. Field Crops Res 65(2–3):249–258CrossRefGoogle Scholar
  177. Sundara B, Natarajan V, Hari K (2002) Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Res 77(1):43–49CrossRefGoogle Scholar
  178. Suyal DC, Soni R, Sai S, Goel R (2016) Microbial inoculants as biofertilizer. In: Microbial inoculants in sustainable agricultural productivity, vol 1. Springer, pp 311–318Google Scholar
  179. Swain H, Abhijita S (2013) Nitrogen fixation and its improvement through genetic engineering. J Global Biosci 2:98–112Google Scholar
  180. Swain MR, Naskar SK, Ray RC (2007) Indole-3-acetic acid production and effect on sprouting of yam (Dioscorea rotundata L.) minisetts by Bacillus subtilis isolated from culturable cowdung microflora. Pol J Microbiol 56(2):103–110PubMedGoogle Scholar
  181. Szilagyi-Zecchin VJ, Mógor ÁF, Figueiredo GGO (2016) Strategies for characterization of agriculturally important bacteria. In: Singh D, Singh H, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, India, pp 1–3Google Scholar
  182. Tahir HAS, Gu Q, Wu H, Niu Y, Huo R, Gao X (2017) Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Sci Rep 7:40481PubMedPubMedCentralCrossRefGoogle Scholar
  183. Thakuria D, Talukdar N, Goswami C, Hazarika S, Boro R, Khan M (2004) Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Curr Sci 86(7):978–985Google Scholar
  184. Thamer S, Schädler M, Bonte D, Ballhorn DJ (2011) Dual benefit from a belowground symbiosis: nitrogen fixing rhizobia promote growth and defense against a specialist herbivore in a cyanogenic plant. Plant Soil 341(1–2):209–219CrossRefGoogle Scholar
  185. Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: a review. Biomed Res Int 2013:1–11CrossRefGoogle Scholar
  186. Transparency Market Research (2014) Biofertilizers (Nitrogen fixing, phosphate solubilizing and others) Market for seed treatment and soil treatment applications – Global industry analysis, size, share, growth, trends and forecast, 2013–2019. Transpareny Market Research, Albany, NYGoogle Scholar
  187. Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356PubMedPubMedCentralCrossRefGoogle Scholar
  188. Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability–a review. Molecules 21(5):573PubMedCentralCrossRefPubMedGoogle Scholar
  189. Verma A, Kukreja K, Pathak D, Suneja S, Narula N (2001) In vitro production of plant growth regulators (PGRs) by Azotobacter chroococcum. Indian J Microbiol 41(4):305–307Google Scholar
  190. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586CrossRefGoogle Scholar
  191. Villegas MDC, Rome S, Mauré L, Domergue O, Gardan L, Bailly X, Brunel B (2006) Nitrogen-fixing Sinorhizobia with Medicago laciniata constitute a novel biovar (bv. medicaginis) of S. meliloti. Syst Appl Microbiol 29(7):526–538CrossRefGoogle Scholar
  192. Wagner SC (2012) Biological nitrogen fixation. Nat Educ Knowl 3(10):15Google Scholar
  193. Wallace MB, Knausenberger WI (1997) Inorganic fertilizer use in Africa: environmental and economic dimensions. Environmental and Natural Resources Policy and Training (EPAT) Project Applied Research, Technical Assistance and Training Winrock International Environmental Alliance Arlington. Virginia, USA.
  194. Wang C-J, Yang W, Wang C, Gu C, Niu D-D et al (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS One 7(12):e52565PubMedPubMedCentralCrossRefGoogle Scholar
  195. Wang T, Liu M-Q, Li H-X (2014) Inoculation of phosphate-solubilizing bacteria Bacillus thuringiensis B1 increases available phosphorus and growth of peanut in acidic soil. Acta Agric Scand B 64(3):252–259Google Scholar
  196. Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52(1):487–511PubMedCrossRefGoogle Scholar
  197. Wu LJ, Wang HQ, Wang ET, Chen WX, Tian CF (2011) Genetic diversity of nodulating and non-nodulating rhizobia associated with wild soybean (Glycine soja Sieb. and Zucc.) in different ecoregions of China. FEMS Microbiol Ecol 76(3):439–450PubMedCrossRefGoogle Scholar
  198. Yanni YG, Rizk RY, El-Fattah FKA, Squartini A, Corich V, Giacomini A, De Bruijn F, Rademaker J, Maya-Flores J, Ostrom P (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Funct Plant Biol 28(9):845–870CrossRefGoogle Scholar
  199. Yasmin S, Hafeez FY, Mirza MS, Rasul M, Arshad HM, Zubair M, Iqbal M (2017) Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Front Microbiol 8:1895PubMedPubMedCentralCrossRefGoogle Scholar
  200. Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63(4):968–989PubMedPubMedCentralGoogle Scholar
  201. Zalewska M, Antkowiak M (2013) Gibberellic acid effect on growth and flowering of Ajania Pacifica/Nakai/Bremer et Humphries. J Hort Res 21(1):21–27Google Scholar
  202. Zehr JP, Kudela RM (2011) Nitrogen cycle of the open ocean: from genes to ecosystems. Ann Rev Mar Sci 3:197–225PubMedCrossRefGoogle Scholar
  203. Zhang F, Shen J, Zhang J, Zuo Y, Li L, Chen X (2010) Rhizosphere processes and management for improving nutrient use efficiency and crop productivity: implications for China. Adv Agron 107:1–32CrossRefGoogle Scholar
  204. Zhang Y, Yang Q, Ling J, Van Nostrand JD, Shi Z, Zhou J, Dong J (2017) Diversity and structure of diazotrophic communities in mangrove rhizosphere, revealed by high-throughput sequencing. Front Microbiol 8:2032PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rasheed A. Adeleke
    • 2
    • 3
    Email author
  • Adekunle R. Raimi
    • 1
    • 2
  • Ashira Roopnarain
    • 2
  • Sharon M. Mokubedi
    • 2
    • 3
  1. 1.Department of Environmental Science, College of Agriculture and Environmental ScienceUniversity of South AfricaPretoriaSouth Africa
  2. 2.Microbiology and Environmental Biotechnology Research GroupInstitute for Soil, Climate and Water-Agricultural Research CouncilPretoriaSouth Africa
  3. 3.Unit for Environmental Science and ManagementNorth-West UniversityPotchefstroomSouth Africa

Personalised recommendations