Perspectives on the Role of Arbuscular Mycorrhizal Fungi in the In Vivo Vegetative Plant Propagation

  • Ravichandran Koshila Ravi
  • Thangavelu Muthukumar
Part of the Soil Biology book series (SOILBIOL, volume 55)


Vegetative propagation is an important method for increasing the productivity of economically important agricultural and horticultural plants. Apart from the application of phytohormones, beneficial microorganisms such as arbuscular mycorrhizal (AM) fungi being natural biofertilizers are also widely used in the field of horticultural production systems. The mutualistic association between the AM fungi and plant are not only known for their efficient water and nutrient uptake, less vulnerability to pathogens, and ability to withstand or tolerate abiotic and biotic stresses but are also involved in the production of plant hormones and adventitious root formation in asexual propagation. The inoculation of AM fungi to the rooting substrate could result in similar responses on the cuttings to those obtained through the application of exogenous plant growth regulators. In addition, the combined use of AM fungi along with plant hormones leads to increased root initiation and development of plant parts. The early inoculation of AM fungi onto the rooting medium enhances the plant growth rate of vegetatively propagated plant species after forming a symbiotic relationship with the plant. Moreover, a series of sequential signaling events are known to occur between AM fungi and the host plant during the development of roots. The present chapter focuses on the role of AM fungi in various types of vegetative propagation including cutting, layering, and grafting, the interaction between the plant hormones, and the AM symbiosis. The mechanism involved in the production of plant hormones through AM fungi and thereby the physiological changes occurring in the plant metabolism during propagation is also discussed.


Cuttings Plant hormones Grafting Adventitious roots Mycorrhizal colonization 


  1. Adekola OF, Akpan IG, Musa AK (2012) Effect of varying concentration of auxins and stem length on growth and development of Jatropha curcas L. EJESM 5:314–323Google Scholar
  2. Aguín O, Mansilla JP, Vilariño A, Sainz MJ (2004) Effects of mycorrhizal inoculation on root morphology and nursery production of three Grapevine rootstocks. Am J Enol Vitic 55:109–111Google Scholar
  3. Almeida-Rodríguez AM, Gómes MP, Loubert-Hudon A, Joly S, Labrecque M (2015) Symbiotic association between Salix purpurea L. and Rhizophagus irregularis: modulation of plant responses under copper stress. Tree Physiol 36:407–420PubMedCrossRefPubMedCentralGoogle Scholar
  4. Asha Thomas, Rajeshkumar S (2014) Effect of arbuscular mycorrhizal fungus and plant growth promoting rhizomicroorganisms on productivity of Strobilanthes ciliatus Nees., an endemic to Western Ghats, South India. IJPSI 3:26–29Google Scholar
  5. Ávila Díaz-Granados RA, Orozco Silva OJ, Moreno GL, Magnitskiy S, Rodríguez A (2009) Influence of mycorrhizal fungi on the rooting of stem and stolon cuttings of the Colombian blueberry (Vaccinium meridionale Swartz). Int J Fruit Sci 9:372–384CrossRefGoogle Scholar
  6. Babaj I, Sallaku G, Balliu A (2014) The effects of endogenous mycorrhiza (Glomus spp.) on plant growth and yield of grafted cucumber (Cucumis sativum L.) under common commercial greenhouse conditions. Albanian J Agric Sci 13:24–28Google Scholar
  7. Back MM, Altmann T, Dutra de Souza PV (2016) Influence of arbuscular mycorrhizal fungi on the vegetative development of citrus rootstocks. Pesq Agropec Trop 46:407–412CrossRefGoogle Scholar
  8. Barea JM, Azcón-Aguilar C (1982) Production of plant growth-regulating substances by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Appl Environ Microbiol 43:810–813PubMedPubMedCentralGoogle Scholar
  9. Barman P, Swamy GSK, Patil BP, Patil CP, Thammaiah N (2006) Softwood grafting of seedless lime as influenced by arbuscular mycorrhizal fungi and different age of rootstocks. Karnataka J Agric Sci 20:691–693Google Scholar
  10. Barrows JB, Roncadori RW (1977) Endomycorrhizal synthesis by Gigaspora margarita in poinsettia. Mycologia 69:1173–1184CrossRefGoogle Scholar
  11. Belew D, Astatkie T, Mokashi MN, Getachew Y, Patil CP (2010) Effects of salinity and mycorrhizal inoculation (Glomus fasciculatum) on growth responses of grape Rootstocks (Vitis spp.). S Afr J Enol Vitic 31:82–87Google Scholar
  12. Berruti A, Lumini E, Balestrini R, Bianciotto V (2015) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1559PubMedPubMedCentralGoogle Scholar
  13. Berta G, Trotta A, Fusconi A, Hooker J, Munro M, Atkinson D, Giovannetti M, Morini S, Fortuna P, Tisserant B, Gianinazzi-Pearson V, Gianinazzi S (1994) Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera. Tree Physiol 15:281–293CrossRefGoogle Scholar
  14. Biermann B, Linderman RG (1983) Mycorrhizal roots, intraradical vesicles and extraradical vesicles as inoculum. New Phytol 95:97–105CrossRefGoogle Scholar
  15. Bisognin DA (2011) Breeding vegetatively propagated horticultural crops. Crop Breed Appl Biotechnol 11:35–43CrossRefGoogle Scholar
  16. Bolandnazar S, Moghbeli EM, Panahandeh J, Arzanlou M (2014) Biological control of Fusarium wilt in greenhouse tomato by mycorrhizal fungi and resistant rootstock. Acta Hortic 1041:127–132CrossRefGoogle Scholar
  17. Brundrett MC (1991) Mycorrhizas in natural ecosystems. Adv Ecol Res 21:171–313CrossRefGoogle Scholar
  18. Calvet C, Pera J, Estaun V, Camprub A (1989) Vesicular-arbuscular mycorrhizae of kiwifruit in an agricultural soil: inoculation of seedlings and hardwood cuttings with Glomus mosseae. Agronomie 9:181–185CrossRefGoogle Scholar
  19. Camprubi A, Estaun V, Nogales A, Pitet M, Calvet C (2008) Response of the grapevine rootstock Richter 110 to inoculation with native and selected arbuscular mycorrhizal fungi and growth performance in a replant vineyard. Mycorrhiza 18:211–216PubMedCrossRefGoogle Scholar
  20. Castillo P, Nico AI, Azcón-Aguilar C, Del Río Rincón C, Calvet C, Jiménez-Díaz RM (2006) Protection of olive planting stocks against parasitism of root-knot nematodes by arbuscular mycorrhizal fungi. Plant Pathol 55:705–713CrossRefGoogle Scholar
  21. Chulan HA, Martin K (1992) The vesicular-arbuscular (VA) mycorrhiza and its effects on growth of vegetatively propagated Theobroma cacao. Plant Soil 144:227–233CrossRefGoogle Scholar
  22. Conversa G, Bonasia A, Lazzizera C, Elia A (2015) Influence of biochar mycorrhizal inoculation, and fertilizer rate on growth and flowering of Pelargonium (Pelargonium zonale L.) plants. Front Plant Sci 6:429PubMedPubMedCentralGoogle Scholar
  23. Davies FT Jr, Davis TD, Kester DE (1994) Commercial importance of adventitious rooting to horticulture. In: Davis TD, Haissig BE (eds) Biology of adventitious root formation. Basic life sciences, vol 62. Springer, Boston, pp 53–59CrossRefGoogle Scholar
  24. Douds DD, Bécard G, Pfeffer PE, Doner LW (1995) Effect of vesicular–arbuscular mycorrhizal fungi on rooting of Sciadopitys verticillata Sieb & Zucc. cuttings. HortScience 30:133–134CrossRefGoogle Scholar
  25. Druege U, Zerche S, Kadner R (2004) Nitrogen and storage affected carbohydrate partitioning in high-light-adapted pelargonium cuttings in relation to survival and adventitious root formation under low light. Ann Bot 94:831–842PubMedPubMedCentralCrossRefGoogle Scholar
  26. Druege U, Xylaender M, Zerche S, von Alten H (2006) Rooting and vitality of poinsettia cuttings was increased by arbuscular mycorrhiza in the donor plants. Mycorrhiza 17:67–72PubMedCrossRefGoogle Scholar
  27. Du Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hort 196:3–14CrossRefGoogle Scholar
  28. Dubsky M, Sramek F, Vosatka M (2002) Inoculation of cyclamen (Cyclamen persicum) and poinsettia (Euphorbia pulcherrima) with arbuscular mycorrhizal fungi and Trichoderma harzianum. Rostl Vyroba 48:63–68Google Scholar
  29. Dugbley PW, Mansur I, Wasis B (2015) Susceptibility of vegetatively propagated Khaya anthotheca to arbuscular mycorrhizae fungi (AMF) soil inoculum infection. Sci Res 3:13–18CrossRefGoogle Scholar
  30. Earanna N, Mallikarjuniah RR, Bagyaraj DJ, Suresh CK (2001) Response of Coleus aromaticus to Glomus fasciculatum and other beneficial soil microflora. J Species Aromat Crops 10:141–143Google Scholar
  31. Edgerton MD (2009) Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol 149:7–13CrossRefGoogle Scholar
  32. Esch H, Hundeshagen B, Schneider-Poetsch HJ, Bothe H (1994) Demonstration of abscisic acid in spores andhyphae of the arbuscular-mycorrhizal fungus Glomus and in the N2-fixing cyanobacterium Anabaena variabilis. Plant Sci 99:9–16CrossRefGoogle Scholar
  33. Essahibi A, Benhiba L, Fouad MO, AitBabram M, Ghoulam C, Qaddoury A (2017) Improved rooting capacity and hardening efficiency of carob (Ceratonia siliqua L.) cuttings using arbuscular mycorrhizal fungi. Arch Biol Sci 69:291–298CrossRefGoogle Scholar
  34. Estaun V, Camprubi A, Calvet C (2003) Nursery and field response of Olive trees inoculated with two arbuscular mycorrhizal fungi, Glomus intraradices and Glomus mosseae. J Am Soc Hortic Sci 128:767–775CrossRefGoogle Scholar
  35. Ezekiel Amri (2015) Influence of arbuscular mycorrhizal fungi on rooting ability of Auxin treated stem cuttings of Dalbergia melanoxylon (Guill and Perr.). Res J Bot 10:88–97CrossRefGoogle Scholar
  36. Fatemeh B, Zaynab M (2014) Influence of mycorrhizal fungi and cutting type on rootings in Rosemarinus officinalis L. plants. Indian J Fundam Appl Life Sci 4:2921–2928Google Scholar
  37. Foo E, Heynen EMH, Reid JB (2015) Common and divergent shoot-root signalling in legume symbioses. New Phytol 210:643–656PubMedCrossRefPubMedCentralGoogle Scholar
  38. Forbes JC, Watson RD (1992) Plants in agriculture. Cambridge University Press, New YorkGoogle Scholar
  39. Gaion LA, Monteiro CC, Cruz FJR, Rossatto DR, LópezDíaz I, Carrera E, Lima JE, Peres LEP, Carvalho RF (2018) Constitutive gibberellin response in grafted tomato modulates root-to-shoot signaling under drought stress. J Plant Physiol 221:11–21PubMedCrossRefPubMedCentralGoogle Scholar
  40. Garcia-Garrido JM, Ocampo JA (2002) Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J Exp Bot 53:1377–1386PubMedCrossRefPubMedCentralGoogle Scholar
  41. García-Garrido JM, Lendzemo V, Castellanos-Morales V, Steinkellner S, Vierheilig H (2009) Strigolactones, signals for parasitic plants and arbuscular mycorrhizal fungi. Mycorrhiza 19:449–459PubMedCrossRefPubMedCentralGoogle Scholar
  42. Garmendia I, Mangas VJ (2012) Application of arbuscular mycorrhizal fungi on the production of cut flower roses under commercial-like conditions. Span J Agric Res 10:166–174CrossRefGoogle Scholar
  43. Gianinazzi-Pearson V (1996) Plant cell responses to arbuscular mycorrhizal fungi: getting to the roots of the symbiosis. Plant Cell 8:1871–1883PubMedPubMedCentralCrossRefGoogle Scholar
  44. Gianinazzi-pearson V, Gianinazzi S (1992) Influence of intergeneric grafts between host and non-host legumes on formation of vesicular arbuscular mycorrhizal. New Phytol 120:505–508CrossRefGoogle Scholar
  45. Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60:149–157PubMedCrossRefPubMedCentralGoogle Scholar
  46. Hartmann HT, Kester DE, Davies FT, Geneve RL (2002) Plant propagation principles and practices, 7th edn. Prentice Hall, New Jersey, pp 367–374Google Scholar
  47. Herrera-Medina MJ, Steinkellner S, Vierheilig H, Ocampo-Bote JA, Garcia-Garrido JM (2007) Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol 175:554–564PubMedCrossRefPubMedCentralGoogle Scholar
  48. Hirsch AM, Fang Y, Asad S, Kapulnik Y (1997) The role of phytohormones in plant-microbe symbiosis. Plant Soil 194:171–184CrossRefGoogle Scholar
  49. Hooker JE, Munro M, Atkinson D (1992) Vesicular-arbuscular mycorrhizal fungi induced alteration in poplar root system morphology. Plant Soil 145:207–214CrossRefGoogle Scholar
  50. Janos DP, Schroeder MS, Schaffer B, Crane JH (2001) Inoculation with arbuscular mycorrhizal fungi enhances growth of Litchi chinensis Sonn. trees after propagation by air-layering. Plant Soil 233:85–94CrossRefGoogle Scholar
  51. Kadam MA, Giriyappanavar BS, Lakshman HC (2011) Selection of efficient arbuscular mycorrhizal fungi (AMF) for inoculation of Pedilanthes tithymaloides (L.) Poir. plants raised through stem cutting. Nat Environ Pollut Technol 10:133–135Google Scholar
  52. Kaldorf M, Ludwig-Müller J (2000) AM fungi might affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis. Physiol Plant 109:58–67CrossRefGoogle Scholar
  53. Karagiannidis N, Thomidis T, Panou-Filotheou E, Karagiannidou C (2012) Response of three mint and two oregano species to Glomus etunicatum inoculation. AJSC 6:164–169Google Scholar
  54. Kevers C, Hausman JF, Faivre-Rampant O, Evers D, Gaspar T (1997) Hormonal control of adventitious rooting: progress and questions. J Appl Bot 71:71–79Google Scholar
  55. Khade SW, Rodrigues BF (2009) Applications of arbuscular mycorrhizal fungi in agrosystems. Trop Subtrop Agroecosyst 10:337–354Google Scholar
  56. Khalil HA (2013) Influence of vesicular-arbuscular mycorrhizal fungi (Glomus spp.) on the response of grapevines rootstocks to salt stress. Asian J Crop Sci 5:393CrossRefGoogle Scholar
  57. Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301CrossRefGoogle Scholar
  58. Kumar HSY, Swamy GSK, Kanamadi VC, Prasadkumar, Sowmaya BN (2008) Effect of organics and chemicals on germination, growth and graft-take in mango. Asian J Hort 3:336–339Google Scholar
  59. Kumar P, Lucini L, Rouphael Y, Cardarelli C, Kalunke RM, Colla G (2015) Insight into the role of grafting and arbuscular mycorrhiza on cadmium stress tolerance in tomato. Front Plant Sci 6:477PubMedPubMedCentralGoogle Scholar
  60. Lakshmipathy R, Sumana DA, Balakrishna AN, Bagyaraj DJ, Kumar DP (2004) Evaluation, grafting success and field establishment of cashew rootstock as influenced by VAM fungi. Indian J Exp Biol 42:1132–1135PubMedPubMedCentralGoogle Scholar
  61. Landgraf R, Schaarschmidt S, Hause B (2012) Repeated leaf wounding alters the colonization of Medicago truncatula roots by beneficial and pathogenic microorganisms. Plant Cell Environ 35:1344–1357PubMedCrossRefPubMedCentralGoogle Scholar
  62. Larose G, Chênevert R, Moutoglis P, Gagné S, Piché Y, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physiol 159:1329–1339CrossRefGoogle Scholar
  63. Leakey RRB, Newton AC, Dick JMP (1994) Capture of genetic variation by vegetative propagation: processes determining success. In: Leakey RRB, Newton AC (eds) Tropical trees: the potential for domestication and the rebuilding of genetic resources. HMSO, London, pp 72–83Google Scholar
  64. Lee JM (1994) Cultivation of grafted vegetables. I. Current status, grafting methods and benefits. Hortscience 29:235–239CrossRefGoogle Scholar
  65. Linderman RG, Call CA (1977) Enhanced rooting of woody plant cuttings by mycorrhizal fungi. J Am Soc Hortic Sci 102:629–632Google Scholar
  66. Liu A, Hamel C, Elmi A, Costa C, Ma B, Smith DL (2002) Concentrations of K, Ca and Mg in maize colonized by arbuscular mycorrhizal fungi under field conditions. Can J Soil Sci 82:271–278CrossRefGoogle Scholar
  67. Ludwig-Müller J, Schubert B, Pieper K (1995) Regulation of IBA synthetase by drought stress and abscisic acid. J Exp Bot 46:423–432CrossRefGoogle Scholar
  68. Ludwig-Müller J, Kaldorf M, Sutter EG, Epstein E (1997) Indole-3-butyric acid (IBA) is enhanced in young maize (Zea mays L.) roots colonized with the arbuscular mycorrhizal fungus Glomus intraradices. Plant Sci 125:153–162CrossRefGoogle Scholar
  69. Mala WJ, Kumari IS, Sumanasena HA, Nanayakkara CM (2010) Effective spore density of Glomus mosseae, arbuscular mycorrhiza (AM), for inoculation of rooted cuttings of Black Pepper (Piper nigrum Linn.). Trop Agric Res 21:189–197CrossRefGoogle Scholar
  70. Malik NSA, Nuñez A, McKeeve LC (2017) Mycorrhizal inoculation increases growth and induces changes in specific polyphenol levels in Olive saplings. J Agric Sci 9:2Google Scholar
  71. Martín-Rodríguez JA, León-Morcillo RJ, Vierheilig H, Ocampo-Bote JA, Ludwig-Müller J, García-Garrido JM (2011) Ethylene-dependent/ethylene-independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi. New Phytol 190:193–205PubMedCrossRefGoogle Scholar
  72. Mckey D, Elias M, Pujol B, Duputié A (2010) The evolutionary ecology of clonally propagated domesticated plants. New Phytol 186:318–332PubMedCrossRefGoogle Scholar
  73. Megersa HG (2017) Propagation methods of selected horticultural crops by specialized organs: review. J Hortic 4:198CrossRefGoogle Scholar
  74. Meixner C, Ludwig-Müller J, Miersch O, Gresshoff P, Staehelin C, Vierheilig H (2005) Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts 1007. Planta 222:709–715PubMedCrossRefPubMedCentralGoogle Scholar
  75. Micallef SA, Shiaris MP, Colon-Carmona A (2009) Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J Exp Bot 60:1729–1742PubMedPubMedCentralCrossRefGoogle Scholar
  76. Miceli A, Romano C, Moncada A, Piazza G, Torta L, D’Anna F, Vetrano F (2016) Yield and quality of mini-watermelon as affected by grafting and mycorrhizal inoculum. J Agric Sci Technol 18:505–516Google Scholar
  77. Mishra DS, Thapa KS, Nimbolkar PK, Tripathi A, Singh SK (2017) Efficacy of different rooting media and wrapping material on air-layers in Litchi (Litchi chinensis Sonn.) cv. ‘Rose Scented’. IJCS 5:2004–2009Google Scholar
  78. Mora-Romero GA, Cervantes-Gámez RG, Galindo-Flores H, González-Ortíz MA, Félix-Gastélum R, Maldonado-Mendoza IE, Salinas Pérez R, León-Félix J, Martínez-Valenzuela MC, López-Meyer M (2015) Mycorrhiza-induced protection against pathogens is both genotype-specific and graft-transmissible. Symbiosis 66:55–64CrossRefGoogle Scholar
  79. Nadeem SM, Ahmadb M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448PubMedCrossRefPubMedCentralGoogle Scholar
  80. Neeraja Gandhi K, Patil CP, Swamy GSK, Duragannavar MP, Patil PB (2010) The effect of AM fungi and bioformulations on softwood grafting in Jamun (Syzygium cuminii Skeels). Mycorrhiza News 22:6–11Google Scholar
  81. Nelson SD (1987) Rooting and subsequent growth of woody ornamental softwood cuttings treated with endomycorrhizal inoculum. J Am Soc Hortic Sci 112:263–266Google Scholar
  82. Oztekin GB, Tuzela Y, Tuzel IH (2013) Does mycorrhiza improve salinity tolerance in grafted plants? Sci Hort 149:55–60CrossRefGoogle Scholar
  83. Păcurar DI, Perrone I, Bellini C (2014) Auxin is a central player in the hormone cross-talk that control adventitious rooting. Physiol Plant 151:83–96PubMedCrossRefGoogle Scholar
  84. Pina P, Errea P (2005) A review of new advances in mechanism of graft compatibility-incompatibility. Sci Hort 106:1–I1CrossRefGoogle Scholar
  85. Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200CrossRefGoogle Scholar
  86. Porras Piedra A, Soriano Martín ML, Porras Soriano A, Fernández Izquierdo G (2005) Influence of arbuscular mycorrhizas on the growth rate of mist-propagated olive plantlets. Span J Agric Res 3:98–105CrossRefGoogle Scholar
  87. Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcon-Aguilar C (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534PubMedCrossRefGoogle Scholar
  88. Preece JE (2003) A century of progress with vegetative propagation. Hortscience 38:1015–1025CrossRefGoogle Scholar
  89. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53PubMedCrossRefGoogle Scholar
  90. Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M et al (2015) Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci Hort 196:91–108CrossRefGoogle Scholar
  91. Roussel H, van Tuinen D, Franken P, Gianinazii S, Gianinazzi-Pearson V (2001) Signaling between arbuscular mycorrhizal fungi and plants: identification of a gene expressed during early interactions by differential RNA display analysis. Plant Soil 232:13–19CrossRefGoogle Scholar
  92. Sánchez-Blanco MJ, Ferrández T, Morales MA, Morte A, Alarcón JJ (2004) Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions. J Plant Physiol 161:675–682PubMedCrossRefGoogle Scholar
  93. Sangwan NS, Farooqi AHA, Shabih F, Sangwan RS (2001) Regulation of essential oil production in plants. Plant Growth Regul 34:3–21CrossRefGoogle Scholar
  94. Sbrana C, Giovannetti M, Vitagliano C (1994) The effect of mycorrhizal infection on survival and growth renewal of micro propagated fruit rootstocks. Mycorrhiza 5:153–156CrossRefGoogle Scholar
  95. Scagel CF (2001) Cultivar specific effects of mycorrhizal fungi on the rooting of miniature rose cuttings. J Environ Hortic 19:15–20Google Scholar
  96. Scagel CF (2004a) Changes in cutting composition during early stages of adventitious rooting of miniature Rose altered by inoculation with arbuscular mycorrhizal fungi. J Am Soc Hortic Sci 129:623–634Google Scholar
  97. Scagel CF (2004b) Enhanced rooting of Kinnikinnick cuttings using mycorrhizal fungi in rooting substrate. HortTechnology 14:355–363CrossRefGoogle Scholar
  98. Scagel CF, Reddy K, Armstrong JM (2003) Mycorrhizal fungi in rooting substrate influences the quantity and quality of roots on stem cuttings of Hick’s yew. HortTechnology 13:62–66CrossRefGoogle Scholar
  99. Schreiner RP (2003) Mycorrhizal colonization of grapevine rootstocks under field conditions. Am J Enol Vitic 54:143–149Google Scholar
  100. Sharma SD, Kumar P, Raj H, Bhardwaj SK (2009) Isolation of arbuscular mycorrhizal fungi and Azotobacter chroococcum from local litchi orchards and evaluation of their activity in the air-layers system. Sci Hort 123:117–123CrossRefGoogle Scholar
  101. Shu B, Liu L, Jue D, Wang Y, Wei Y, Shi S (2017) Effects of avocado (Persea americana Mill.) scion on arbuscular mycorrhizal and root hair development in rootstock. Arch Agron Soil Sci 63:1951–1962CrossRefGoogle Scholar
  102. Sidhoum W, Fortas Z (2013) Effect of arbuscular mycorrhizal fungi on growth of semi-woody olive cuttings of the variety “Sigoise” in Algeria. Am J Res Commun 1:244–257Google Scholar
  103. Silveira SV, Lorscheiter R, Barros IBI, Schwarz SF, Souza PVD (2006) Mentha piperita as a multiplying of arbuscular mycorrhizal fungi. Rev Bras Pl Med 8:91–97Google Scholar
  104. Singh S (2002) Role of mycorrhiza in plants raised from cuttings or as micropropagated plants, Part II: fruit trees; Part III: ornamentals and other plants. Mycorrhiza News 14:1–9Google Scholar
  105. Siqueira JO, Saggin-Junior OJ, Flores-Aylas WW, Guimarães PTG (1998) Arbuscular mycorrhizal inoculation and superphosphate application influence plant development and yield of coffee in Brazil. Mycorrhiza 7:293–300CrossRefGoogle Scholar
  106. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, LondonGoogle Scholar
  107. Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  108. Sohn BK, Kim KY, Chung SJ, Kim WS, Park SM, Kan JK, Rim YS, Cho JS, Kim TH, Lee JH (2003) Effect of the different timing of AMF inoculation on plant growth and flower quality of chrysanthemum. Sci Hort 98:173–183CrossRefGoogle Scholar
  109. Sonah H, Deshmukh RK, Singh VP, Gupta DK, Singh NK, Sharma TR (2011) Genomic resources in horticultural crops: status, utility and challenges. Biotechnol Adv 29:199–209PubMedCrossRefPubMedCentralGoogle Scholar
  110. Song F, Pan ZY, Bai FX, An JY, Liu JH, Guo WW, Bisseling T, Deng XX, Xiao SY (2015) The scion/rootstock genotypes and habitats affect arbuscular mycorrhizal fungal community in citrus. Front Microbiol 6:1372PubMedPubMedCentralGoogle Scholar
  111. Steffens B, Rasmussen A (2016) The physiology of adventitious roots. Plant Physiol 170:603–617PubMedCrossRefPubMedCentralGoogle Scholar
  112. Tamasloukht MB, Séjalon-Delmas N, Kluever A, Jauneau A, Roux C, Bécard G, Franken P (2003) Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea. Plant Physiol 131:1468–1478PubMedPubMedCentralCrossRefGoogle Scholar
  113. Tejavathi DH, Antha P, Murthy SM, Nijagunaiah R (2011) Effect of AM fungal association with normal and micropropagated plants of Andrographis paniculata Nees on biomass, primary and secondary metabolites. Int Res J Plant Sci 2:338–348Google Scholar
  114. Thanuja TV, Ramakrishna VH, Sreenivasa MN (2002) Induction of rooting and root growth in black pepper cuttings (Piper nigrum L.) with the inoculation of arbuscular mycorrhizae. Sci Hort 92:339–346CrossRefGoogle Scholar
  115. Verkade SD, Hamilton DF (1987) Effect of endomycorrhizal inoculum on root initiation and development of Viburnum dentatum L. cuttings. J Environ Hort 5:80–81Google Scholar
  116. Washa W, Nyomora A, Lyaruu H (2012) Improving propagation success of D. melanoxylon (African blackwood) in tanzania (ii): rooting ability of stem and root cuttings of Dalbergia melanoxylon (African Blackwood) in response to rooting media sterilization in Tanzania. Tanz J Sci 38:43–53Google Scholar
  117. Williams A, Ridgway HJ, David AN (2013) Different arbuscular mycorrhizae and competition with an exotic grass affect the growth of Podocarpus cunninghamii Colenso cuttings. New Forests 44:183–195CrossRefGoogle Scholar
  118. Wimalarathne HGMC, Sangakkara UR, Sumanasena HA (2014) Effect of arbuscular mycorrhizal fungi (AMF) on shoot and root development of black pepper (Piper nigrum Linn.) rooted cuttings. Int Invent J Agric Soil Sci 2:105–111Google Scholar
  119. Yadav K, Aggarwal A, Singh N (2013) Arbuscular mycorrhizal fungi (AMF) induced acclimatization, growth enhancement and colchicine content of micropropagated Gloriosa superba L. plantlets. Ind Crop Prod 45:88–93CrossRefGoogle Scholar
  120. Yang Y, Song Y, Scheller HV, Ghosh A, Ban Y, Chen H, Tang M (2015) Community structure of arbuscular mycorrhizal fungi associated with Robinia pseudoacacia in uncontaminated and heavy metal contaminated soils. Soil Biol Biochem 86:146–158CrossRefGoogle Scholar
  121. Yetisir H, Sari N (2003) Effect of different rootstock on plant growth, yield and quality of watermelon. Aust J Exp Agric 43:1269–1274CrossRefGoogle Scholar
  122. Zai X, Qin P, Wan S, Zhao F, Wang G, Yan D, Zhou J (2007) Effects of arbuscular mycorrhizal fungi on the rooting and growth of beach plum (Prunus maritima) cuttings. J Hortic Sci Biotechnol 82:863–866CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ravichandran Koshila Ravi
    • 1
  • Thangavelu Muthukumar
    • 1
  1. 1.Root and Soil Biology Laboratory, Department of BotanyBharathiar UniversityCoimbatoreIndia

Personalised recommendations