Advertisement

Improving Clinical Trial Design in Gastrointestinal Oncology

  • Ajlan Atasoy
  • Murielle Mauer
Chapter

Abstract

There is a great need to better design clinical trials that could improve patient outcomes and expedite drug development timelines. An understanding of general principles of classical clinical trial design and a consideration of innovative approaches and the concept of precision medicine carry great significance in that regard. It is important to keep in mind both the advantages and the pitfalls of different approaches, to maintain scientific rigor, and to always put patients first while improving how we conduct clinical trials.

Keywords

Clinical trial Gastrointestinal cancer Trial design Innovative designs 

References

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.CrossRefGoogle Scholar
  2. 2.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.CrossRefGoogle Scholar
  3. 3.
    Sargent D, Sobrero A, Grothey A, O’Connell MJ, Buyse M, Andre T, et al. Evidence for cure by adjuvant therapy in colon cancer: observations based on individual patient data from 20,898 patients on 18 randomized trials. J Clin Oncol. 2009;27(6):872–7.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cunningham D, Allum WH, Stenning SP, Thompson JN, Van de Velde CJ, Nicolson M, et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med. 2006;355(1):11–20.CrossRefGoogle Scholar
  5. 5.
    Group G, Paoletti X, Oba K, Burzykowski T, Michiels S, Ohashi Y, et al. Benefit of adjuvant chemotherapy for resectable gastric cancer: a meta-analysis. JAMA. 2010;303(17):1729–37.CrossRefGoogle Scholar
  6. 6.
    Shapiro J, van Lanschot JJ, Hulshof MC, van Hagen P, van Berge Henegouwen MI, Wijnhoven BP, et al. Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): long-term results of a randomised controlled trial. Lancet Oncol. 2015;16(9):1090–8.CrossRefGoogle Scholar
  7. 7.
    Andre T, Boni C, Navarro M, Tabernero J, Hickish T, Topham C, et al. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J Clin Oncol. 2009;27(19):3109–16.CrossRefPubMedGoogle Scholar
  8. 8.
    DeVita VT, Lawrence TS, Rosenberg S. DeVita, Hellman, and Rosenberg’s cancer: principles and practice of oncology. 10th ed. Philadelphia: Wolters Kluwer; 2014.Google Scholar
  9. 9.
    F.D.A. US. Clinical trials and human subject protection. [November 1, 2015]; Available from: http://www.fda.gov/ScienceResearch/SpecialTopics/RunningClinicalTrials/default.htm.
  10. 10.
    ICH. Good clinical practice (GCP). International Council for Harmonization; 1996 [cited 2015 November 1, 2015]; Available from: http://www.ich.org/products/guidelines/efficacy/efficacy-single/article/good-clinical-practice.html.
  11. 11.
    Arrowsmith J. Trial watch: phase II failures: 2008–2010. Nat Rev Drug Discov. 2011;10(5):328–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Arrowsmith J. Trial watch: phase III and submission failures: 2007–2010. Nat Rev Drug Discov. 2011;10(2):87.CrossRefPubMedGoogle Scholar
  13. 13.
    Eichler HG, Oye K, Baird LG, Abadie E, Brown J, Drum CL, et al. Adaptive licensing: taking the next step in the evolution of drug approval. Clin Pharmacol Ther. 2012;91(3):426–37.CrossRefPubMedGoogle Scholar
  14. 14.
    Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32(1):40–51.CrossRefPubMedGoogle Scholar
  15. 15.
    Kaitin KI, DiMasi JA. Pharmaceutical innovation in the 21st century: new drug approvals in the first decade, 2000–2009. Clin Pharmacol Ther. 2011;89(2):183–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov. 2010;9(3):203–14.CrossRefPubMedGoogle Scholar
  17. 17.
    Peck RW. Driving earlier clinical attrition: if you want to find the needle, burn down the haystack. Considerations for biomarker development. Drug Discov Today. 2007;12(7–8):289–94.CrossRefPubMedGoogle Scholar
  18. 18.
    Orloff J, Douglas F, Pinheiro J, Levinson S, Branson M, Chaturvedi P, et al. The future of drug development: advancing clinical trial design. Nat Rev Drug Discov. 2009;8(12):949–57.CrossRefPubMedGoogle Scholar
  19. 19.
    Lacombe D, Burock S, Meunier F. Academia-industry partnerships: are we ready for new models of partnership?: the point of view of the EORTC, an academic clinical cancer research organisation. Eur J Cancer. 2013;49(1):1–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Lacombe D, Tejpar S, Salgado R, Cardoso F, Golfinopoulos V, Aust D, et al. European perspective for effective cancer drug development. Nat Rev Clin Oncol. 2014;11(8):492–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Ellis LM, Bernstein DS, Voest EE, Berlin JD, Sargent D, Cortazar P, et al. American Society of Clinical Oncology perspective: raising the bar for clinical trials by defining clinically meaningful outcomes. J Clin Oncol. 2014;32(12):1277–80.CrossRefPubMedGoogle Scholar
  22. 22.
    Schnipper LE, Davidson NE, Wollins DS, Tyne C, Blayney DW, Blum D, et al. American Society of Clinical Oncology statement: a conceptual framework to assess the value of cancer treatment options. J Clin Oncol. 2015;33(23):2563–77.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cherny NI, Sullivan R, Dafni U, Kerst JM, Sobrero A, Zielinski C, et al. A standardised, generic, validated approach to stratify the magnitude of clinical benefit that can be anticipated from anti-cancer therapies: the European Society for Medical Oncology Magnitude of Clinical Benefit Scale (ESMO-MCBS). Ann Oncol. 2015;26(8):1547–73.CrossRefPubMedGoogle Scholar
  24. 24.
    Cherny NI, Dafni U, Bogaerts J, Latino NJ, Pentheroudakis G, Douillard JY, et al. ESMO-Magnitude of Clinical Benefit Scale version 1.1. Ann Oncol. 2017;28(10):2340–66.CrossRefPubMedGoogle Scholar
  25. 25.
    Cheng S, McDonald EJ, Cheung MC, Arciero VS, Qureshi M, Jiang D, et al. Do the American Society of Clinical Oncology value framework and the European Society of Medical Oncology magnitude of clinical benefit scale measure the same construct of clinical benefit? J Clin Oncol. 2017;35(24):2764–71.CrossRefPubMedGoogle Scholar
  26. 26.
    Wildiers H, Mauer M, Pallis A, Hurria A, Mohile SG, Luciani A, et al. End points and trial design in geriatric oncology research: a joint European organisation for research and treatment of cancer–Alliance for Clinical Trials in Oncology–International Society of Geriatric Oncology position article. J Clin Oncol. 2013;31(29):3711–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Pallis AG, Ring A, Fortpied C, Penninckx B, Van Nes MC, Wedding U, et al. EORTC workshop on clinical trial methodology in older individuals with a diagnosis of solid tumors. Ann Oncol. 2011;22(8):1922–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Hurria A, Cirrincione CT, Muss HB, Kornblith AB, Barry W, Artz AS, et al. Implementing a geriatric assessment in cooperative group clinical cancer trials: CALGB 360401. J Clin Oncol. 2011;29(10):1290–6.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Tucci A, Ferrari S, Bottelli C, Borlenghi E, Drera M, Rossi G. A comprehensive geriatric assessment is more effective than clinical judgment to identify elderly diffuse large cell lymphoma patients who benefit from aggressive therapy. Cancer. 2009;115(19):4547–53.CrossRefPubMedGoogle Scholar
  30. 30.
    Soubeyran P, Khaled H, MacKenzie M, Debois M, Fortpied C, Bock R, et al. Diffuse large B-cell and peripheral T-cell non-Hodgkin’s lymphoma in the frail elderly: a phase II EORTC trial with a progressive and cautious treatment emphasizing geriatric assessment. J Geriatr Oncol 2011. 2011;2:36–44.CrossRefGoogle Scholar
  31. 31.
    de Gramont A, Haller DG, Sargent DJ, Tabernero J, Matheson A, Schilsky RL. Toward efficient trials in colorectal cancer: the ARCAD Clinical Trials Program. J Clin Oncol. 2010;28(4):527–30.CrossRefPubMedGoogle Scholar
  32. 32.
    Schilsky RL. End points in cancer clinical trials and the drug approval process. Clin Cancer Res. 2002;8(4):935–8.PubMedGoogle Scholar
  33. 33.
    Gill S, Sargent D. End points for adjuvant therapy trials: has the time come to accept disease-free survival as a surrogate end point for overall survival? Oncologist. 2006;11(6):624–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Buyse M, Molenberghs G, Paoletti X, Oba K, Alonso A, Van der Elst W, et al. Statistical evaluation of surrogate endpoints with examples from cancer clinical trials. Biom J. 2016;58(1):104–32.CrossRefPubMedGoogle Scholar
  35. 35.
    Andre T, Boni C, Mounedji-Boudiaf L, Navarro M, Tabernero J, Hickish T, et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med. 2004;350(23):2343–51.CrossRefPubMedGoogle Scholar
  36. 36.
    Andre T, de Gramont A, Vernerey D, Chibaudel B, Bonnetain F, Tijeras-Raballand A, et al. Adjuvant fluorouracil, leucovorin, and oxaliplatin in stage II to III colon cancer: updated 10-year survival and outcomes according to BRAF mutation and mismatch repair status of the MOSAIC study. J Clin Oncol. 2015;33:4176–87.CrossRefPubMedGoogle Scholar
  37. 37.
    Wolmark N, Wieand HS, Kuebler JP, Colangelo L, Smith RE, editors. A phase III trial comparing FULV to FULV + oxaliplatin in stage II or III carcinoma of the colon: results of NSABP Protocol C-07. In: ASCO annual meeting; 2005.Google Scholar
  38. 38.
    Kuebler JP, Wieand HS, O’Connell MJ, Smith RE, Colangelo LH, Yothers G, et al. Oxaliplatin combined with weekly bolus fluorouracil and leucovorin as surgical adjuvant chemotherapy for stage II and III colon cancer: results from NSABP C-07. J Clin Oncol. 2007;25(16):2198–204.CrossRefPubMedGoogle Scholar
  39. 39.
    Wolmark N, Wieand S, Kuebler PJ, Colangelo L, O’Connell MJ, Yothers G, editors. A phase III trial comparing FULV to FULV + oxaliplatin in stage II or III carcinoma of the colon: survival results of NSABP Protocol C-07. In: ASCO annual meeting; 2008.Google Scholar
  40. 40.
    Kemp R, Prasad V. Surrogate endpoints in oncology: when are they acceptable for regulatory and clinical decisions, and are they currently overused? BMC Med. 2017;15(1):134.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Sargent DJ, Wieand HS, Haller DG, Gray R, Benedetti JK, Buyse M, et al. Disease-free survival versus overall survival as a primary end point for adjuvant colon cancer studies: individual patient data from 20,898 patients on 18 randomized trials. J Clin Oncol. 2005;23(34):8664–70.CrossRefPubMedGoogle Scholar
  42. 42.
    Tang PA, Bentzen SM, Chen EX, Siu LL. Surrogate end points for median overall survival in metastatic colorectal cancer: literature-based analysis from 39 randomized controlled trials of first-line chemotherapy. J Clin Oncol. 2007;25(29):4562–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Buyse M, Burzykowski T, Carroll K, Michiels S, Sargent DJ, Miller LL, et al. Progression-free survival is a surrogate for survival in advanced colorectal cancer. J Clin Oncol. 2007;25(33):5218–24.CrossRefPubMedGoogle Scholar
  44. 44.
    Venook AP, Tabernero J. Progression-free survival: helpful biomarker or clinically meaningless end point? J Clin Oncol. 2015;33(1):4–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Broglio KR, Berry DA. Detecting an overall survival benefit that is derived from progression-free survival. J Natl Cancer Inst. 2009;101(23):1642–9.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Heinemann V, Stintzing S, Modest DP, Giessen-Jung C, Michl M, Mansmann UR. Early tumour shrinkage (ETS) and depth of response (DpR) in the treatment of patients with metastatic colorectal cancer (mCRC). Eur J Cancer. 2015;51(14):1927–36.CrossRefPubMedGoogle Scholar
  47. 47.
    Piessevaux H, Buyse M, De Roock W, Prenen H, Schlichting M, Van Cutsem E, et al. Radiological tumor size decrease at week 6 is a potent predictor of outcome in chemorefractory metastatic colorectal cancer treated with cetuximab (BOND trial). Ann Oncol. 2009;20(8):1375–82.CrossRefPubMedGoogle Scholar
  48. 48.
    Modest DP, Laubender RP, Stintzing S, Giessen C, Schulz C, Haas M, et al. Early tumor shrinkage in patients with metastatic colorectal cancer receiving first-line treatment with cetuximab combined with either CAPIRI or CAPOX: an analysis of the German AIO KRK 0104 trial. Acta Oncol. 2013;52(5):956–62.CrossRefPubMedGoogle Scholar
  49. 49.
    Giessen C, Laubender RP, Fischer von Weikersthal L, Schalhorn A, Modest DP, Stintzing S, et al. Early tumor shrinkage in metastatic colorectal cancer: retrospective analysis from an irinotecan-based randomized first-line trial. Cancer Sci. 2013;104(6):718–24.CrossRefPubMedGoogle Scholar
  50. 50.
    Suzuki C, Blomqvist L, Sundin A, Jacobsson H, Bystrom P, Berglund A, et al. The initial change in tumor size predicts response and survival in patients with metastatic colorectal cancer treated with combination chemotherapy. Ann Oncol. 2012;23(4):948–54.CrossRefPubMedGoogle Scholar
  51. 51.
    Liu Y, Litiere S, de Vries EG, Sargent D, Shankar L, Bogaerts J, et al. The role of response evaluation criteria in solid tumour in anticancer treatment evaluation: results of a survey in the oncology community. Eur J Cancer. 2014;50(2):260–6.CrossRefPubMedGoogle Scholar
  52. 52.
    Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–50S.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Tazdait M, Mezquita L, Lahmar J, Ferrara R, Bidault F, Ammari S, et al. Patterns of responses in metastatic NSCLC during PD-1 or PDL-1 inhibitor therapy: comparison of RECIST 1.1, irRECIST and iRECIST criteria. Eur J Cancer. 2018;88:38–47.CrossRefPubMedGoogle Scholar
  54. 54.
    Nishino M, Giobbie-Hurder A, Gargano M, Suda M, Ramaiya NH, Hodi FS. Developing a common language for tumor response to immunotherapy: immune-related response criteria using unidimensional measurements. Clin Cancer Res. 2013;19(14):3936–43.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar S, et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017;18(3):e143–e52.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Becker K, Langer R, Reim D, Novotny A, Meyer zum Buschenfelde C, Engel J, et al. Significance of histopathological tumor regression after neoadjuvant chemotherapy in gastric adenocarcinomas: a summary of 480 cases. Ann Surg. 2011;253(5):934–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Lorenzen S, Thuss-Patience P, Al-Batran SE, Lordick F, Haller B, Schuster T, et al. Impact of pathologic complete response on disease-free survival in patients with esophagogastric adenocarcinoma receiving preoperative docetaxel-based chemotherapy. Ann Oncol. 2013;24(8):2068–73.CrossRefPubMedGoogle Scholar
  58. 58.
    Koh YW, Park YS, Ryu MH, Ryoo BY, Park HJ, Yook JH, et al. Postoperative nodal status and diffuse-type histology are independent prognostic factors in resectable advanced gastric carcinomas after preoperative chemotherapy. Am J Surg Pathol. 2013;37(7):1022–9.CrossRefPubMedGoogle Scholar
  59. 59.
    McShane LM, Cavenagh MM, Lively TG, Eberhard DA, Bigbee WL, Williams PM, et al. Criteria for the use of omics-based predictors in clinical trials. Nature. 2013;502(7471):317–20.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Peppercorn J, Shapira I, Collyar D, Deshields T, Lin N, Krop I, et al. Ethics of mandatory research biopsy for correlative end points within clinical trials in oncology. J Clin Oncol. 2010;28(15):2635–40.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Overman MJ, Modak J, Kopetz S, Murthy R, Yao JC, Hicks ME, et al. Use of research biopsies in clinical trials: are risks and benefits adequately discussed? J Clin Oncol. 2013;31(1):17–22.CrossRefPubMedGoogle Scholar
  62. 62.
    Paoletti X, Ezzalfani M, Le Tourneau C. Statistical controversies in clinical research: requiem for the 3 + 3 design for phase I trials. Ann Oncol. 2015;26(9):1808–12.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Braun TM. The current design of oncology phase I clinical trials: progressing from algorithms to statistical models. Chin Clin Oncol. 2014;3(1):2.PubMedGoogle Scholar
  64. 64.
    Le Tourneau C, Lee JJ, Siu LL. Dose escalation methods in phase I cancer clinical trials. J Natl Cancer Inst. 2009;101(10):708–20.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Hansen AR, Graham DM, Pond GR, Siu LL. Phase 1 trial design: is 3 + 3 the best? Cancer Control. 2014;21(3):200–8.CrossRefPubMedGoogle Scholar
  66. 66.
    Simon R, Freidlin B, Rubinstein L, Arbuck SG, Collins J, Christian MC. Accelerated titration designs for phase I clinical trials in oncology. J Natl Cancer Inst. 1997;89(15):1138–47.CrossRefPubMedGoogle Scholar
  67. 67.
    O’Quigley J, Pepe M, Fisher L. Continual reassessment method: a practical design for phase 1 clinical trials in cancer. Biometrics. 1990;46(1):33–48.CrossRefPubMedGoogle Scholar
  68. 68.
    Babb J, Rogatko A, Zacks S. Cancer phase I clinical trials: efficient dose escalation with overdose control. Stat Med. 1998;17(10):1103–20.CrossRefPubMedGoogle Scholar
  69. 69.
    Rogatko A, Babb JS, Tighiouart M, Khuri FR, Hudes G. New paradigm in dose-finding trials: patient-specific dosing and beyond phase I. Clin Cancer Res. 2005;11(15):5342–6.CrossRefPubMedGoogle Scholar
  70. 70.
    Eisenhauer EA, O’Dwyer PJ, Christian M, Humphrey JS. Phase I clinical trial design in cancer drug development. J Clin Oncol. 2000;18(3):684–92.CrossRefPubMedGoogle Scholar
  71. 71.
    Rahma OE, Gammoh E, Simon RM, Khleif SN. Is the “3+3” dose-escalation phase I clinical trial design suitable for therapeutic cancer vaccine development? A recommendation for alternative design. Clin Cancer Res. 2014;20(18):4758–67.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Paoletti X, Postel-Vinay S. Phase I-II trial designs: how early should efficacy guide the dose recommendation process? Ann Oncol. 2018;29(3):540–1.CrossRefPubMedGoogle Scholar
  73. 73.
    Critical role of phase I clinical trials in cancer treatment. American Society of Clinical Oncology. J Clin Oncol. 1997;15(2):853–9.Google Scholar
  74. 74.
    Weber JS, Levit LA, Adamson PC, Bruinooge S, Burris HA, Carducci MA, et al. American Society of Clinical Oncology policy statement update: the critical role of phase I trials in cancer research and treatment. J Clin Oncol. 2015;33(3):278–84.CrossRefPubMedGoogle Scholar
  75. 75.
    Kairalla JA, Coffey CS, Thomann MA, Muller KE. Adaptive trial designs: a review of barriers and opportunities. Trials. 2012;13:145.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Dragalin V, Bornkamp B, Bretz F, Miller F, Padmanabhan SK, Patel N. A simulation study to compare new adaptive dose–ranging designs. Stat Biopharm Res. 2010;2(4):487–512.CrossRefGoogle Scholar
  77. 77.
    Liu S, Lee JJ. An overview of the design and conduct of the BATTLE trials. Chin Clin Oncol. 2015;4(3):33.PubMedGoogle Scholar
  78. 78.
    Wathen JK, Thall PF. A simulation study of outcome adaptive randomization in multi-arm clinical trials. Clin Trials. 2017;14(5):432–40.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Bowden J, Trippa L. Unbiased estimation for response adaptive clinical trials. Stat Methods Med Res. 2017;26(5):2376–88. Epub 2015 Aug 11.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    West HJ. Novel precision medicine trial designs: umbrellas and baskets. JAMA Oncol. 2017;3(3):423.CrossRefPubMedGoogle Scholar
  81. 81.
    Redig AJ, Janne PA. Basket trials and the evolution of clinical trial design in an era of genomic medicine. J Clin Oncol. 2015;33(9):975–7.CrossRefPubMedGoogle Scholar
  82. 82.
    Hyman DM, Puzanov I, Subbiah V, Faris JE, Chau I, Blay JY, et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med. 2015;373(8):726–36.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Lopez-Chavez A, Thomas A, Rajan A, Raffeld M, Morrow B, Kelly R, et al. Molecular profiling and targeted therapy for advanced thoracic malignancies: a biomarker-derived, multiarm, multihistology phase II basket trial. J Clin Oncol. 2015;33(9):1000–7.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Kaplan R. The FOCUS4 design for biomarker stratified trials. Chin Clin Oncol. 2015;4(3):35.PubMedGoogle Scholar
  85. 85.
    Renfro LA, Sargent DJ. Statistical controversies in clinical research: basket trials, umbrella trials, and other master protocols: a review and examples. Ann Oncol. 2017;28(1):34–43.PubMedGoogle Scholar
  86. 86.
    Cunanan KM, Iasonos A, Shen R, Begg CB, Gonen M. An efficient basket trial design. Stat Med. 2017;36(10):1568–79.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Machin D, Campbell MJ, Fayers PM, Pinol A. Sample size tables for clinical studies. Oxford: Blackwell; 1997.Google Scholar
  88. 88.
    Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376(9742):687–97.CrossRefGoogle Scholar
  89. 89.
    Sheng WQ, Huang D, Ying JM, Lu N, Wu HM, Liu YH, et al. HER2 status in gastric cancers: a retrospective analysis from four Chinese representative clinical centers and assessment of its prognostic significance. Ann Oncol. 2013;24(9):2360–4.CrossRefPubMedGoogle Scholar
  90. 90.
    Gordon MA, Gundacker HM, Benedetti J, Macdonald JS, Baranda JC, Levin WJ, et al. Assessment of HER2 gene amplification in adenocarcinomas of the stomach or gastroesophageal junction in the INT-0116/SWOG9008 clinical trial. Ann Oncol. 2013;24(7):1754–61.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Royston P, Parmar MK, Qian W. Novel designs for multi-arm clinical trials with survival outcomes with an application in ovarian cancer. Stat Med. 2003;22(14):2239–56.CrossRefPubMedGoogle Scholar
  92. 92.
    Wassmer G, Dragalin V. Designing issues in confirmatory adaptive population enrichment trials. J Biopharm Stat. 2015;25(4):651–69.CrossRefPubMedGoogle Scholar
  93. 93.
    Mehta CR, Pocock SJ. Adaptive increase in sample size when interim results are promising: a practical guide with examples. Stat Med. 2011;30(28):3267–84.CrossRefPubMedGoogle Scholar
  94. 94.
    Mauer M, Collette L, Bogaerts J, European Organisation for R, Treatment of Cancer Statistics D. Adaptive designs at European Organisation for Research and Treatment of Cancer (EORTC) with a focus on adaptive sample size re-estimation based on interim-effect size. Eur J Cancer. 2012;48(9):1386–91.CrossRefPubMedGoogle Scholar
  95. 95.
    Burock S, Meunier F, Lacombe D. How can innovative forms of clinical research contribute to deliver affordable cancer care in an evolving health care environment? Eur J Cancer. 2013;49(13):2777–83.CrossRefPubMedGoogle Scholar
  96. 96.
    Biankin AV, Piantadosi S, Hollingsworth SJ. Patient-centric trials for therapeutic development in precision oncology. Nature. 2015;526(7573):361–70.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ajlan Atasoy
    • 1
    • 2
  • Murielle Mauer
    • 3
  1. 1.European Organization for Research and Treatment of Cancer (EORTC)BrusselsBelgium
  2. 2.Research and Development, Oncology Clinical Development, Bristol-Myers SquibbLawrencevilleUSA
  3. 3.Department of StatisticsEuropean Organization for Research and Treatment of Cancer (EORTC)BrusselsBelgium

Personalised recommendations