Advertisement

Topological Hyperbolic and Dirac Plasmons

  • Nahid TalebiEmail author
Chapter
Part of the Reviews in Plasmonics book series (RIP, volume 2017)

Abstract

In this chapter, criteria for existence of propagating optical modes which are transversely bound at the interface of two materials are studied. In particular, quite general cases are considered, where the materials involved are assumed to be anisotropic, but also demonstrating magneto-electric effects. Moreover, surface states of two-dimensional materials like topological insulators and graphene are also modeled via consideration of a conductivity sheet existing at the interface. A characteristic equation for obtaining the propagation constant of generalized interface modes is presented. Furthermore, optical modes sustained by a thin film of anisotropic materials with magneto-electric effect and topological surface states are also investigated. It is shown that interface modes supported by such a system are hybrid in nature, and can be further decomposed into the well-known classes of transverse magnetic and electric modes, only at the absence of magneto-electric effect. Although the formulations driven here are mathematically abstract, they can be used to investigate polaritons in van der Waal materials, hyperbolic materials, and topological insulators.

Keywords

Surface waves Generalized characteristic equation Magnetoelectric effect Surface conductivity 

Notes

Acknowledgements

The author gratefully acknowledges the support from the Stuttgart Center for Electron Microscopy, especially Wilfried Sigle and Peter A. van Aken for fruitful discussions.

References

  1. 1.
    Bajestani SMRZ, Shahabadi M, Talebi N (2011) Analysis of plasmon propagation along a chain of metal nanospheres using the generalized multipole technique. J Opt Soc Am B-Opt Phys 28:937–943CrossRefGoogle Scholar
  2. 2.
    Maier SA, Brongersma ML, Atwater HA (2001) Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices. Appl Phys Lett 78:16–18CrossRefGoogle Scholar
  3. 3.
    Talebi N, Shahabdi M (2008) Analysis of the propagation of light along an array of nanorods using the generalized multipole techniques. J Comput Theor Nanosci 5:711–716CrossRefGoogle Scholar
  4. 4.
    Giannini V, Fernandez-Dominguez AI, Heck SC, Maier SA (2011) Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters. Chem Rev 111:3888–3912CrossRefGoogle Scholar
  5. 5.
    Kreilkamp LE, Belotelov VI, Chin JY, Neutzner S, Dregely D, Wehlus T, et al, (2013) Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect. Phys Rev X 3, 25 Nov 2013Google Scholar
  6. 6.
    Talebi N, Shahabadi M, Khunsin W, Vogelgesang R (2012) Plasmonic grating as a nonlinear converter-coupler. Opt Express 20:1392–1405CrossRefGoogle Scholar
  7. 7.
    de Waele R, Koenderink AF, Polman A (2007) Tunable nanoscale localization of energy on plasmon particle arrays. Nano Lett 7:2004–2008CrossRefGoogle Scholar
  8. 8.
    Ogut B, Talebi N, Vogelgesang R, Sigle W, van Aken PA (2012) Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible. Nano Lett 12:5239–5244CrossRefGoogle Scholar
  9. 9.
    Dorfmuller J, Vogelgesang R, Weitz RT, Rockstuhl C, Etrich C, Pertsch T et al (2009) Fabry-perot resonances in one-dimensional plasmonic nanostructures. Nano Lett 9:2372–2377CrossRefGoogle Scholar
  10. 10.
    Ogut B, Vogelgesang R, Sigle W, Talebi N, Koch CT, van Aken PA (2011) Hybridized metal slit eigenmodes as an illustration of babinet’s principle. ACS Nano 5:6701–6706CrossRefGoogle Scholar
  11. 11.
    Holmgaard T, Chen Z, Bozhevolnyi SI, Markey L, Dereux A (2009) Dielectric-loaded plasmonic waveguide-ring resonators. Opt Express 17:2968–2975CrossRefGoogle Scholar
  12. 12.
    Talebi N, Mahjoubfar A, Shahabadi M (2008) Plasmonic ring resonator. J Opt Soc Am B-Opt Phys 25:2116–2122CrossRefGoogle Scholar
  13. 13.
    Talebi N, Sigle W, Vogelgesang R, Esmann M, Becker SF, Lienau C et al (2015) Excitation of mesoscopic plasmonic tapers by relativistic electrons: phase matching versus eigenmode resonances. ACS Nano 9:7641–7648CrossRefGoogle Scholar
  14. 14.
    Guo SR, Talebi N, Sigle W, Vogelgesang R, Richter G, Esmann M et al (2016) Reflection and phase matching in plasmonic gold tapers. Nano Lett 16:6137–6144CrossRefGoogle Scholar
  15. 15.
    Jahani S, Jacob Z (2016) All-dielectric metamaterials. Nat Nanotechnol 11:23–36CrossRefGoogle Scholar
  16. 16.
    Daykonov MI (1988) New type of electromagnetic wave propagating at an interface. Sov Phys JETP 67:714–716Google Scholar
  17. 17.
    Takayama O, Crasovan L-C, Johansen SK, Mihalache D, Artigas D, Torner L (2008) Dyakonov surface waves: a review. Electromagnetics 28:126–145, 14 Mar 2008Google Scholar
  18. 18.
    Artigas D, Torner L (2005) Dyakonov surface waves in photonic metamaterials. Phys Rev Lett 94, 14 Jan 2005Google Scholar
  19. 19.
    Jacob Z, Narimanov EE (2008) Optical hyperspace for plasmons: dyakonov states in metamaterials. Phys Rev Lett 93, 1 Dec 2008Google Scholar
  20. 20.
    Talebi N, Ozsoy-Keskinbora C, Benia HM, Kern K, Koch CT, van Aken PA (2016) Wedge dyakonov waves and dyakonov plasmons in topological insulator Bi2Se3 probed by electron beams. ACS Nano 10:6988–6994CrossRefGoogle Scholar
  21. 21.
    Poddubny A, Iorsh I, Belov P, Kivshar Y (2013) Hyperbolic metamaterials. Nat Photonics 7:948–957CrossRefGoogle Scholar
  22. 22.
    Kshetrimayum RS (2005) A brief intro to metamaterials. IEEE Potentials 23:44–46CrossRefGoogle Scholar
  23. 23.
    Jacob Z, Smolyaninov II, Narimanov EE (2012) Broadband purcell effect: radiative decay engineering with metamaterials. Appl Phys Lett 100, 30 Apr 2012Google Scholar
  24. 24.
    He YR, He SL, Yang XD (2012) Optical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials. Opt Lett 37:2907–2909CrossRefGoogle Scholar
  25. 25.
    Narimanov EE, Kildishev AV (2015) Metamaterials naturally hyperbolic. Nat Photonics 9:214–216CrossRefGoogle Scholar
  26. 26.
    Esslinger M, Vogelgesang R, Talebi N, Khunsin W, Gehring P, de Zuani S et al (2014) Tetradymites as natural hyperbolic materials for the near-infrared to visible. Acs Photonics 1:1285–1289CrossRefGoogle Scholar
  27. 27.
    Wu JS, Basov DN, Fogler MM (2015) Topological insulators are tunable waveguides for hyperbolic polaritons. Phys Rev B 92, 30 Nov 2015Google Scholar
  28. 28.
    Basov DN, Fogler MM, de Abajo FJG (2016) Polaritons in van der waals materials. Science 354, 14 Oct 2016Google Scholar
  29. 29.
    Koppens FHL, Chang DE, de Abajo FJG (2011) Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett 11:3370–3377CrossRefGoogle Scholar
  30. 30.
    Woessner A, Lundeberg MB, Gao Y, Principi A, Alonso-Gonzaolez P, Carrega M et al (2015) Highly confined low-loss plasmons in graphene-boron nitride heterostructures. Nat Mater 14:421–425CrossRefGoogle Scholar
  31. 31.
    Politano A, Silkin VM, Nechaev IA, Vitiello MS, Viti L, Aliev ZS, et al, (2015) Interplay of surface and dirac plasmons in topological insulators: the case of Bi2Se3. Phys Rev Lett 115, 18 Nov 2015Google Scholar
  32. 32.
    Dziom V, Shuvaev A, Pimenov A, Astakhov GV, Ames C, Bendias K, et al, (2017) Observation of the universal magnetoelectric effect in a 3D topological insulator. Nat Commun 8, 15 May 2017Google Scholar
  33. 33.
    Wang J, Lian B, Zhang SC (2016) Dynamical axion field in a magnetic topological insulator superlattice. Phys Rev B 93, 13 Jan 2016Google Scholar
  34. 34.
    Li RD, Wang J, Qi XL, Zhang SC (2010) Dynamical axion field in topological magnetic insulators. Nat Phys 6:284–288CrossRefGoogle Scholar
  35. 35.
    Wilczek F (1987) Two applications of axion electrodynamics. Phys Rev Lett 58:1799–1802, 5 Apr 1987Google Scholar
  36. 36.
    Okada Y, Madhavan V (2013) Topological insulators plasmons at the surface. Nat Nanotechnol 8:541–542CrossRefGoogle Scholar
  37. 37.
    Karch A (2011) Surface plasmons and topological insulators. Phys Rev B 83, 27 Jun 2011Google Scholar
  38. 38.
    Talebi N (2016) Optical modes in slab waveguides with magnetoelectric effect. J Opt 18Google Scholar
  39. 39.
    Palik ED (1998) Handbook of optical constants of solids. Academic, New YorkGoogle Scholar
  40. 40.
    Volkov VA, Mikhailov SA (1985) Quantization of the Faraday effect in systems with a quantum Hall effect. JETP Lett 41:476Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Max Planck Institute for Solid State ResearchStuttgartGermany

Personalised recommendations