Comparative Study Between Different Plasmonic Materials and Nanostructures for Sensor and SERS Application

  • Jyoti KatyalEmail author
Part of the Reviews in Plasmonics book series (RIP, volume 2017)


The LSPR properties and field enhancement of metal (Au, Ag and Al) under different nanostructures has been discussed using the Finite-Difference Time-Domain (FDTD) and plasmon hybridization method. Tuning the size, shape and physical environment around metal nanoparticle has maximized the plasmonic sensitivity of metal nanostructure for molecular and biological sensing whereas enhanced near-field gives the basis for the formation of the SERS substrate such that the substrate with extremely high enhancement factor and number of hot spots can be designed and fabricated. The calculated spectra using FDTD method for Au, Ag and Al nanoparticle clearly confirm that the plasmon resonance wavelength of Aluminium nanostructure lies in the shorter wavelength range as compared to Au and Ag but an LSPR sensor based on multilayered nanostructure where the advantages of both plasmonic active metals can be combined has been proposed to improve optical response. The calculated refractive index sensitivity (RIS) factor for multilayered nanostructure follow the order as Ag-Air-Ag > Au-Air-Au > Al-Air-Al and the RIS 510 nm/RIU and 470 nm/RIU for Al-Air-Au and Ag-Air-Au, respectively. The strong enhanced electromagnetic fields near the metal surfaces has been evaluated for isotropic and anisotropic nanostructure. The isotropic configuration shows polarization-dependent higher field enhancement ~1.4 × 108 at 196 nm whereas the anisotropic shape nanorod arranged in a rhombus nanostructure increases the enhancement factor to ~6.5 × 107 at peak wavelength 411 nm, i.e. tuning the plasmon wavelength towards the visible region with Al as plasmonic material.


LSPR Field enhancement Nanostructures FDTD Plasmon hybridization method 


  1. 1.
  2. 2.
    Zenneck J (1907) Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie. Ann Phys 328:846CrossRefGoogle Scholar
  3. 3.
    Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metalllösungen. Ann Phys 330:377CrossRefGoogle Scholar
  4. 4.
    Sommerfeld A (1909) Über die Ausbreitung der Wellen in der drahtlosen Telegraphie. Ann Phys 333:665CrossRefGoogle Scholar
  5. 5.
    Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley Interscience PublicationGoogle Scholar
  6. 6.
    Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment. J Phys Chem B 107:668CrossRefGoogle Scholar
  8. 8.
    Kreibig U, Fragstein CVZ (1969) The limitation of electron mean free path in small silver particles. Physik 224:307CrossRefGoogle Scholar
  9. 9.
    Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 331:189CrossRefGoogle Scholar
  10. 10.
    Haynes CL, McFarland AD, Van Duyne RP (2005) Surface-enhanced Raman spectroscopy. Anal Chem 77:338ACrossRefGoogle Scholar
  11. 11.
    Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16:21793CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pissuwan D, Valenzuela SM, Miller CM, Cortie MB (2007) A golden bullet? Selective targeting of toxoplasma gondii tachyzoites using antibody-functionalized gold nanorods. Nano Lett 7:3808CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wood RW (1902) On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philysophical Mag 4:396CrossRefGoogle Scholar
  15. 15.
    Rayleigh L (1907) Dynamical theory of the grating. Proc Roy Soc (London) A79:399Google Scholar
  16. 16.
    Kretschmann E, Reather H (1968) Radiative decay of nonradiative surface plasmon excited by light. Z Naturf 23A:2135CrossRefGoogle Scholar
  17. 17.
    Kretschmann E (1971) Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasmaschwingugnen. Z Phys 241:313CrossRefGoogle Scholar
  18. 18.
    Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z Phys 216:398CrossRefGoogle Scholar
  19. 19.
    Yates AM, Elvin SJ, Williamson DE (1999) The optimization of a murine TNF-α ELISA and the application of the method to other murine cytokines. J Immunoass 20:31CrossRefGoogle Scholar
  20. 20.
    Tadic SC, Dernick G, Juncker D, Buurman G, Kropshofer H, Michel B, Fattinger C, Delamarche E (2004) High sensitivity miniaturized immunoassays for tumor necrosis factor α using microfluidic systems. Lab Chip Miniaturisation Chem Biol 4:563CrossRefGoogle Scholar
  21. 21.
    Yang J, Eom K, Park J, Kang Y, Yoon DS, Na S, Koh EK, Suh JS, Huh YM, Kwon TY, Haam S (2008) In situ detection of live cancer cells by using bioprobes based on Au nanoparticles. Langmuir 24:12112CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hong Y, Huh YM, Yoon DS, Yang J (2012) Nanobiosensors based on localized surface plasmon resonance for biomarker detection. J Nanomater 2012Google Scholar
  23. 23.
    Jia P, Jiang H, Sabarinathan J, Yang J (2013) Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance. Nanotechnology 24:195501CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Larsson EM, Prinetti A, Kall M, Sutherland DS (2007) Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett 7:1256CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lee S, Mayer KM, Hafner JH (2009) Improved localized surface plasmon resonance immunoassay with gold bipyramid substrates. Anal Chem 81:4450CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sonnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23:741CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Watanabe Y, Inami W, Kawata Y (2011) Deep-ultraviolet light excites surface plasmon for the enhancement of photoelectron emission. J Appl Phys 109:023112CrossRefGoogle Scholar
  28. 28.
    Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163CrossRefGoogle Scholar
  29. 29.
    Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 84:1Google Scholar
  30. 30.
    Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215CrossRefGoogle Scholar
  31. 31.
    Doering WE, Nie SM (2002) Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement. J Phys Chem B 106:311CrossRefGoogle Scholar
  32. 32.
    Etchegoin PG, Le Ru EC (2008) A perspective on single molecule SERS: current status and future challenge. Phys Chem Chem Phys 10:6079CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99:2957CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Moskovits M (2005) Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc 36:485CrossRefGoogle Scholar
  35. 35.
    Sekhon JS, Verma SS (2012) Rational selection of nanorod plasmons: materials, size and shape dependence mechanism for optical sensors. Plasmonics 7:453CrossRefGoogle Scholar
  36. 36.
    Haupt RL, Haupt SE, Aten D (2009) Evaluating the radar cross section of maritime radar reflectors using computational electromagnetic. ACES J 24:403Google Scholar
  37. 37.
    Dandekar KR, Xu G, Ling H (2003) Computational electromagnetic simulation of smart antenna systems in urban microcellular environments. IEEE Trans Veh Technol 52:733CrossRefGoogle Scholar
  38. 38.
    Zainud-deen SH, Botrosand AZ, Ibrahim MS (2008) Scattering from bodies coated with metamaterial using FDFD method progress in electromagnetic. Prog Electromagn Res B 2:279CrossRefGoogle Scholar
  39. 39.
    Ahmed I, Khoo EH, Kurniawan O, Li EP (2011) Modeling and simulation of active plasmonics with the FDTD method by using solid state and Lorentz-Drude dispersive model. Opt Soc Am B 28:352CrossRefGoogle Scholar
  40. 40.
    DeVoe H (1964) Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction. J Chem Phys 41:393Google Scholar
  41. 41.
    DeVoe H (1965) Optical properties of molecular aggregates. II. Classical theory of the refraction, absorption, and optical activity of solutions and crystals. J Chem Phys 43:3199Google Scholar
  42. 42.
    Smajic J, Hafner C, Raguin L, Tavzarashvili K, Mishrickey M (2009) Comparison of numerical methods for the analysis of plasmonic structures. J Comput Theor Nanosci 6:763CrossRefGoogle Scholar
  43. 43.
    Yee KS (1966) Numerical solution of initial boundary value problems involving Maxwell’s equation is isotropic media. IEEE Trans Antennas Propag 14:302CrossRefGoogle Scholar
  44. 44.
    Taflove A, Hagness SC (2005) Computational electrodynamics: the finite-difference time-domain method, 3rd edn. Artech House, Norwood, MAGoogle Scholar
  45. 45.
  46. 46.
    Blaber MG, Arnoldb MD, Harrisa N, Forda MJ, Cortie MB (2007) Plasmon absorption in nanospheres: a comparison of sodium, potassium, Aluminium, silver and gold. Physica B 394:184CrossRefGoogle Scholar
  47. 47.
    Hu J, Chen L, Lian Z, Cao M, Li H, Sun W, Tong N, Zeng H (2012) Deep-ultraviolet−blue-light surface plasmon resonance of Al and Al core/Al2O3shell in spherical and cylindrical nanostructures. J Phys Chem C 116:15584CrossRefGoogle Scholar
  48. 48.
    Wahbeh M (2011) Published thesis: Discrete-Dipole-Approximation (DDA) study of the plasmon resonance in single and coupled spherical silver nanoparticles in various configurationsGoogle Scholar
  49. 49.
    Thomas R, Kumar J, Swathi RS, Thomas KG (2012) Optical effects near metal nanostructures: towards surface-enhanced spectroscopy. Curr Sci 102:85Google Scholar
  50. 50.
    Ekinci Y, Solak HH, Löffler JF (2008) Plasmon resonances of aluminum nanoparticles and nanorods. J Appl Phys 104:083107CrossRefGoogle Scholar
  51. 51.
    Sekhon JS, Verma SS (2011) Refractive index sensitivity analysis of Ag, Au, and Cu nanoparticles. Plasmonics 6:311CrossRefGoogle Scholar
  52. 52.
    Efremov EV, Ariese F, Gooijer C (2008) Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential. Anal Chim Acta 606:119Google Scholar
  53. 53.
    West PR, Ishii S, Naik G, Emani N, Shalaev VM, Boltasseva A (2010) Searching for better plasmonic materials. Laser Photonics Rev 4:795CrossRefGoogle Scholar
  54. 54.
    Rai A, Park K, Zhou Zachariah MR (2006) Understanding the mechanism of aluminium nanoparticle oxidation. Combust Theor Model 10:843CrossRefGoogle Scholar
  55. 55.
    Katyal J, Soni RK (2014) Localized surface plasmon resonances and refractive index sensitivity of metal-dielectric-metal multilayered nanostructures. Plasmonics 9:1171CrossRefGoogle Scholar
  56. 56.
    Peña-Rodríguez O, Pal U (2011) Enhanced plasmonic behavior of bimetallic (Ag-Au) multilayered spheres. Nanoscale Res Lett 6:279CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Radloff C, Halas NJ (2004) Plasmonic properties of concentric nanoshells. Nano Lett 4:1323CrossRefGoogle Scholar
  58. 58.
    Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419Google Scholar
  59. 59.
    Prodan E, Nordlander P (2004) Plasmon hybridization in spherical nanoparticles. J Chem Phys 120:5444CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Zhang Y, Fei GT, Zhang LD (2011) Plasmon hybridization in coated metallic nanosphere. J Appl Phys 109:054315CrossRefGoogle Scholar
  61. 61.
    Mattiucci N, D’Aguanno G, Everitt HO, Foreman JV, Callahan JM, Buncick MC, Bloemer MJ (2012) Ultraviolet surface-enhanced Raman scattering at the plasmonic band edge of a metallic grating. Opt Express 20:1868CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Foteinopoulou S, Vigneron JP, Vandenbem C (2007) Optical near-field excitations on plasmonic nanoparticle-based structures. Opt Express 15:4253CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Mitsushioa M, Watanabeb K, Abeb Y, Higoa M (2010) Sensor properties and surface characterization of aluminum-deposited SPR optical fibers. Sens Actuators A 163:1CrossRefGoogle Scholar
  64. 64.
    Sur UK, Chowdhur J (2013) Surface-enhanced Raman scattering: overview of a versatile technique used in electrochemistry and nanoscience. Curr Sci 105:923Google Scholar
  65. 65.
    Bantz KC, Meyer AF, Wittenbergb NJ, Imb H, Kurtulusa O, Leec SH, Lindquistb NC, Ohb SH, Haynesa CL (2011) Recent progress in SERS biosensing. Phys Chem Chem Phys 13:11551CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Yin X, Fang N, Zhang X, Martini IB, Schwartz BJ (2002) Near-field two-photon nanolithography using an apertureless optical probe. Appl Phys Lett 81:3663CrossRefGoogle Scholar
  67. 67.
    Jackson JD (1999) Classical electrodynamics. Wiley, New YorkGoogle Scholar
  68. 68.
    Tanabe K (2008) Field enhancement around metal nanoparticles and nanoshells: a systematic investigation. J Phys Chem C 112:15721CrossRefGoogle Scholar
  69. 69.
    Chowdhary MH, Ray K, Johnson ML, Gray SK, Pond J, Lakowicz JR (2010) On the feasibility of using the intrinsic fluorescence of nucleotides for DNA sequencing. J Phys Chem C 114:7448CrossRefGoogle Scholar
  70. 70.
    Liu C, Mi CC, Li BQ (2011) The plasmon resonance of a multilayered gold nanoshell and its potential bioapplications. IEEE Trans Nanotechnol 10:797CrossRefGoogle Scholar
  71. 71.
    Chau YF, Jiang ZH, Li HY, Lin GM, Wu FL, Lin WH (2011) Localized resonance of composite core-shell nanospheres, nanobars and nanospherical chains. Prog Electromagn Res B 28:183CrossRefGoogle Scholar
  72. 72.
    Acimovic SS, Kreuzer MP, González MU, Quidant R (2009) Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. ACS Nano 3:1231CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Li W, Camargo PHC, Lu X, Xia Y (2009) Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett 9:485CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Yan B, Boriskina SV, Reinhard BM (2011) Optimizing gold nanoparticle cluster configurations (n = 7) for array applications. J Phys Chem C 115:4578CrossRefGoogle Scholar
  75. 75.
    Pasquale AJ, Reinhard BM, Negro LD (2011) Engineering photonic plasmonic coupling in metal nanoparticle necklaces. ACS Nano 5:6578CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Kall M, Xu H, Johansson P (2005) Field enhancement and molecular response in surface enhanced Raman scattering and fluorescence spectroscopy. J Raman Spectrosc 36:510CrossRefGoogle Scholar
  77. 77.
    Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TR, Nordlander P, Halas NJ (2005) Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett 5:1569Google Scholar
  78. 78.
    Søndergaard T, Bozhevolnyi SI, Beermann J, Novikov SM, Devaux E, Ebbesen TW (2010) Resonant plasmon nanofocusing by closed tapered gaps. Nano Lett 10:291CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Shalin AS, Sukhov SV, Krasnok AE, Nikitov SA (2014) Plasmonic nanostructures for local field enhancement in the UV region. Photonics Nanostruct Fundam Appl 12:2CrossRefGoogle Scholar
  80. 80.
    Katyal J, Soni RK (2015) Field enhancement around Al nanostructures in UV-NIR region. Plasmonic 10:1729CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Amity UniversityNoidaIndia

Personalised recommendations