Advertisement

Graphene Plasmonics Based Terahertz Integrated Circuits

  • Neetu Joshi
  • Nagendra P. PathakEmail author
Chapter
Part of the Reviews in Plasmonics book series (RIP, volume 2017)

Abstract

This chapter outlines the design and full wave analysis of terahertz integrated circuits using graphene plasmonic waveguides. The material properties of graphene at THz frequencies have been discussed first, and later the guiding properties of graphene plasmonic waveguide structures are discussed. Emphasis has been given to provide details of modeling of graphene plasmonic parallel plate waveguide and it’s variants such as nano strip, suspended nano strip, coplanar and graphene backed coplanar waveguides to determine wave properties such as phase constant, attenuation constant, characteristic impedance and propagation length. Examples of graphene plasmonic waveguide based THz integrated circuits such as resonator, band pass filter, power splitter; coupler, phase shifter, oscillator and antenna have also been given.

Keywords

Graphene Terahertz Transmission line Discontinuities Resonators Filters Couplers Oscillator Phase shifter Antennas 

References

  1. 1.
    Federici J, Moeller L (2010) Review of terahertz and subterahertz wireless communications. J Appl Phys 107:1111011–1111022CrossRefGoogle Scholar
  2. 2.
    Seeds AJ, Shams H, Fice MJ, Renaud CC (2015) Terahertz photonics for wireless communications. J Light Technol 33(3):579–587CrossRefGoogle Scholar
  3. 3.
    Nagatsuma T, Ducournau G, Renaud CC (2016) Advances in terahertz communications accelerated by photonics. Nat Photonics 10:371–379CrossRefGoogle Scholar
  4. 4.
    Akyildiz IF, Jornet JM, Han C (2014) Terahertz band: next frontier for wireless communications. Phys Commun 12:16–32CrossRefGoogle Scholar
  5. 5.
    Nagatsuma T, Horiguchi S, Minamikata Y, Yoshimizu Y, Hisatake S, Kuwano S, Yoshimoto N, Terada J, Takahashi H (2013) Terahertz wireless communications based on photonics technologies. Optics Express 21(20):23736–23747Google Scholar
  6. 6.
    Ducournau G, Szriftgiser P, Pavanello F, Peytavit E, Zaknoune M, Bacquet D, Beck A, Akalin T, Lampin JF (2014) THz communications using Photonics and Electronic devices: the race to data-rate. J. Infrared Milli Terahz waves 36:198–220CrossRefGoogle Scholar
  7. 7.
    McKenna TP, Nanzer JA, Clark TR (2015) Photonic millimeter-wave system for high-capacity wireless communications. John Hopkins APL Tech Dig 33(1):57–67Google Scholar
  8. 8.
    Kürner T, Priebe S (2013) Towards THz communications—status in research, standardization and regulation. J Infrared Millim Terahertz Waves 35(53):1–10Google Scholar
  9. 9.
    Docherty CJ, Johnston MB (2012) Terahertz properties of graphene. J Infrared Millim Terahertz Waves 33:797–815CrossRefGoogle Scholar
  10. 10.
    Low T, Avouris P (2014) Graphene plasmonics for terahertz to mid-infrared applications. Am Chem Soc 8(2):1086–1101Google Scholar
  11. 11.
    Maier SA (2006) Plasmonics: fundamentals and applications. Springer, BerlinGoogle Scholar
  12. 12.
    Gómez-Díaz JS, Perruisseau-Carrier J (2012) Microwave to THz properties of graphene and potential antenna applications. In: Proceedings of ISAP 2012, pp 239–242Google Scholar
  13. 13.
    Grigorenko AN, Polini M and Novoselov KS (2013) Graphene plasmonics—optics in flatland 1–19Google Scholar
  14. 14.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRefGoogle Scholar
  15. 15.
    Gu X, Lin IT, Liu JM (2013) Extremely confined terahertz surface plasmon-polaritons in graphene-metal structures. Appl Phys Lett 103(071103):1–4Google Scholar
  16. 16.
    Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK (2007) Room-temperature quantum hall effect in graphene. Science 315(2000):1379CrossRefGoogle Scholar
  17. 17.
    Zhang Y, Tan Y, Stormer HL, Kim P (2006) Experimental observation of quantum Hall-effect and Berry’s phase in graphene. Nature 438:201–204CrossRefGoogle Scholar
  18. 18.
    Mikhail KI (2007) Graphene : carbon in two dimensions. Mater Today 10(1):20–27Google Scholar
  19. 19.
    Stauber T, Peres NMR, Geim AK (2008) Optical conductivity of graphene in the visible region of the spectrum. Phys Rev B—Condens Matter Mater Phys 78:1–8Google Scholar
  20. 20.
    Vasko FT, Ryzhii V (2007) Voltage and temperature dependencies of conductivity in gated graphene. Phys Rev B—Condens Matter Mater Phys 76:1–5CrossRefGoogle Scholar
  21. 21.
    Falkovsky LA, Pershoguba SS (2007) Optical far-infrared properties of a graphene monolayer and multilayer. Phys Rev B—Condens Matter Mater Phys 76(3):1–4Google Scholar
  22. 22.
    Kymakis E, Stratakis E, Stylianakis MM, Koudoumas E, Fotakis C (2011) Spin coated graphene films as the transparent electrode in organic photovoltaic devices. Thin Solid Films 520:1238–1241CrossRefGoogle Scholar
  23. 23.
    Paul MJ, Chang YC, Thompson ZJ, Stickel A, Wardini J, Choi H, Minot ED, Norris TB, Lee YS (2013) High-field terahertz response of graphene New. J Phys 15:1–12Google Scholar
  24. 24.
    Nikolaenko AE, Atmatzakis E, Papasimakis N, Luo Z, Shen ZX, Boden S, Ashburn P and Zheludev NI (2012) Terahertz Bandwidth Optical Nonlinearity of Graphene Metamaterial. In: Conference lasers electro-optics 2012:1–2Google Scholar
  25. 25.
    Field HT (2014) Temperature-dependent of nonlinear optical conductance of graphene-based systems in high intensity THz field. Nano-Micro Lett 6(2):153–162CrossRefGoogle Scholar
  26. 26.
    Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103:1–8CrossRefGoogle Scholar
  27. 27.
    Hanson GW (2008) Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide. J Appl Phys 104:1–5CrossRefGoogle Scholar
  28. 28.
    Buslaev PI, Iorsh IV, Shadrivov IV, Belov PA, Kivshar YS (2013) Plasmons in waveguide structures formed by two graphene layers. JETP Lett 97(9):535–539CrossRefGoogle Scholar
  29. 29.
    Correas-Serrano D, Gomez-Diaz JS, Perruisseau-Carrier J, Álvarez-Melcón A (2013) Spatially dispersive graphene single and parallel plate waveguides: analysis and circuit model. IEEE Trans Microw Theory Tech 61(12):4333–4344CrossRefGoogle Scholar
  30. 30.
    Gomez-Diaz JS, Mosig JR, Perruisseau-Carrier J (2013) Effect of Spatial Dispersion on Surface Waves Propagating Along Graphene Sheets. IEEE Trans Antennas Propag 61(7):3589–3596CrossRefGoogle Scholar
  31. 31.
    Svintsov D, Vyurkov V, Ryzhii V and Otsuji T (2013) Voltage-controlled surface plasmon-polaritons in double graphene layer structures. J Appl Phys 113(4):053701, 1–5Google Scholar
  32. 32.
    Hajian H, Soltani-Vala A, Kalafi M, Leung PT (2014) Surface plasmons of a graphene parallel plate waveguide bounded by Kerr-type nonlinear media. J Appl Phys 115(083104):1–7Google Scholar
  33. 33.
    Malekabadi A, Charlebois SA, Deslandes D (2013) Parallel plate waveguide with anisotropic graphene plates: effect of electric and magnetic biases. J Appl Phys 113(113708):1–9Google Scholar
  34. 34.
    Hajian H, Soltani-Vala A and Kalafi M (2013) Optimizing terahertz surface plasmons of a monolayer graphene and a graphene parallel plate waveguide using one-dimensional photonic crystal. J Appl Phys 114(2013):033102, 1–8Google Scholar
  35. 35.
    Burke PJ (2003) An RF circuit model for carbon nanotubes. IEEE Trans Nanotechnol 2(1):53–55CrossRefGoogle Scholar
  36. 36.
    Gomez-Diaz JS, Perruissea-Carrier J (2013) A transmission line model for plasmon propagation on a graphene strip. In: IEEE MTT-S international microwave symposium digest, pp. 1–3Google Scholar
  37. 37.
    Koul SK, Kumbhat A, Basu A (2007) Micromachined conductor backed coplanar waveguides for millimeter wave circuit application. Indian J Pure Appl Phys 45:336–344Google Scholar
  38. 38.
    Simons RN, Ponchak GE (1988) Modeling of some coplanar waveguide discontinuities. IEEE Trans Microw Theory Tech 36:1796–1803CrossRefGoogle Scholar
  39. 39.
    Prasad M, Gaur AS, Sharma VK, Pathak NP (2008) Modeling of multilayer suspended microstrip line and its discontinuities on CMOS grade silicon substrate for millimeter wave integrated circuit applications. Int J Infrared Milli Waves 29:1123–1135CrossRefGoogle Scholar
  40. 40.
    Joshi N, Pathak NP (2016) Modeling of graphene coplanar waveguide and its discontinuities for THz integrated circuit applications. Plasmonics 1–10Google Scholar
  41. 41.
    Joshi N, Pathak NP (2015) Graphene backed graphene plasmonic coplanar waveguide (GB-GCPW) for terahertz integrated circuit applications. In: Proceedings of applied electromagnetics conference 103:1–2Google Scholar
  42. 42.
    Chen PY, Argyropoulos C, Alu A (2013) Terahertz antenna phase shifters using integrally-gated graphene transmission-lines. IEEE Trans Antennas Propag 61(4):1528–1537CrossRefGoogle Scholar
  43. 43.
    Xia X, Wang J, Zhang F, Da Hu Z, Liu C, Yan X, Yuan L (2015) Multi-mode plasmonically induced transparency in dual coupled graphene-integrated ring resonators. Plasmonics 10(6):1409–1415CrossRefGoogle Scholar
  44. 44.
    Gao Y, Ren G, Zhu B, Huang L, Li H, Yin B, Jian S (2015) Tunable plasmonic filter based on graphene split-ring. Plasmonics 11(1):291–296CrossRefGoogle Scholar
  45. 45.
    Joshi N, Pathak NP (2017) Compact ultra-wide-band graphene based tunable band-pass filter paper accepted for oral presentation in second international conference on advanced functional materials. Los Angeles, USAGoogle Scholar
  46. 46.
    Correas Serrano D, Gomez-Diaz JS, Perruissea-Carrier J, Alvarez-Melcon (2014) A Graphene-based plasmonic tunable low-pass filters in the THz band. IEEE Trans Nanotechnol 13(6):1145–1153CrossRefGoogle Scholar
  47. 47.
    Deng H, Yan Y, Xu Y (2015) Tunable flat-top bandpass filter based on coupled resonators on a graphene sheet. IEEE Photonics Technol Lett 27(11):1161–1164CrossRefGoogle Scholar
  48. 48.
    He MD, Wang KJ, Wang L, Li JB, Liu JQ, Huang ZR, Wang L, Wang L, Hu WD, Chen X (2014) Graphene based terahertz tunable plasmonic directional coupler. Appl Phys Lett 105:0819031–0819035Google Scholar
  49. 49.
    Rana F (2008) Graphene terahertz plasmon oscillators. IEEE Trans Nanotechnol 7(1):91–99CrossRefGoogle Scholar
  50. 50.
    Llaster I, Kremers C, Aparicio AC, Jornet JM, Alarcon E, Chigrin DN (2012) Graphene based nano patch antenna for terahertz radiation. Elsevier, 1–7Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringIITRoorkeeIndia

Personalised recommendations