Advertisement

Review of Advances in Metal-Enhanced Fluorescence

  • Rachael Knoblauch
  • Chris D. GeddesEmail author
Chapter
Part of the Reviews in Plasmonics book series (RIP, volume 2017)

Abstract

In this chapter, we review principles of metal-enhanced fluorescence (MEF), including critical experimental support for the Unified Plasmon-Fluorophore description for the mechanism of MEF. By this description, two routes of enhancement exist for a fluorophore coupled with a metal nanoparticle: namely enhanced absorption and enhanced emission. Literature reports included in this chapter describe the characteristics of a coupled system that influence the efficiency of MEF, including: nanoparticle morphology, distance dependence, the excitation volume effect (EVE) to name but just a few. Reported changes in the photophysical properties of free-space fluorophores, namely improved quantum yields and photostability, for these optimized systems establish MEF as a highly competitive technology for multifarious applications. Subsequently, various applications for MEF systems are highlighted, including MEF-based immunodiagnostics, bioluminescence assays, and the potential for MEF in photodynamic therapy. MEF can also find utility in the development of fluorescence-based electronics as a substitute for potentially toxic quantum dot technologies. Herein we include an effective overview of its principles and a glimpse into prospective advantages of MEF in application.

Keywords

Metal-enhanced fluorescence Unified fluorophore description Enhanced absorption Enhanced emission Excitation volume effect Immunodiagnostic Diagnostic High throughput screening Photodynamic therapy 

References

  1. 1.
    Wu Z, Ma D (2016) Recent advances in white organic light-emitting diodes. Mater Sci Eng R 107:1–42CrossRefGoogle Scholar
  2. 2.
    Li Q, Liu L, Liu J, Jiang J, Yu R, Chu X (2014) Nanomaterial-based fluorescent probes for live-cell imaging. Trends Anal Chem 58:130–144CrossRefGoogle Scholar
  3. 3.
    Kohen E, Santus R, Hirschberg JG (2002) Fluorescence probes in oncology. Imperial College Press, LondonCrossRefGoogle Scholar
  4. 4.
    Wolfbeis OS (2008) Fluorescence methods and applications: spectroscopy, imaging, and probes. Blackwell Publishing, Malden, MAGoogle Scholar
  5. 5.
    Zheng Q, Jockusch S, Rodríguez-Calero GG, Zhou Z, Zhao H, Altman RB, Abruñab HD, Blanchard SC (2016) Intra-molecular triplet energy transfer is a general approach to improve organic fluorophore photostability. Photochem Photobiol Sci 15:196–203PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114(2):165–172PubMedCrossRefGoogle Scholar
  7. 7.
    Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang Y, Dragan A, Geddes CD (2010) Metal-enhanced fluorescence from tin nanostructured surfaces. J Appl Phys 107:024302CrossRefGoogle Scholar
  9. 9.
    Mishra H, Dragan A, Geddes CD (2011) UV to NIR surface plasmon coupled and metal-enhanced fluorescence using Indium thin films: application to intrinsic (label-less) protein fluorescence detection. J Phys Chem C 115:17227–17236CrossRefGoogle Scholar
  10. 10.
    Zhang Y, Geddes CD (2010) Metal-enhanced fluorescence from thermally stable rhodium nanodeposits. J Mater Chem 20:8600–8606CrossRefGoogle Scholar
  11. 11.
    Zhang Y, Dragan A, Geddes CD (2009) Broad wavelength range metal-enhanced fluorescence using nickel nanodeposits. J Phys Chem C 113:15811–15816CrossRefGoogle Scholar
  12. 12.
    Lakowicz JR, Geddes CD, Gryczynski I, Malicka J, Gryczynski Z, Aslan K, Lukomska J, Matveeva E, Zhang J, Badugu R, Huang J (2004) Advances in surface-enhanced fluorescence. J Fluoresc 14(4):425–441PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Geddes CD, Lakowicz JR (2002) Metal-enhanced fluorescence. J Fluoresc 12(2):121–129CrossRefGoogle Scholar
  14. 14.
    Karolin J, Geddes CD, Spectral shifts in metal-enhanced fluorescence. Appl Phys Lett 105:064102Google Scholar
  15. 15.
    Ranjan R, Esimbekova EN, Kirillova MA, Kratasyuk VA (2017) Metal-enhanced luminescence: current trend and future perspectives—a review. Anal Chim Acta 971:1–13PubMedCrossRefGoogle Scholar
  16. 16.
    Dragan AI, Geddes CD (2011) Excitation volumetric effects (EVE) in metal-enhanced fluorescence. Phys Chem Chem Phys 13:3831–3838PubMedCrossRefGoogle Scholar
  17. 17.
    Aslan K, Gryczynski I, Malicka J, Matveeva E, Lackowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16:55–62PubMedCrossRefGoogle Scholar
  18. 18.
    Mishra H, Mali BL, Karolin J, Dragan AI, Geddes CD (2013) Experimental and theoretical study of the distance dependence of metal-enhanced fluorescence, phosphorescence and delayed fluorescence in a single system. Phys Chem Chem Phys 15:19538–19544PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang Y, Aslan K, Previte MJR, Malyn SN, Geddes CD (2006) Metal-enhanced phosphorescence: interpretation in terms of triplet-coupled radiating plasmons. J Phys Chem B 110(49):25108–25114PubMedCrossRefGoogle Scholar
  20. 20.
    Karolin J, Geddes CD (2013) Metal-enhanced fluorescence based excitation volumetric effect of plasmon-enhanced singlet oxygen and super oxide generation. Phys Chem Chem Phys 15:15740–15745PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang Y, Aslan K, Previte MJR (2007) Metal-enhanced superoxide generation: a consequence of plasmon-enhanced triplet yields. Appl Phys Lett 91:023114CrossRefGoogle Scholar
  22. 22.
    Zhang Y, Aslan K, Previte MJR, Geddes CD (2008) Plasmonic engineering of singlet oxygen generation. PNAS 105(6):1798–1802PubMedCrossRefGoogle Scholar
  23. 23.
    Schmid G (2004) Nanoparticles: from theory to application. WILEY-VCH Verlag GmbH & Co., KGaA, WeinheimGoogle Scholar
  24. 24.
    Aslan K, Previte MJR, Zhang Y, Geddes CD (2008) Surface plasmon coupled fluorescence in the ultraviolet and visible spectral regions using zinc thin films. Anal Chem 80:7304–7312PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang Y, Aslan K, Previte MJR (2007) Metal-enhanced fluorescence from copper substrates. Appl Phys Lett 90:173116CrossRefGoogle Scholar
  26. 26.
    Hao Q, Qiu T, Chu PK (2012) Surfaced-enhanced cellular fluorescence imaging. Prog Surf Sci 87:23–45CrossRefGoogle Scholar
  27. 27.
    Cui Q, He F, Li L, Möhwald H (2014) Controllable metal-enhanced fluorescence in organized films and colloidal system. Adv Coll Interface Sci 207:164–177CrossRefGoogle Scholar
  28. 28.
    Kumar A, Singh S, Mudahar GS, Thind KS (2006) Molar extinction coefficients of some commonly used solvents. Radiat Phys Chem 75:737–740CrossRefGoogle Scholar
  29. 29.
    Hlaing M, Gebear-Eigzabher B, Roa A, Marcano A, Radu D, Lai C (2016) Absorption and scattering cross-section extinction values of silver nanoparticles. Opt Mater 58:439–444CrossRefGoogle Scholar
  30. 30.
    Zhang Y, Mali BL, Geddes CD (2012) Metal-enhanced fluorescence exciplex emission. Spectrochim Acta Part A 85:134–138CrossRefGoogle Scholar
  31. 31.
    Aslan K, Previte MJR, Zhang Y, Geddes CD (2008) Metal-enhanced fluorescence from nanoparticulate zinc films. J Phys Chem C 112:18368–18375CrossRefGoogle Scholar
  32. 32.
    Theodorou IG, Jawad ZAR, Jiang Q, Aboagye EO, Porter AE, Ryan MP, Xie F (2017) Gold nanostar substrates for metal-enhanced fluorescence through the first and second near-infrared windows. Chem Mater 29:6916–6926CrossRefGoogle Scholar
  33. 33.
    Zhang Y, Yang C, Zhang G, Peng Z, Yao L, Wang Q, Cao Z, Mu Q, Xuan L (2017) Distance-dependent metal-enhanced fluorescence by flowerlike silver nanostructures fabricated in liquid crystalline phase. Opt Mater 72:289–294CrossRefGoogle Scholar
  34. 34.
    Pang J, Theodorou IG, Centeno A, Petrov PK, Alford NM, Ryan MP, Xie F (2017) Gold nanodisc arrays as near infrared metal-enhanced fluorescence platforms with tuneable enhancement factors. J Mater Chem C 5:917–925CrossRefGoogle Scholar
  35. 35.
    Furtaw MD, Anderson JP, Middendorf LR, Bashford GR (2014) Near-infrared, surface-enhanced fluorescence using silver nanoparticle aggregates in solution. Plasmonics 9:27–34CrossRefGoogle Scholar
  36. 36.
    Chowdhury MH, Ray K, Gray SK, Pond J, Lakowicz JR (2009) Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules. Anal Chem 81:1397–1403PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Sugawa K, Tamura T, Tahara H, Yamaguchi D, Akiyama T, Otsuki J, Kusaka Y, Fukada N, Ushijima H (2013) Metal-enhanced fluorescence platforms based on plasmonic ordered copper arrays: wavelength dependence of quenching and enhancement effects. ACS Nano 7(11):9997–10010PubMedCrossRefGoogle Scholar
  38. 38.
    Geddes CD, Parfenov A, Roll D, Uddin MJ, Lackowicz JR (2003) Fluorescence spectral properties of indocyanine green on a roughened platinum electrode: metal-enhanced fluorescence. J Fluoresc 13(6):453–457PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Omidvar A, Rashidian Viziri MR, Jaleh B, Partovi Shabestari N, Noroozi M (2016) Metal-enhanced fluorescence of graphene oxide by palladium nanoparticles in the blue–green part of the spectrum. Chin Phys B 25(11):118102CrossRefGoogle Scholar
  40. 40.
    Rowland CE, Delehanty JB, Dwyer CL, Medintz IL (2017) Growing applications for bioassembled Förster resonance energy transfer cascades. Mater Today 20(3):131–141CrossRefGoogle Scholar
  41. 41.
    Chen S, Yu Y, Wang J (2017) Inner filter effect-based fluorescent sensing systems: a review. Anal Chim Acta.  https://doi.org/10.1016/j.aca.2017.10.026CrossRefPubMedGoogle Scholar
  42. 42.
    Zhou Z, Huang H, Chen Y, Liu F, Huang CZ, Li N (2014) A distance-dependent metal-enhanced fluorescence sensing platform based on molecular beacon design. Biosens Bioelectron 52:367–373PubMedCrossRefGoogle Scholar
  43. 43.
    Dragan AI, Bishop ES, Casas-Finet JR, Strouse RJ, McGivney J, Schenerman MA, Geddes CD (2012) Distance dependence of metal-enhanced fluorescence. Plasmonics 7(4):739–744CrossRefGoogle Scholar
  44. 44.
    Previte MJR, Zhang Y, Aslan K, Geddes CD (2007) Surface plasmon coupled fluorescence from copper substrates. Appl Phys Lett 91:151902CrossRefGoogle Scholar
  45. 45.
    Ray K, Szmacinski H, Enderlein J, Lackowicz JR (2007) Distance dependence of surface plasmon-coupled emission observed using Langmuir-Blodgett films. Appl Phys Lett 90:251116PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Karolin JO, Geddes CD (2012) Reduced lifetimes are directly correlated with excitation irradiance in metal-enhanced fluorescence (MEF). J Fluoresc 22(6):1659–1662PubMedCrossRefGoogle Scholar
  47. 47.
    Ren Z, Li X, Guo J, Wang R, Wu Y, Zhang M, Li C, Han Q, Dong J, Zheng H (2015) Solution-based metal-enhanced fluorescence with gold and gold/silver core-shell nanorods. Opt Commun 357:156–160CrossRefGoogle Scholar
  48. 48.
    Lee M, Yang W, Kim JH, Hwang K, Chae W (2017) Silver-coated nanoporous gold skeletons for fluorescence amplification. Microporous Mesoporous Mater 237:60–64CrossRefGoogle Scholar
  49. 49.
    Zhang Y, Dragan A, Geddes CD (2009) Wavelength dependence of metal-enhanced fluorescence. J Phys Chem C 113(28):12095–12100CrossRefGoogle Scholar
  50. 50.
    Hamo H, Karolin J, Mali B, Kushmaro A, Marks R, Geddes CD (2015) Metal-enhanced fluorescence from zinc substrates can lead to spectral distortion and a wavelength dependence. Appl Phys Lett 106:081605CrossRefGoogle Scholar
  51. 51.
    Dragan AI, Mali B, Geddes CD (2013) Wavelength-dependent metal-enhanced fluorescence using synchronous spectral analysis. Chem Phys Lett 556:168–172CrossRefGoogle Scholar
  52. 52.
    Dragan AI, Albrecht MT, Pavlovic R, Keane-Myers AM, Geddes CD (2012) Ultra-fast pg/ml anthrax toxin (protective antigen) detection assay based on microwave-accelerated metal-enhanced fluorescence. Anal Biochem 425:54–61PubMedCrossRefGoogle Scholar
  53. 53.
    Aslan K, Wu M, Lakowicz JR, Geddes CD (2007) Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and singlet nanoparticle sensing platforms. J Am Chem Soc 129:1524–1525PubMedCrossRefGoogle Scholar
  54. 54.
    Aslan K, Gryczynski I, Malicka J, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: application to high-throughput screening and drug discovery. In: Gad S (ed) Drug discovery handbook. Wiley, New Jersey, USA, pp 603–666Google Scholar
  55. 55.
    Aslan K, Holley P, Geddes CD (2006) Microwave-accelerated metal-enhanced fluorescence (MAMEF) with silver colloids in 96-well plates: application to ultra fast and sensitive immunoassays, high throughput screening, and drug discovery. J Immunol Methods 312:137–147PubMedCrossRefGoogle Scholar
  56. 56.
    Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775PubMedCrossRefGoogle Scholar
  57. 57.
    Rocha TL, Mestre NC, Sabóia-Morais SM, Bebianno MJ (2017) Environmental behaviour and ecotoxicity of quantum dots at various trophic levels: a review. Environ Int 98:1–17PubMedCrossRefGoogle Scholar
  58. 58.
    Juan J, Zhou S, Gu G (2005) Encapsulation of organic pigment particles with silica via sol–gel process. J Sol-Gel Sci Technol 36:265–274CrossRefGoogle Scholar
  59. 59.
    Xu D, Deng Y, Li C, Lin Y, Tang H (2017) Metal-enhanced fluorescent dye-doped silica nanoparticles and magnetic separation: a sensitive platform for one-step fluorescence detection of prostate specific antigen. Biosens Bioelectron 87:881–887PubMedCrossRefGoogle Scholar
  60. 60.
    Tarpani L, Latterini L (2017) Plasmonic effects of gold colloids on the fluorescence behavior of dye-doped SiO2 nanoparticles. J Lumin 185:192–199CrossRefGoogle Scholar
  61. 61.
    Asselin J, Legros P, Grégoire A, Boudreau D (2016) Correlating metal-enhanced fluorescence and structural properties in Ag@SiO2 core-shell nanoparticles. Plasmonics 11:1369–1376CrossRefGoogle Scholar
  62. 62.
    Kong W, Zhang B, Li R, Wu F, Xu T, Wu H (2015) Plasmon enhanced fluorescence from quaternary Cu-In-Zn-S quantum dots. Appl Surf Sci 327:394–399CrossRefGoogle Scholar
  63. 63.
    Ahmed SR, Hossain MA, Park JY, Kim S, Lee D, Suzuki T, Lee J, Park EY (2014) Metal-enhanced fluorescence on nanoporous gold leaf-based assay platform for virus detection. Biosens Bioelectron 58:33–39PubMedCrossRefGoogle Scholar
  64. 64.
    Tian T, Zhong Y, Deng C, Wang H, He Y, Ge Y, Song G (2017) Brightly near-infrared to blue emission tunable silver-carbon dot nanohybrid for sensing of ascorbic acid and construction of logic gate. Talanta 162:135–142PubMedCrossRefGoogle Scholar
  65. 65.
    Schmitz RD, Karolin JO, Geddes CD (2015) Plasmonic enhancement of intrinsic carbon nanodot emission. Chem Phys Lett 622:124–127CrossRefGoogle Scholar
  66. 66.
    Lin S, Wang Z, Zhang Y, Huang Y, Yuan R, Xiang W (2017) Easy synthesis of silver nanoparticles-orange emissive carbon dots hybrids exhibiting enhanced fluorescence for white light emitting diodes. J Alloy Compd 700:75–82CrossRefGoogle Scholar
  67. 67.
    Zhang Y, Zhang J, Zhang J, Lin S, Huang Y, Yuan R, Liang X, Xiang W (2017) Intense enhancement of yellow luminescent carbon dots coupled with gold nanoparticles toward white LED. Dyes Pigm 140:122–130CrossRefGoogle Scholar
  68. 68.
    Aslan K, Badugu R, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence from plastic substrates. J Lumin 15(2):92–104Google Scholar
  69. 69.
    Aslan K, Geddes CD (2005) Microwave-accelerated metal-enhanced fluorescence (MAMEF): a new platform technology for ultra-fast and ultra-bright assays. Anal Chem 77(24):8057–8067PubMedCrossRefGoogle Scholar
  70. 70.
    Dragan AI, Bishop ES, Casas-Finet JR, Strouse RJ, Schenerman MA, Geddes CD (2010) Metal-enhanced PicoGreen® fluorescence: application to fast and ultra-sensitive pg/ml DNA quantitation. J Immunol Methods 362:95–100PubMedCrossRefGoogle Scholar
  71. 71.
    Dragan AI, Bishop ES, Casas-Finet JR, Strouse RJ, Schenerman MA, Geddes CD (2010) Metal-enhanced PicoGreen fluorescence: application for double-stranded DNA quantification. Anal Biochem 396:8–12PubMedCrossRefGoogle Scholar
  72. 72.
    Eltzov E, Prilutsky D, Kushmaro A, Marks RS, Geddes CD (2009) Metal-enhanced bioluminescence: an approach for monitoring biological luminescent processes. Appl Phys Lett 94:083901CrossRefGoogle Scholar
  73. 73.
    Bondre N, Zhang Y, Geddes CD (2011) Metal-enhanced fluorescence based calcium detection: greater than 100-fold increase in signal/noise using Fluo-3 or Fluo-4 and silver nanostructures. Sens Actuators B 152:82–87CrossRefGoogle Scholar
  74. 74.
    Aslan K, Geddes CD (2010) Metal-enhanced fluorescence: progress towards a unified plasmon-fluorophore description. In: Geddes CD (ed) Metal-enhanced fluorescence. Wiley, Hoboken, NJ, pp 1–23Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryInstitute of Fluorescence, University of Maryland, Baltimore CountyBaltimoreUSA

Personalised recommendations