Plasmonic-Additive Enabled Polymer Nanocomposites

  • Mark H. GriepEmail author
Part of the Reviews in Plasmonics book series (RIP, volume 2017)


The last decade has demonstrated extensive progress in the design, synthesis, functionalization, and application of plasmonic particles; with more recent efforts elucidating the multiple pathways to harness/transfer the plasmonic energy to hybridized materials. The ability to extend plasmonic applications beyond solution-based or surface deposited systems, and harness these unique properties within bulk composites will open up new application possibilities ranging from optically responsive components to solar-driven catalytically active structures. This chapter details primary additive stabilization pathways, including the incorporation of grafted polymers and silica capping shells, in order to effectively integrate the plasmonic particles into polymer systems. For commercially relevant PNC processing methods, such as extrusion and injection molding, the addition of silica protective shells are critical to maintain the nanoadditives morphology and correlated plasmonic properties. Recent efforts have shown that this approach allows for the viable integration of plasmonic additives that can survive the harsh mechanical mixing conditions and elevated processing temperatures (exceeding 300 °C) within the PNC processing steps. Opportunities to precisely tailor the resonance properties, control dispersion homogeneity, and facilitate alignment of the materials are established, allowing for the expanded application of plasmonic nanoadditives into functional PNC systems.


Plasmonic additives Polymer nanocomposites Gold nanorods 



The author would like to thank Dr. Devon Boyne and Dr. Joshua Orlicki of the U.S. Army Research Laboratory, whose diligent efforts and creative approaches established the foundational work supporting this chapter.


  1. 1.
    Kumar SK, Benicewicz BC, Vaia RA, Winey KI (2017) 50th anniversary perspective: are polymer nanocomposites practical for applications? Macromolecules 50(3):714–731CrossRefGoogle Scholar
  2. 2.
    Burgos-Mármol JJ, Patti A (2017) Unveiling the impact of nanoparticle size dispersity on the behavior of polymer nanocomposites. Polymer 113:92–104CrossRefGoogle Scholar
  3. 3.
    Schneider GJ (2017) Dynamics of nanocomposites. Curr Opin Chem Eng 16:65–77CrossRefGoogle Scholar
  4. 4.
    Kotal M, Bhowmick AK (2015) Polymer nanocomposites from modified clays: Recent advances and challenges. Prog Polym Sci 51:127–187CrossRefGoogle Scholar
  5. 5.
    Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205CrossRefGoogle Scholar
  6. 6.
    Arash B, Wang Q, Varadan VK (2014) Mechanical properties of carbon nanotube/polymer composites. 4:6479Google Scholar
  7. 7.
    Mittal G, Dhand V, Rhee KY, Park S-J, Lee WR (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25CrossRefGoogle Scholar
  8. 8.
    Hu K, Kulkarni DD, Choi I, Tsukruk VV (2014) Graphene-polymer nanocomposites for structural and functional applications. Prog Polym Sci 39(11):1934–1972CrossRefGoogle Scholar
  9. 9.
    Cheng S, Xie S-J, Carrillo J-MY, Carroll B, Martin H, Cao P-F, Dadmun MD, Sumpter BG, Novikov VN, Schweizer KS, Sokolov AP (2017) Big effect of small nanoparticles: a shift in paradigm for polymer nanocomposites. ACS Nano 11(1):752–759CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chen Q, Gong S, Moll J, Zhao D, Kumar SK, Colby RH (2015) Mechanical reinforcement of polymer nanocomposites from percolation of a nanoparticle network. ACS Macro Letters 4(4):398–402CrossRefGoogle Scholar
  11. 11.
    Smith MJ, Malak ST, Jung J, Yoon YJ, Lin CH, Kim S, Lee KM, Ma R, White TJ, Bunning TJ, Lin Z, Tsukruk VV (2017) Robust, uniform, and highly emissive quantum dot-polymer films and patterns using thiolene chemistry. ACS Appl Mater Interfaces 9(20):17435–17448CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Vasileiadis M, Koutselas I, Pispas S, Vainos NA (2016) Design and evaluation of polymer matrices for the encapsulation of CdSe/ZnS quantum dots in photonic nanocomposite thin films. J Polym Sci Part B Polym Phys 54(5):552–560CrossRefGoogle Scholar
  13. 13.
    Daniel L, Gaël G, Céline M, Caroline C, Daniel B, Jean-Pierre S (2013) Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology 24(45):452001CrossRefGoogle Scholar
  14. 14.
    Fu L-S, Wang W-S, Xu C-Y, Li Y, Zhen L (2017) Design, fabrication and characterization of pressure-responsive films based on the orientation dependence of plasmonic properties of Ag@Au nanoplates. Sci Rep 7(1):1676CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dickerson EB, Dreaden EC, Huang X, El-Sayed IH, Chu H, Pushpanketh S, McDonald JF, El-Sayed MA (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269(1):57–66CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hore MJA, Composto RJ (2014) Functional polymer nanocomposites enhanced by nanorods. Macromolecules 47(3):875–887CrossRefGoogle Scholar
  17. 17.
    Ray C, Pal T (2017) Recent advances of metal-metal oxide nanocomposites and their tailored nanostructures in numerous catalytic applications. J Mater Chem A 5(20):9465–9487CrossRefGoogle Scholar
  18. 18.
    Tritschler U, Zlotnikov I, Keckeis P, Schlaad H, Cölfen H (2014) Optical properties of self-organized gold nanorod-polymer hybrid films. Langmuir 30(46):13781–13790CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Li L, Sun L, Gomez-Diaz JS, Hogan NL, Lu P, Khatkhatay F, Zhang W, Jian J, Huang J, Su Q, Fan M, Jacob C, Li J, Zhang X, Jia Q, Sheldon M, Alù A, Li X, Wang H (2016) Self-assembled epitaxial Au–Oxide vertically aligned nanocomposites for nanoscale metamaterials. Nano Lett 16(6):3936–3943CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wang Y-C, Lu L, Gunasekaran S (2017) Biopolymer/gold nanoparticles composite plasmonic thermal history indicator to monitor quality and safety of perishable bioproducts. Biosens Bioelectron 92:109–116CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Khaletskaya K, Reboul J, Meilikhov M, Nakahama M, Diring S, Tsujimoto M, Isoda S, Kim F, Kamei K-I, Fischer RA, Kitagawa S, Furukawa S (2013) Integration of porous coordination polymers and gold nanorods into core-shell mesoscopic composites toward light-induced molecular release. J Am Chem Soc 135(30):10998–11005CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gao C, Zhang Q, Lu Z, Yin Y (2011) Templated synthesis of metal nanorods in silica nanotubes. J Am Chem Soc 133(49):19706–19709CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tatsuma T, Nishi H, Ishida T (2017) Plasmon-induced charge separation: chemistry and wide applications. Chem Sci 8(5):3325–3337CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ma X-C, Dai Y, Yu L, Huang B-B (2016) Energy transfer in plasmonic photocatalytic composites. Light Sci Appl 5:e16017CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wang C, Chen Y, Wang T, Ma Z, Su Z (2008) Monodispersed gold nanorod-embedded silica particles as novel raman labels for biosensing. Adv Func Mater 18(2):355–361CrossRefGoogle Scholar
  26. 26.
    Wang Y, Wang Y, Wang W, Sun K, Chen L (2016) Reporter-embedded SERS tags from gold nanorod seeds: selective immobilization of reporter molecules at the tip of nanorods. ACS Appl Mater Interfaces 8(41):28105–28115CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Damm S, Fedele S, Murphy A, Holsgrove K, Arredondo M, Pollard R, Barry JN, Dowling DP, Rice JH (2015) Plasmon enhanced fluorescence studies from aligned gold nanorod arrays modified with SiO2 spacer layers. Appl Phys Lett 106(18):183109CrossRefGoogle Scholar
  28. 28.
    Nakahara Y, Takeda R, Tamai T, Yajima S, Kimura K (2017) Near-infrared dye immobilized in porous silica layer on gold nanorod and its fluorescence enhancement by strengthened electromagnetic field based on surface plasmon resonance. PlasmonicsGoogle Scholar
  29. 29.
    Chateau D, Liotta A, Lundén H, Lerouge F, Chaput F, Krein D, Cooper T, Lopes C, El-Amay AAG, Lindgren M, Parola S (2016) Long distance enhancement of nonlinear optical properties using low concentration of plasmonic nanostructures in dye doped monolithic Sol-Gel materials. Adv Func Mater 26(33):6005–6014CrossRefGoogle Scholar
  30. 30.
    Shiigi H, Kinoshita T, Fukuda M, Le DQ, Nishino T, Nagaoka T (2015) Nanoantennas as biomarkers for bacterial detection. Anal Chem 87(7):4042–4046CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Brongersma ML, Halas NJ, Nordlander P (2015) Plasmon-induced hot carrier science and technology. Nat Nano 10(1):25–34CrossRefGoogle Scholar
  32. 32.
    Xuming Z, Yu Lim C, Ru-Shi L, Din Ping T (2013) Plasmonic photocatalysis. Rep Prog Phys 76(4):046401CrossRefGoogle Scholar
  33. 33.
    Priecel P, Adekunle Salami H, Padilla RH, Zhong Z, Lopez-Sanchez JA (2016) Anisotropic gold nanoparticles: Preparation and applications in catalysis. Chin J Catal 37(10):1619–1650CrossRefGoogle Scholar
  34. 34.
    Chalabi H, Schoen D, Brongersma ML (2014) Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett 14(3):1374–1380CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Clavero C (2014) Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photon 8(2):95–103CrossRefGoogle Scholar
  36. 36.
    Jiang W, Bai S, Wang L, Wang X, Yang L, Li Y, Liu D, Wang X, Li Z, Jiang J, Xiong Y (2016) Integration of multiple plasmonic and co-catalyst nanostructures on TiO2 nanosheets for visible-near-infrared photocatalytic hydrogen evolution. Small 12(12):1640–1648CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314(5802):1107–1110CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Murphy CJ, Thompson LB, Chernak DJ, Yang JA, Sivapalan ST, Boulos SP, Huang J, Alkilany AM, Sisco PN (2011) Gold nanorod crystal growth: From seed-mediated synthesis to nanoscale sculpting. Curr Opin Colloid Interface Sci 16(2):128–134CrossRefGoogle Scholar
  39. 39.
    Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15(10):1957–1962CrossRefGoogle Scholar
  40. 40.
    Boyne DA, Chipara AC, Griep MH (2016) Transverse axis morphological control for tailored gold nanorod (GNR) synthesis. RSC Advanc 6(68):63634–63641CrossRefGoogle Scholar
  41. 41.
    Mackenzie GW, Devon AB, Mark HG (2017) Rapid synthesis of high purity gold nanorods via microwave irradiation. Mater Res Expr 4(3):035040CrossRefGoogle Scholar
  42. 42.
    Kim F, Song JH, Yang P (2002) Photochemical Synthesis of Gold Nanorods. J Am Chem Soc 124(48):14316–14317CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ting CL, Composto RJ, Frischknecht AL (2016) Orientational control of polymer grafted nanorods. Macromolecules 49(3):1111–1119CrossRefGoogle Scholar
  44. 44.
    Lin C-C, Ohno K, Clarke N, Winey KI, Composto RJ (2014) Macromolecular diffusion through a polymer matrix with polymer-grafted chained nanoparticles. Macromolecules 47(15):5357–5364CrossRefGoogle Scholar
  45. 45.
    Lin C-C, Griffin PJ, Chao H, Hore MJA, Ohno K, Clarke N, Riggleman RA, Winey KI, Composto RJ (2017) Grafted polymer chains suppress nanoparticle diffusion in athermal polymer melts. J Chem Phys 146(20):203332CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Lin C-C, Parrish E, Composto RJ (2016) Macromolecule and particle dynamics in confined media. Macromolecules 49(16):5755–5772CrossRefGoogle Scholar
  47. 47.
    Hore MJA, Ye X, Ford J, Gao Y, Fei J, Wu Q, Rowan SJ, Composto RJ, Murray CB, Hammouda B (2015) Probing the structure, composition, and spatial distribution of ligands on gold nanorods. Nano Lett 15(9):5730–5738CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Yi C, Zhang S, Webb KT, Nie Z (2017) Anisotropic self-assembly of hairy inorganic nanoparticles. Acc Chem Res 50(1):12–21CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Dubois LH, Nuzzo RG (1992) Synthesis, structure, and properties of model organic surfaces. Annu Rev Phys Chem 43(1):437–463CrossRefGoogle Scholar
  50. 50.
    Schulz F, Friedrich W, Hoppe K, Vossmeyer T, Weller H, Lange H (2016) Effective PEGylation of gold nanorods. Nanoscale 8(13):7296–7308CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Burrows ND, Lin W, Hinman JG, Dennison JM, Vartanian AM, Abadeer NS, Grzincic EM, Jacob LM, Li J, Murphy CJ (2016) Surface chemistry of gold nanorods. Langmuir 32(39):9905–9921CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Pierrat S, Zins I, Breivogel A, Sönnichsen C (2007) self-assembly of small gold colloids with functionalized gold nanorods. Nano Lett 7(2):259–263CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Boyne DA, Chipara AC, Giri L, Griep MH (2016) Stabilization of Gold Nanorods (GNRs) in Aqueous and Organic Environments by Select Surface Functionalization. U.S. Army Research Laboratory Technical Report 2016, ARL-TR-7581, pp. 1–18Google Scholar
  54. 54.
    Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD (2009) Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5(6):701–708CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Sivapalan ST, Vella JH, Yang TK, Dalton MJ, Haley JE, Cooper TM, Urbas AM, Tan LS, Murphy CJ (2013) Off-resonant two-photon absorption cross-section enhancement of an organic chromophore on gold nanorods. J Phys Chem Lett 4(5).
  56. 56.
    Graf C, Vossen DLJ, Imhof A, van Blaaderen A (2003) A general method to coat colloidal particles with silica. Langmuir 19(17):6693–6700CrossRefGoogle Scholar
  57. 57.
    Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM (2006) silica-coating and hydrophobation of ctab-stabilized gold nanorods. Chem Mater 18(10):2465–2467CrossRefGoogle Scholar
  58. 58.
    Crane CC, Wang F, Li J, Tao J, Zhu Y, Chen J (2017) Synthesis of Copper-Silica Core–Shell nanostructures with sharp and stable localized surface plasmon resonance. J Phys Chem C 121(10):5684–5692CrossRefGoogle Scholar
  59. 59.
    Kobayashi Y, Katakami H, Mine E, Nagao D, Konno M, Liz-Marzán LM (2005) Silica coating of silver nanoparticles using a modified Stöber method. J Colloid Interface Sci 283(2):392–396CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Imura Y, Koizumi S, Akiyama R, Morita-Imura C, Kawai T (2017) Highly stable silica-coated gold nanoflowers supported on Alumina. Langmuir 33(17):4313–4318CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Boyne DA, Griep MH (2017) Decorated core-shell architectures: influence of the dimensional properties on hybrid resonances. Plasmonics 2017, 1–8Google Scholar
  62. 62.
    Boyne DA, Savage AM, Griep MH, Beyer FL, Orlicki JA (2017) Process induced alignment of gold nano-rods (GNRs) in thermoplastic polymer composites with tailored optical properties. Polymer 110:250–259CrossRefGoogle Scholar
  63. 63.
    Ferrier RC, Koski J, Riggleman RA, Composto RJ (2016) Engineering the assembly of gold nanorods in polymer matrices. Macromolecules 49(3):1002–1015CrossRefGoogle Scholar
  64. 64.
    Petrova H, Perez Juste J, Pastoriza-Santos I, Hartland GV, Liz-Marzan LM, Mulvaney P (2006) On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating. Phys Chem Chem Phys 8(7):814–821CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Zou R, Zhang Q, Zhao Q, Peng F, Wang H, Yu H, Yang J (2010) Thermal stability of gold nanorods in an aqueous solution. Colloids Surf A 372(1):177–181CrossRefGoogle Scholar
  66. 66.
    Chen Y-S, Frey W, Kim S, Homan K, Kruizinga P, Sokolov K, Emelianov S (2010) Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt Express 18(9):8867–8878CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Liu Y, Mills EN, Composto RJ (2009) Tuning optical properties of gold nanorods in polymer films through thermal reshaping. J Mater Chem 19(18):2704–2709CrossRefGoogle Scholar
  68. 68.
    Joo SH, Park JY, Tsung C-K, Yamada Y, Yang P, Somorjai GA (2009) Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat Mater 8(2):126–131CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.US Army Research LaboratoryAberdeen Proving GroundUSA

Personalised recommendations