Brain Connectivity Reduction Reflects Disturbed Self-Organisation of the Brain: Neural Disorders and General Anaesthesia

  • Axel Hutt
Part of the Springer Series in Cognitive and Neural Systems book series (SSCNS, volume 13)


The neurophysiological correlate of functional neural impairment is an open problem. Functional impairment may be observed as mental disorder, seizures or modification of consciousness level. The latter include loss of responsiveness under general anaesthesia, sleep or even trance in hypnosis. This chapter points out the relation between reduced brain connectivity as a possible correlate of neural functional impairment and self-organisation in the brain. A first numerical example demonstrates how neural noise disturbs self-organisation in the brain. Estimators of self-organisation such as global phase synchrony or information transfer quantify the degree of self-organisation. The chapter provides a brief literature review on how these estimators indicate brain connectivity modifications in neural disorders and under general anaesthesia.


Unconsciousness Alzheimer’s disease Parkinson disease Multiple sclerosis Noise-induced transition 


  1. 1.
    Singer W (1986) The brain as a self-organising system. Eur Arch Psychiatry Neurol Sci 236(1):4–9CrossRefGoogle Scholar
  2. 2.
    Haken H (1996) Principles of brain functioning. Springer, BerlinCrossRefGoogle Scholar
  3. 3.
    Kelso J (1995) Dynamic patterns: the self-organization of brain and behavior. MIT Press, CambridgeGoogle Scholar
  4. 4.
    Haken H (2004) Synergetics. Springer, BerlinCrossRefGoogle Scholar
  5. 5.
    Nicolis G, Prigogine I (1977) Self-organization in non-equilibrium systems: from dissipative structures to order through fluctuations. Wiley, New YorkGoogle Scholar
  6. 6.
    Singer W (1993) Synchronisation of cortical activity and its putative role in information processing and learning. Annu Rev Physiol 55:349CrossRefGoogle Scholar
  7. 7.
    Hutt A, Munk M (2006) Mutual phase synchronization in single trial data. Chaos Complex Lett 2(2):6Google Scholar
  8. 8.
    Koenig P, Engel A, Singer W (1995) Relation between oscillatory activity and long-range synchronization in cat visual cortex. Proc Natl Acad Sci USA 92:290–294CrossRefGoogle Scholar
  9. 9.
    Singer W, Gray C (1995) Visual feature integration and the temporal correlation hypothesis. Ann Rev Neurosc 18:555–586CrossRefGoogle Scholar
  10. 10.
    Uhl C, Kruggel F, Opitz B, von Cramon DY (1998) A new concept for EEG/MEG signal analysis: detection of interacting spatial modes. Hum Brain Map 6:137CrossRefGoogle Scholar
  11. 11.
    Seifert B, Adamski D, Uhl C (2018) Analytical quantification of Shilnikov Chaos in epileptic EEG data. Front Appl Math Stat 4:57CrossRefGoogle Scholar
  12. 12.
    Hutt A (2004) An analytical framework for modeling evoked and event-related potentials. Int J Bif Chaos 14(2):653–666CrossRefGoogle Scholar
  13. 13.
    Hutt A, Riedel H (2003) Analysis and modeling of quasi-stationary multivariate time series and their application to middle latency auditory evoked potentials. Physica D 177:203CrossRefGoogle Scholar
  14. 14.
    Fuchs A, Mayville J, Cheyne D, Einberg H, Deeke L, Kelso J (2000) Spatiotemporal analysis of neuromagnetic events underlying the emergence of coordinate instabilities. NeuroImage 12:71–84CrossRefGoogle Scholar
  15. 15.
    Lehmann D, Skrandies W (1980) Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroenceph Clin Neurophysiol 48:609CrossRefGoogle Scholar
  16. 16.
    Pascual-Marqui R, Michel C, Lehmann D (1995) Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans Biomed Eng 42(7):658–665CrossRefGoogle Scholar
  17. 17.
    Hutt A, Schrauf M (2007) Detection of transient synchronization in multivariate brain signals, application to event-related potentials. Chaos Complex Lett 3(1):1–24Google Scholar
  18. 18.
    Jirsa V, McIntosh A (eds) (2007) Handbook of brain connectivity. Springer, New YorkGoogle Scholar
  19. 19.
    Sporns O (2010) Networks of the brain. MIT Press, CambridgeCrossRefGoogle Scholar
  20. 20.
    Friston K (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2:56–78CrossRefGoogle Scholar
  21. 21.
    Friston K, Harrison L, Penny W (2003) Dynamic causal modeling. NeuroImage 19:466–470CrossRefGoogle Scholar
  22. 22.
    Tononi G, Sporns O (2003) Measuring information integration. BMC Neurosci 4:31CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lefebvre J, Hutt A, Knebel J, Whittingstall K, Murray M (2015) Stimulus statistics shape oscillations in nonlinear recurrent neural networks. J Neurosci 35(7):2895–2903CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hutt A, Mierau A, Lefebvre J (2016) Dynamic control of synchronous activity in networks of spiking neurons. PLoS One 11(9):e0161488. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Buckwar E, Kuske R, Mohammed S, Shardlow T (2008) Weak convergence of the Euler scheme for stochastic differential delay equations. LMS J Comput Math 11:60–99CrossRefGoogle Scholar
  26. 26.
    Lachaux JP, Rodriguez E, Martinerie J, Varela F (1999) Measuring phase synchrony in brain signals. Human Brain Mapp 8:194–208CrossRefGoogle Scholar
  27. 27.
    Hutt A, Lefebvre J, Hight D, Sleigh J (2018) Suppression of underlying neuronal fluctuations mediates EEG during general anaesthesia. Neuroimage 179:414–428 CrossRefGoogle Scholar
  28. 28.
    Lizier J (2014) JIDT: an information-theoretic toolkit for studying the dynamics of complex systems. Front Robot AI 1:11CrossRefGoogle Scholar
  29. 29.
    Wibral M, Vicente R, Lizier J (2014) Directed information measures in neuroscience. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  30. 30.
    Wollstadt P, Martinez-Zarzuela M, Vicente R, Díaz-Pernas F, Wibral M (2014) Efficient transfer entropy analysis of non-stationary neural time series. PLoS One 9(7):e102833CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wibral M, Lizier J, Vögler S, Priesemann V, Galuske R (2014) Local active information storage as a tool to understand distributed neural information processing. Front Neuroinform 8:1CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Scheltens P, Leys D, Barkhof F, Huglo D, Weinstein H, Vermersch P, Kuiper M, Steinling M, Wolters E, Valk J (1992) Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 55:967–972CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yekhlef F, Ballan G, Macia F, Delmer O, Sourgen C, Tison F (2003) Routine MRI for the differential diagnosis of Parkinson’s disease, MSA, PSP, and CBD. J Neural Transm 110(2):151–169CrossRefGoogle Scholar
  34. 34.
    Sbardella E, Petsas N, Tona F, Pantano P (2015) Resting-state fMRI in MS: general concepts and brief overview of its application. Biomed Res Int 2015:212693CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Dogonowski A, Andersen K, Madsen K, Sorensen P, Paulson O, Blinkenberg M, Siebner H (2014) Multiple sclerosis impairs regional functional connectivity in the cerebellum. Neuroimage: Clin 4:130–138CrossRefGoogle Scholar
  36. 36.
    Hawellek D, Hipp J, Lewis C, Corbetta M, Engel A (2011) Increased functional connectivity indicates the severity of cognitive impairment in multiple sclerosis. Proc Natl Acad Sci USA 108(47):19066–19071CrossRefGoogle Scholar
  37. 37.
    Wang K, Liang M, Wang L, Tian L, Zhang X, Li K, Jiang T (2007) Altered functional connectivity in early Alzheimer’s disease: a resting-state fMRI study. Hum Brain Mapp 28:967–978CrossRefGoogle Scholar
  38. 38.
    Greicius M, Srivastava G, Reiss A, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidemce from functional MRI. Proc Natl Acad Sci USA 101:4637–4642CrossRefGoogle Scholar
  39. 39.
    Horwitz B, Grady C, Schrageter N, Duara R, Rapoport S (1987) Intercorrelations of regional glucose metabolic rates in Alzheimer’s disease. Brain Res 407:294–306CrossRefGoogle Scholar
  40. 40.
    Bokde A, Lopez-Bayo P, Meindl T, Pechler S, Born C, Faltraco F, Teipel S, Moller H, Hampel H (2006) Functional connectivity of the fusiform gyrus during a face-matching task in subjects with mild cognitive impairment. Brain 129:1113–1124CrossRefGoogle Scholar
  41. 41.
    Diez-Cirarda M, Strafella A, Kim J, Pena J, Ojeda N, Cabrera-Zubizarreta A, Ibarretxe-Bilbao N (2018) Dynamic functional connectivity in Parkinson’s disease patients with mild cognitive impairment and normal cognition. NeuroImage: Clin 17:847–855CrossRefGoogle Scholar
  42. 42.
    Hacker C, Perlmutter J, Criswell S, Ances B, Snyder A (2012) Resting state functional connectivity of the striatum in Parkinson’s disease. Brain 135:3699–3711CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Disbrowa E, Carmichael O, He J, Lanni K, Dressler E, Zhang L, Malhado-Chang N, Sigvardt K (2014) Resting state functional connectivity is associated with cognitive dysfunction in non-demented people with Parkinson’s disease. J Parkinson’s Dis 4:453–365Google Scholar
  44. 44.
    Quinkert A, Vimal V, Weil Z, Reeke G, Schiff N, Banavar J, Pfaff D (2011) Quantitative descriptions of generalized arousal, an elementary function of the vertebrate brain. Proc Natl Acad Sci USA 108:15617–15623CrossRefGoogle Scholar
  45. 45.
    Moruzzi G, Magoun H (1949) Brainstem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1:455–473CrossRefGoogle Scholar
  46. 46.
    Saper C, Scammell T, Lu J (2005) Hypothalamic regulatrion of sleep and circadian rhythms. Nature 437:1257–1263CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Alkire M, Hudetz A, GTononi (2008) Consciousness and anesthesia. Science 322:876–880.
  48. 48.
    Brown E, Lydic R, Schiff N (2010) General anesthesia, sleep, and coma. N Engl J Med 363:2638–2650CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Sellers KK, Bennett DV, Hutt A, Frohlich F (2013) Anesthesia differentially modulates spontaneous network dynamics by cortical area and layer. J Neurophysiol 110:2739–2751CrossRefGoogle Scholar
  50. 50.
    Purdon PL, Pierce ET, Mukamel EA, Prerau MJ, Walsh JL, Wong KF, Salazar-Gomez AF, Harrell PG, Sampson AL, Cimenser A, Ching S, Kopell NJ, Tavares-Stoeckel C, Habeeb K, Merhar R, Brown EN (2012) Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci USA 110:E1142–1150CrossRefGoogle Scholar
  51. 51.
    Murphy M, Bruno MA, Riedner BA, Boveroux P, Noirhomme Q, Landsness EC, Brichant JF, Phillips C, Massimini M, Laureys S, Tononi G, Boly M (2011) Propofol anesthesia and sleep: a high-density EEG study. Sleep 34(3):283–291CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Fiset P, Paus T, Daloze T, Plourde G, Meuret P, Bonhomme V, Hajj-Ali N, Backman S, Evans A (1999) Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission tomographic study. J Neurosci 19(13):5506–5513CrossRefGoogle Scholar
  53. 53.
    Purdon PL, Pierce E, Bonmassar G, Walsh J, Harrell G, Deschler D, Kwo J, Barlow M, Merhar R, Lamus C, Mullaly C, Sullivan M, Maginnis S, Skoniecki D, Higgins H, Brown EN (2009) Simultaneous electroencephalography and functional magnetic resonance imaging of general anesthesia. Ann NY Acad Sci 1157:61–70CrossRefGoogle Scholar
  54. 54.
    Franks N, Lieb W (1994) Molecular and cellular mechanisms of general anesthesia. Nature 367:607–614CrossRefGoogle Scholar
  55. 55.
    Scheib C (2017) Brainstem influence on thalamocortical oscillations during anesthesia emergence. Front Syst Neurosci 11:66CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Schiff N (2008) Central thalamic contributions to arousal regulation and neurological disorders of consciousness. Ann NY Acad Sci 1129:105–118CrossRefGoogle Scholar
  57. 57.
    Tononi G (2004) An information integration theory of consciousness. BMC Neurosci 5:42CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Pillay S, Vizuete J, Liu X, Juhasz G, Hudetz A (2014) Brainstem stimulation augments information integration in the cerebral cortex of desflurane-anesthetized rats. Front Integr Neurosci 8:8CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Hudetz A, Mashour G (2016) Disconnecting consciousness: is there a common anesthetic end point? Anesth Analg 123(5):1228–1240CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Boly M, Moran R, Murphy M, Boveroux P, Bruno MA, Noirhomme Q, Ledoux D, Bonhomme V, Brichant JF, Tononi G, Laureys S, Friston KI (2012) Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness. J Neurosci 32(20):7082–7090CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Vizuete J, Pillay S, Ropella K, Hudetz A (2014) Graded defragmentation of cortical neuronal firing during recovery of consciousness in rats. Neuroscience 275:340–351CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Lewis L, Weiner V, Mukamel E, Donoghue J, Eskandar E, Madsen J, Anderson W, Hochberg L, Cash S, Brown E, Purdon P (2012) Rapid fragmentation of neuronal networks at the onset of propofol-induced unconsciousness. Proc Natl Acad Sci USA 109(21):E3377–3386CrossRefGoogle Scholar
  63. 63.
    Hashemi M, Hutt A, Sleigh J (2015) How the cortico-thalamic feedback affects the EEG power spectrum over frontal and occipital regions during propofol-induced anaesthetic sedation. J Comput Neurosci 39(1):155CrossRefGoogle Scholar
  64. 64.
    Huang Z, Liu X, Mashour G, Hudetz A (2018) Timescales of intrinsic bold signal dynamics and functional connectivity in pharmacologic and neuropathologic states of unconsciousness. J Neurosci 38(9):2304–2317CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Wollstadt P, Sellers K, Rudelt L, Priesemann V, Hutt A, Frohlich F, Wibral M (2017) Breakdown of local information processing may underlie isoflurane anesthesia effects. PLoS Comput Biol 13(6):e1005511CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Liu X, Pillay S, Li R, Vizuete J, Pechman K, Schmainda K, Hudetz A (2013) Multiphasic modification of intrinsic functional connectivity of the rat brain during increasing levels of propofol. NeuroImage 83:581–592CrossRefGoogle Scholar
  67. 67.
    Liu X, Li S, Hudetz A (2014) Increased precuneus connectivity during propofol sedation. Neurosci Lett 561:18–23CrossRefGoogle Scholar
  68. 68.
    Stammatakis E, Aadapa R, Absalom A, Menon D (2010) Changes in resting neural connectivity during propofol sedation. PLoS One 5:e14224CrossRefGoogle Scholar
  69. 69.
    Cimenser A, Purdon PL, Pierce ET, Walsh JL, Salazar-Gomez AF, Harrell PG, Tavares-Stoeckel C, Habeeb K, Brown EN (2011) Tracking brain states under general anesthesia by using global coherence analysis. Proc Natl Acad Sci USA 108(21):8832–8837CrossRefGoogle Scholar
  70. 70.
    Supp G, Siegel M, Hipp J, Engel A (2011) Cortical hypersynchrony predicts breakdown of sensory processing during loss of consciousness. Curr Biol 21:1988–1993CrossRefGoogle Scholar
  71. 71.
    Lee M, Sanders R, Yeom SK, Won D-O, Seo K, Kim H, Tononi G, Lee S (2017) Network properties in transitions of consciousness during propofol-induced sedation. Sci Rep 7:16791CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Jiruska P, de Curtis M, Jefferys JGR, Schevon CA, Schiff SJ, Schindler K (2013) Synchronization and desynchronization in epilepsy: controversies and hypothesis. J Physiol 591(4):787–797. CrossRefGoogle Scholar
  73. 73.
    Schevon CA, Goodman RR, McKhann G Jr, Emerson RG (2010) Propagation of epileptiform activity on a submillimeter scale. J Clin Neurophysiol 27:406-411CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Netoff TI, Schiff SJ (2002) Decreased neuronal synchronization during experimental seizures. J Neurosci 22:7297–7307CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Axel Hutt
    • 1
  1. 1.Department FE 12 (Data Assimilation)Deutscher Wetterdienst – German Meteorological Service, Research and DevelopmentOffenbach am MainGermany

Personalised recommendations