Advertisement

Shaping Brain Rhythms: Dynamic and Control-Theoretic Perspectives on Periodic Brain Stimulation for Treatment of Neurological Disorders

  • John D. GriffithsEmail author
  • Jérémie R. Lefebvre
Chapter
Part of the Springer Series in Cognitive and Neural Systems book series (SSCNS, volume 13)

Abstract

Rhythmic, collective activity is a fundamental feature of neural systems. As a result of this, many of the challenges and opportunities involved in developing clinical tools from basic neuroscience knowledge come down to questions about control of dynamic, oscillatory networks. In this chapter we review a range of experimental and theoretical work on control of neural oscillations, in healthy brains and in relation to various clinical conditions. We highlight the main types of qualitative system behaviour that can result from application of periodic stimulation and present a simple case study on this using a mathematical model of rhythmogenesis in thalamocortical circuits. The concepts discussed here may, we hope, help provide some guidelines and principles for the development of future generations of more physiologically and dynamically informed brain stimulation techniques, paradigms, and researchers.

References

  1. 1.
    Fries P, Reynolds JH, Rorie AE, Desimone R (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560–1563CrossRefGoogle Scholar
  2. 2.
    Hanslmayr S, Matuschek J, Fellner MC (2014) Entrainment of prefrontal beta oscillations induces an endogenous echo and impairs memory formation. Curr Biol 24:904–909CrossRefGoogle Scholar
  3. 3.
    Duarte IC, Castelhano J, Sales F, Castelo-Branco M (2016) The anterior versus posterior hippocampal oscillations debate in human spatial navigation: evidence from an electrocorticographic case study. Brain Behav 6:e00507CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Jacobs J, Korolev IO, Caplan JB, Ekstrom AD, Litt B, Baltuch G, Fried I, Schulze-Bonhage A, Madsen JR, Kahana MJ (2010) Right-lateralized brain oscillations in human spatial navigation. J Cogn Neurosci 22:824–836CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Jadi MP, Sejnowski TJ (2014) Cortical oscillations arise from contextual interactions that regulate sparse coding. Proc Natl Acad Sci 111:6780–6785CrossRefGoogle Scholar
  6. 6.
    Başar (2012) A review of alpha activity in integrative brain function: Fundamental physiology, sensory coding, cognition and pathology. Int J Psychophysiol 86:1–24Google Scholar
  7. 7.
    Tallon-Baudry (2003) Oscillatory synchrony and human visual cognition. J Physiol-Paris 97:355–363Google Scholar
  8. 8.
    Mierau A, Klimesch W, Lefebvre J (2017) State-dependent alpha peak frequency shifts: experimental evidence, potential mechanisms and functional implications. Neuroscience 360:146–154CrossRefGoogle Scholar
  9. 9.
    Uhlhaas PJ, Singer W (2006) Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52:155–168CrossRefGoogle Scholar
  10. 10.
    Vardy AN, van Wegen EE, Kwakkel G, Berendse HW, Beek PJ, Daffertshofer A (2011) Slowing of M1 activity in Parkinson’s disease during rest and movement – an MEG study. Clin Neurophysiol 122:789–795CrossRefGoogle Scholar
  11. 11.
    Demirtaş M, Falcon C, Tucholka A, Gispert JD, Molinuevo JL, Deco G (2017) A whole-brain computational modeling approach to explain the alterations in resting-state functional connectivity during progression of Alzheimer’s disease. Neuroimage: Clin 16:343–354CrossRefGoogle Scholar
  12. 12.
    Assenza G, Capone F, di Biase L, Ferreri F, Florio L, Guerra A, Marano M, Paolucci M, Ranieri F, Salomone G, Tombini M (2017) Oscillatory activities in neurological disorders of elderly: biomarkers to target for neuromodulation. Front Aging Neurosci 9:189CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kielar A, Deschamps T, Chu RK, Jokel R, Khatamian YB, Chen JJ, Meltzer JA (2016) Identifying dysfunctional cortex: dissociable effects of stroke and aging on resting state dynamics in MEG and fMRI. Front Aging Neurosci 8:40CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kielar A, Deschamps T, Jokel R, Meltzer JA (2016) Functional reorganization of language networks for semantics and syntax in chronic stroke: evidence from MEG. Hum Brain Mapp 37:2869–2893CrossRefGoogle Scholar
  15. 15.
    Chu RK, Braun AR, Meltzer JA (2015) MEG-based detection and localization of perilesional dysfunction in chronic stroke. Neuroimage: Clin 8:157–169CrossRefGoogle Scholar
  16. 16.
    Oshino S, Kato A, Wakayama A, Taniguchi M, Hirata M, Yoshimine T (2007) Magnetoencephalographic analysis of cortical oscillatory activity in patients with brain tumors: synthetic aperture magnetometry (SAM) functional imaging of delta band activity. Neuroimage 34:957–964CrossRefGoogle Scholar
  17. 17.
    Baayen JC, de Jongh A, Stam CJ, de Munck JC, Jonkman JJ, Trenité DG, Berendse HW, van Walsum AM, Heimans JJ, Puligheddu M, Castelijns JA (2003) Localization of slow wave activity in patients with tumor-associated epilepsy. Brain Topogr 16:85–93CrossRefGoogle Scholar
  18. 18.
    van Wijk BC, Willemse RB, Vandertop WP, Daffertshofer A (2012) Slowing of M1 oscillations in brain tumor patients in resting state and during movement. Clin Neurophysiol 123:2212–2219CrossRefGoogle Scholar
  19. 19.
    Sarnthein J, Jeanmonod D (2008) High thalamocortical theta coherence in patients with neurogenic pain. Neuroimage 39:1910–1917CrossRefGoogle Scholar
  20. 20.
    Sarnthein J, Stern J, Aufenberg C, Rousson V, Jeanmonod D (2006) Increased EEG power and slowed dominant frequency in patients with neurogenic pain. Brain 129:55–66CrossRefGoogle Scholar
  21. 21.
    Romei V, Bauer M, Brooks JL, Economides M, Penny W, Thut G, Driver J, Bestmann S (2016) Causal evidence that intrinsic beta-frequency is relevant for enhanced signal propagation in the motor system as shown through rhythmic TMS. Neuroimage 126:120–130CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Thut G, Bergmann TO, Fröhlich F, Soekadar SR, Brittain JS, Valero-Cabré A, Sack AT, Miniussi C, Antal A, Siebner HR, Ziemann U, Herrmann C (2017) Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: a position paper. Clin Neurophysiol 128:843–857CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dayan E, Censor N, Buch ER, Sandrini M, Cohen LG (2013) Noninvasive brain stimulation: from physiology to network dynamics and back. Nat Neurosci 16:3422CrossRefGoogle Scholar
  24. 24.
    Paulus W (2011) Transcranial electrical stimulation (tES – tDCS; tRNS, tACS) methods. Neuropsychol Rehabil 21:602–617CrossRefGoogle Scholar
  25. 25.
    Glannon W (2013) Neuromodulation, agency and autonomy. Brain Topogr 27:46–54CrossRefGoogle Scholar
  26. 26.
    Hummel F, Celnik P, Giraux P, Floel A, Wu WH, Gerloff C, Cohen LG (2005) Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 128:490–499CrossRefGoogle Scholar
  27. 27.
    Hummel FC, Cohen LG (2006) Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol 5:708–712CrossRefGoogle Scholar
  28. 28.
    Pascual-Leone A, Rubio B, Pallardó F, Catalá MD (1996) Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. The Lancet 348:233–237CrossRefGoogle Scholar
  29. 29.
    Schlaepfer TE, Bewernick BH (2013) Neuromodulation for treatment resistant depression: state of the art and recommendations for clinical and scientific conduct. Brain Topogr 27:12–19CrossRefGoogle Scholar
  30. 30.
    Freitas C, Mondragón-Llorca H, Pascual-Leone A (2011) Noninvasive brain stimulation in Alzheimer’s disease: systematic review and perspectives for the future. Exp Gerontol 46:611–627PubMedPubMedCentralGoogle Scholar
  31. 31.
    Fried I (2016) Brain stimulation in Alzheimer’s disease. J Alzheimer’s Dis 54(2):789–791CrossRefGoogle Scholar
  32. 32.
    Dinkelbach L, Brambilla M, Manenti R, Brem AK (2017) Non-invasive brain stimulation in Parkinson’s disease: exploiting crossroads of cognition and mood. Neurosci Biobehav Rev 75:407–418CrossRefGoogle Scholar
  33. 33.
    Fridley J, Thomas JG, Navarro JC, Yoshor D (2012) Brain stimulation for the treatment of epilepsy. Neurosurg Focus 32(3):E13CrossRefGoogle Scholar
  34. 34.
    Goodman JH (2004) Brain stimulation as a therapy for epilepsy. Adv Exp Med Biol 548:239–247CrossRefGoogle Scholar
  35. 35.
    Violante IR, Li LM, Carmichael DW, Lorenz R, Leech R, Hampshire A, Rothwell JC, Sharp DJ (2017) Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance. eLife 6:e2201CrossRefGoogle Scholar
  36. 36.
    Reato D, Rahman A, Bikson M, Parra LC (2013) Effects of weak transcranial alternating current stimulation on brain activity – a review of known mechanisms from animal studies. Front Hum Neurosci 7:687CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Manola L, Holsheimer J, Veltink P, Buitenweg JR (2007) Anodal vs cathodal stimulation of motor cortex: a modeling study. Clin Neurophysiol 118:464–474CrossRefGoogle Scholar
  38. 38.
    Łȩski S, Lindén H, Tetzlaff T, Pettersen KH, Einevoll GT (2013) Frequency dependence of signal power and spatial reach of the local field potential. PLoS Comput Biol 9:e1003137Google Scholar
  39. 39.
    Schiff ND (2010) Recovery of consciousness after brain injury: a mesocircuit hypothesis. Trends Neurosci 33:1–9CrossRefGoogle Scholar
  40. 40.
    Schmidt SL, Iyengar AK, Foulser AA, Boyle MR, Fröhlich F (2014) Endogenous cortical oscillations constrain neuromodulation by weak electric fields. Brain Stimul 7:878–889CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lindén H, Pettersen KH, Einevoll GT (2010) Intrinsic dendritic filtering gives low-pass power spectra of local field potentials. J Comput Neurosci 29:423–444CrossRefGoogle Scholar
  42. 42.
    Radman T, Su Y, An JH, Parra LC, Bikson M (2007) Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects. J Neurosci 2:3030–3036CrossRefGoogle Scholar
  43. 43.
    Bastos AM, Litvak V, Moran R, Bosman CA, Fries P, Friston KJ (2015) A DCM study of spectral asymmetries in feedforward and feedback connections between visual areas V1 and V4 in the monkey. Neuroimage 108:460–475CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ (2012) Canonical microcircuits for predictive coding. Neuron 76:695–711CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Cecere R, Rees G, Romei V (2015) Individual differences in alpha frequency drive crossmodal illusory perception. Curr Biol 25:231–235CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Cecere R, Romei V, Bertini C, Làdavas E (2014) Crossmodal enhancement of visual orientation discrimination by looming sounds requires functional activation of primary visual areas: a case study. Neuropsychologia 56:350–358CrossRefGoogle Scholar
  47. 47.
    Ali MM, Sellers KK, Fröhlich F (2013) Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. J Neurosci 33:11262–11275CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Herrmann CS, Murray MM, Ionta S, Hutt A, Lefebvre J (2016) Shaping intrinsic neural oscillations with periodic stimulation. J Neurosci 36:5328–5337CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Chaudhuri R, Knoblauch K, Gariel MA, Kennedy H, Wang XJ (2015) A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex. Neuron 88:419–431CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Chaudhuri R, Bernacchia A, Wang XJ (2014) A diversity of localized timescales in network activity. eLife 3:e01239CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Deco G, Ponce-Alvarez A, Mantini D, Romani GL, Hagmann P, Corbetta M (2013) Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations. J Neurosci 33:11239–11252CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Stefanescu RA, Jirsa VK (2008) A low dimensional description of globally coupled heterogeneous neural networks of excitatory and inhibitory neurons. PLoS Comput Biol 4:31000219CrossRefGoogle Scholar
  53. 53.
    Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12:1–24CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Jansen BH, Rit VG (1995) Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol Cybern 73:357–366CrossRefGoogle Scholar
  55. 55.
    Valdes PA, Jiménez JC, Riera J, Biscay R, Ozaki T (1999) Nonlinear EEG analysis based on a neural mass model. Biol Cybern 81:415–424CrossRefGoogle Scholar
  56. 56.
    Lopes da Silva FH, Hoeks A, Smits H, Zetterberg LH (1974) Model of brain rhythmic activity. Kybernetik 15:27–37CrossRefGoogle Scholar
  57. 57.
    Spiegler A, Knösche TR, Schwab K, Haueisen J, Atay FM (2011) Modeling brain resonance phenomena using a neural mass model. PLoS Comput Biol 7:e1002298CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kunze T, Hunold A, Haueisen J, Jirsa V, Spiegler A (2016) Transcranial direct current stimulation changes resting state functional connectivity: a large-scale brain network modeling study. Neuroimage 140:174–187CrossRefGoogle Scholar
  59. 59.
    Cona F, Lacanna M, Ursino M (2014) A thalamo-cortical neural mass model for the simulation of brain rhythms during sleep. J Comput Neurosci 37:125–148CrossRefGoogle Scholar
  60. 60.
    Cona F, Zavaglia M, Massimini M, Rosanova M, Ursino M (2011) A neural mass model of interconnected regions simulates rhythm propagation observed via TMS-EEG. Neuroimage 57:1045–1058CrossRefGoogle Scholar
  61. 61.
    Lefebvre J, Hutt A, Fröhlich F (2017) Stochastic resonance mediates the state-dependent effect of periodic stimulation on cortical alpha oscillations. eLife 6:e32054CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Alagapan S, Schmidt SL, Lefebvre J, Hadar E, Shin HW, Fröhlich F (2016) Modulation of cortical oscillations by low-frequency direct cortical stimulation is state-dependent. PLOS Biol 14:e1002424CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Spiegler A, Hansen EC, Bernard C, McIntosh AR, Jirsa VK (2016) Selective activation of resting-state networks following focal stimulation in a connectome-based network model of the human brain. eNeuro:3Google Scholar
  64. 64.
    Proix T, Spiegler A, Schirner M, Rothmeier S, Ritter P, Jirsa VK (2016) How do parcellation size and short-range connectivity affect dynamics in large-scale brain network models? Neuroimage 142:135–149CrossRefGoogle Scholar
  65. 65.
    Deco G, Hagmann P, Hudetz AG, Tononi G (2013) Modeling resting-state functional networks when the cortex falls asleep: local and global changes. Cereb Cortex 24:3180–3194CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Deco G, Senden M, Jirsa V (2012) How anatomy shapes dynamics: a semi-analytical study of the brain at rest by a simple spin model. Front Comput Neurosci 6:68CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Klimesch W, Sauseng P, Hanslmayr S (2007) EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev 53:63–88CrossRefGoogle Scholar
  68. 68.
    Klimesch W, Hanslmayr S, Sauseng P, Gruber WR, Doppelmayr M (2007) P1 and traveling alpha waves: evidence for evoked oscillations. J Neurophysiol 97:1311–1318CrossRefGoogle Scholar
  69. 69.
    Hughes SW, Crunelli V (2005) Thalamic mechanisms of EEG alpha rhythms and their pathological implications. Neurosci 11:357–372Google Scholar
  70. 70.
    Hughes SW, Lõrincz M, Cope DW, Blethyn KL, Kékesi KA, Parri HR, Juhász G, Crunelli V (2004) Synchronized oscillations at α and θ frequencies in the lateral geniculate nucleus. Neuron 42:253–268CrossRefGoogle Scholar
  71. 71.
    Lõrincz ML, Kékesi KA, Juhász G, Crunelli V, Hughes SW (2009) Temporal framing of thalamic relay-mode firing by phasic inhibition during the alpha rhythm. Neuron 63:683–696CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Rennie CJ, Robinson PA, Wright J (2002) Unified neurophysical model of EEG spectra and evoked potentials. Biol Cybern 86:457–471CrossRefGoogle Scholar
  73. 73.
    Robinson PA, Rennie CJ, Wright JJ, Bahramali H, Gordon E, Rowe DL (2001) Prediction of electroencephalographic spectra from neurophysiology. Phys Rev E 63:021903CrossRefGoogle Scholar
  74. 74.
    Robinson PA, Rennie CJ, Wright JJ (1997) Propagation and stability of waves of electrical activity in the cerebral cortex. Phys Rev E 56:826–840CrossRefGoogle Scholar
  75. 75.
    Robinson PA, Rennie CJ, Rowe DL, O’Connor SC, Gordon E (2005) Multiscale brain modelling. Philos Trans R Soc B: Biol Sci 360:1043–1050CrossRefGoogle Scholar
  76. 76.
    Victor JD, Drover JD, Conte MM, Schiff ND (2011) Mean-field modeling of thalamocortical dynamics and a model-driven approach to EEG analysis. Proc Natl Acad Sci 108:15631–15638CrossRefGoogle Scholar
  77. 77.
    Berger H (1933) Über das Elektrenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten 98:231–254CrossRefGoogle Scholar
  78. 78.
    Supp GG, Siegel M, Hipp JF, Engel AK (2011) Cortical hypersynchrony predicts breakdown of sensory processing during loss of consciousness. Curr Biol 21:1988–1993CrossRefGoogle Scholar
  79. 79.
    Notbohm A, Kurths J, Herrmann CS (2016) Modification of brain oscillations via rhythmic light stimulation provides evidence for entrainment but not for superposition of event-related responses. Front Hum Neurosci 10:10PubMedPubMedCentralGoogle Scholar
  80. 80.
    Ritter P, Schirner M, McIntosh AR, Jirsa VK (2013) The virtual brain integrates computational modeling and multimodal neuroimaging. Brain Connect 3:121–145CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Sanz-Leon P, Knock SA, Spiegler A, Jirsa VK (2015) Mathematical framework for large-scale brain network modeling in the virtual brain. Neuroimage 111:385–430CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Krembil Centre for NeuroinformaticsCentre for Addiction and Mental HealthTorontoCanada
  2. 2.Department of PsychiatryUniversity of TorontoTorontoCanada
  3. 3.Krembil Research InstituteUniversity Health NetworkTorontoCanada
  4. 4.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations