Advertisement

Alzheimer’s Disease: Rhythms, Local Circuits, and Model-Experiment Interactions

  • Frances K. SkinnerEmail author
  • Alexandra Chatzikalymniou
Chapter
Part of the Springer Series in Cognitive and Neural Systems book series (SSCNS, volume 13)

Abstract

As more biological details emerge from sophisticated experimental techniques today, we are faced with the increasing challenge of how best to develop and use computational models to gain insight into neurological diseases. In this chapter we briefly describe what is known regarding Alzheimer’s disease (AD) and changes in brain rhythms as well as computational models in AD. We then briefly describe an expansion of our previous proposal of using whole hippocampus experimental preparations that spontaneously express θ and γ rhythms when developing microcircuit models. In this way, a cycling between model and experiment becomes possible allowing model insights to be brought to bear in understanding AD in our complex brain circuits.

References

  1. 1.
    Marder E (2015) Understanding brains: details, intuition, and big data. PLoS Biol 13(5):e1002147.  https://doi.org/10.1371/journal.pbio.1002147 CrossRefGoogle Scholar
  2. 2.
    Cohen MX, Gulbinaite R (2014) Five methodological challenges in cognitive electrophysiology. NeuroImage 85(Part 2):702–710. https://doi.org/10.1016/j.neuroimage.2013.08.010
  3. 3.
    Ferguson BR, Gao WJ (2018) PV interneurons: critical regulators of E/I balance for prefrontal cortex-dependent behavior and psychiatric disorders. Front Neural Circuits 12.  https://doi.org/10.3389/fncir.2018.00037
  4. 4.
    Palop JJ, Mucke L (2016) Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat Rev Neurosci 17(12):777–792.  https://doi.org/10.1038/nrn.2016.141 CrossRefGoogle Scholar
  5. 5.
    Grashow R, Brookings T, Marder E (2009) Reliable neuromodulation from circuits with variable underlying structure. Proc Natl Acad Sci U S A 106(28).  https://doi.org/10.1073/pnas.0905614106
  6. 6.
    Skinner FK, Ferguson KA (2013) Modeling oscillatory dynamics in brain microcircuits as a way to help uncover neurological disease mechanisms: a proposal. Chaos: Interdiscip J Nonlinear Sci 23(4):046108. https://doi.org/10.1063/1.4829620 CrossRefGoogle Scholar
  7. 7.
    Arendt T (2001) Alzheimer’s disease as a disorder of mechanisms underlying structural brain self-organization. Neuroscience 102(4):723–765CrossRefGoogle Scholar
  8. 8.
    Supekar K, Menon V, Rubin D, Musen M, Greicius MD (2008) Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput Biol 4(6).  https://doi.org/10.1371/journal.pcbi.1000100
  9. 9.
    Cho H, Seo SW, Kim JH, Kim C, Ye BS, Kim GH, Noh Y, Kim HJ, Yoon CW, Seong JK, Kim CH, Kang SJ, Chin J, Kim ST, Lee KH, Na DL (2013) Changes in subcortical structures in early- versus late-onset Alzheimer’s disease. Neurobiol Aging 34(7):1740–1747. https://doi.org/10.1016/j.neurobiolaging.2013.01.001 CrossRefGoogle Scholar
  10. 10.
    Douaud G, Menke RAL, Gass A, Monsch AU, Rao A, Whitcher B, Zamboni G, Matthews PM, Sollberger M, Smith S (2013) Brain microstructure reveals early abnormalities more than two years prior to clinical progression from mild cognitive impairment to Alzheimer’s disease. J Neurosci 33(5):2147–2155.  https://doi.org/10.1523/JNEUROSCI.4437-12.2013 CrossRefGoogle Scholar
  11. 11.
    Boche D, Nicoll JAR (2010) Are we getting to grips with Alzheimer’s disease at last? Brain J Neurol 133(Pt 5):1297–1299.  https://doi.org/10.1093/brain/awq099 CrossRefGoogle Scholar
  12. 12.
    Minati L, Edginton T, Bruzzone MG, Giaccone G (2009) Current concepts in Alzheimer’s disease: a multidisciplinary review. Am J Alzheimer’s Dis Other Dement 24(2):95–121. https://doi.org/10.1177/1533317508328602 CrossRefGoogle Scholar
  13. 13.
    O’Dwyer L, Lamberton F, Matura S, Tanner C, Scheibe M, Miller J, Rujescu D, Prvulovic D, Hampel H (2012) Reduced hippocampal volume in healthy young ApoE4 carriers: an MRI study. PloS One 7(11):e48895.  https://doi.org/10.1371/journal.pone.0048895 CrossRefGoogle Scholar
  14. 14.
    Saraceno C, Musardo S, Marcello E, Pelucchi S, Diluca M (2013) Modeling Alzheimer’s disease: from past to future. Exp Pharmacol Drug Discov 4:77.  https://doi.org/10.3389/fphar.2013.00077 Google Scholar
  15. 15.
    Besthorn C, Zerfass R, Geiger-Kabisch C, Sattel H, Daniel S, Schreiter-Gasser U, Förstl H (1997) Discrimination of Alzheimer’s disease and normal aging by EEG data. Electroencephalogr Clin Neurophysiol 103(2):241–248CrossRefGoogle Scholar
  16. 16.
    Coben LA, Danziger WL, Berg L (1983) Frequency analysis of the resting awake EEG in mild senile dementia of Alzheimer type. Electroencephalogr Clin Neurophysiol 55(4):372–380CrossRefGoogle Scholar
  17. 17.
    Moretti DV, Babiloni C, Binetti G, Cassetta E, Dal Forno G, Ferreric F, Ferri R, Lanuzza B, Miniussi C, Nobili F, Rodriguez G, Salinari S, Rossini PM (2004) Individual analysis of EEG frequency and band power in mild Alzheimer’s disease. Clin Neurophysiol 115(2):299–308CrossRefGoogle Scholar
  18. 18.
    Hier DB, Mangone CA, Ganellen R, Warach JD, Van Egeren R, Perlik SJ, Gorelick PB (1991) Quantitative measurement of delta activity in Alzheimer’s disease. Clin EEG (electroencephalogr) 22(3):178–182CrossRefGoogle Scholar
  19. 19.
    Bergmann TO, Born J (2018) Phase-amplitude coupling: a general mechanism for memory processing and synaptic plasticity? Neuron 97(1):10–13. https://doi.org/10.1016/j.neuron.2017.12.023 CrossRefGoogle Scholar
  20. 20.
    Poza J, Bachiller A, Gomez C, Garcia M, Nunez P, Gomez-Pilar J, Tola-Arribas MA, Cano M, Hornero R (2017) Phase-amplitude coupling analysis of spontaneous EEG activity in Alzheimer’s disease. In: Conference proceedings: …annual international conference of the IEEE engineering in medicine and biology society. IEEE Engineering in Medicine and Biology Society, pp 2259–2262.  https://doi.org/10.1109/EMBC.2017.8037305
  21. 21.
    Goodman MS, Kumar S, Zomorrodi R, Ghazala Z, Cheam ASM, Barr MS, Daskalakis ZJ, Blumberger DM, Fischer C, Flint A, Mah L, Herrmann N, Bowie CR, Mulsant BH, Rajji TK (2018) Theta-gamma coupling and working memory in Alzheimer’s dementia and mild cognitive impairment. Frontiers Aging Neurosci 10.  https://doi.org/10.3389/fnagi.2018.00101
  22. 22.
    Koenig T, Prichep L, Dierks T, Hubl D, Wahlund LO, John ER, Jelic V (2005) Decreased EEG synchronization in Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 26(2):165–171. https://doi.org/10.1016/j.neurobiolaging.2004.03.008 CrossRefGoogle Scholar
  23. 23.
    Park YM, Che HJ, Im CH, Jung HT, Bae SM, Lee SH (2008) Decreased EEG synchronization and its correlation with symptom severity in Alzheimer’s disease. Neurosci Res 62(2):112–117. https://doi.org/10.1016/j.neures.2008.06.009 CrossRefGoogle Scholar
  24. 24.
    Wang J, Fang Y, Wang X, Yang H, Yu X, Wang H (2017) Enhanced gamma activity and cross-frequency interaction of resting-state electroencephalographic oscillations in patients with Alzheimer’s disease. Front Aging Neurosci 9.  https://doi.org/10.3389/fnagi.2017.00243
  25. 25.
    Alberdi A, Aztiria A, Basarab A (2016) On the early diagnosis of Alzheimer’s disease from multimodal signals: a survey. Artif Intell Med 71:1–29. https://doi.org/10.1016/j.artmed.2016.06.003 CrossRefGoogle Scholar
  26. 26.
    Dauwels J, Vialatte F, Cichocki A (2010) Diagnosis of Alzheimer’s disease from EEG signals: where are we standing? Curr Alzheimer Res 7(6):487–505CrossRefGoogle Scholar
  27. 27.
    Jeong J (2004) EEG dynamics in patients with Alzheimer’s disease. Clin Neurophysiol 115(7):1490–1505. https://doi.org/10.1016/j.clinph.2004.01.001 CrossRefGoogle Scholar
  28. 28.
    Lizio R, Vecchio F, Frisoni GB, Ferri R, Rodriguez G, Babiloni C (2011) Electroencephalographic rhythms in Alzheimer’s disease. Int J Alzheimer’s Dis 2011:927573. https://doi.org/10.4061/2011/927573 Google Scholar
  29. 29.
    Kitchigina VF (2018) Alterations of coherent theta and gamma network oscillations as an early biomarker of temporal lobe epilepsy and Alzheimer’s disease. Front Integr Neurosci 12.  https://doi.org/10.3389/fnint.2018.00036
  30. 30.
    Goutagny R, Gu N, Cavanagh C, Jackson J, Chabot JG, Quirion R, Krantic S, Williams S (2013) Alterations in hippocampal network oscillations and theta-gamma coupling arise before Aβ overproduction in a mouse model of Alzheimer’s disease. Eur J Neurosci 37(12):1896–1902.  https://doi.org/10.1111/ejn.12233 CrossRefGoogle Scholar
  31. 31.
    Goutagny R, Krantic S (2013) Hippocampal oscillatory activity in Alzheimer’s disease: toward the identification of early biomarkers? Aging Dis 4(3):134–140PubMedPubMedCentralGoogle Scholar
  32. 32.
    Hamm V, Héraud C, Cassel JC, Mathis C, Goutagny R (2015) Precocious alterations of brain oscillatory activity in Alzheimer’s disease: a window of opportunity for early diagnosis and treatment. Front Cell Neurosci 491.  https://doi.org/10.3389/fncel.2015.00491
  33. 33.
    Mondragón-Rodríguez S, Gu N, Manseau F, Williams S (2018) Alzheimer’s transgenic model is characterized by very early brain network alterations and -CTF fragment accumulation: reversal by -secretase inhibition. Front Cell Neurosci 12.  https://doi.org/10.3389/fncel.2018.00121
  34. 34.
    Zhang X, Zhong W, Brankačk J, Weyer SW, Müller UC, Tort ABL, Draguhn A (2016) Impaired theta-gamma coupling in APP-deficient mice. Sci Rep 6:21948.  https://doi.org/10.1038/srep21948 CrossRefGoogle Scholar
  35. 35.
    Shankar GM, Walsh DM (2009) Alzheimer’s disease: synaptic dysfunction and Abeta. Mol Neurodegener 4:48. https://doi.org/10.1186/1750-1326-4-48 CrossRefGoogle Scholar
  36. 36.
    Rubio SE, Vega-Flores G, Martínez A, Bosch C, Pérez-Mediavilla A, del Río J, Gruart A, Delgado-García JM, Soriano E, Pascual M (2012) Accelerated aging of the GABAergic septohippocampal pathway and decreased hippocampal rhythms in a mouse model of Alzheimer’s disease. FASEB J 26(11):4458–4467. https://doi.org/10.1096/fj.12-208413 CrossRefGoogle Scholar
  37. 37.
    Verret L, Mann EO, Hang GB, Barth AMI, Cobos I, Ho K, Devidze N, Masliah E, Kreitzer AC, Mody I, Mucke L, Palop JJ (2012) Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149(3):708–721. https://doi.org/10.1016/j.cell.2012.02.046 CrossRefGoogle Scholar
  38. 38.
    Martinez-Losa M, Tracy TE, Ma K, Verret L, Clemente-Perez A, Khan AS, Cobos I, Ho K, Gan L, Mucke L, Alvarez-Dolado M, Palop JJ (2018) Nav1.1-overexpressing interneuron transplants restore brain rhythms and cognition in a mouse model of Alzheimer’s disease. Neuron 98(1):75–89.e5. https://doi.org/10.1016/j.neuron.2018.02.029
  39. 39.
    Cutsuridis V, Moustafa AA (2017) Computational models of Alzheimer’s disease. Scholarpedia 12(1):32144.  https://doi.org/10.4249/scholarpedia.32144 CrossRefGoogle Scholar
  40. 40.
    de Haan W, Mott K, van Straaten ECW, Scheltens P, Stam CJ (2012) Activity dependent degeneration explains hub vulnerability in Alzheimer’s disease. PLoS Comput Biol 8(8):e1002582.  https://doi.org/10.1371/journal.pcbi.1002582 CrossRefGoogle Scholar
  41. 41.
    Puri IK, Li L (2010) Mathematical modeling for the pathogenesis of Alzheimer’s disease. PLOS ONE 5(12):e15176.  https://doi.org/10.1371/journal.pone.0015176 CrossRefGoogle Scholar
  42. 42.
    Menschik ED, Finkel LH (1998) Neuromodulatory control of hippocampal function: towards a model of Alzheimer’s disease. Artif Intell Med 13(1–2):99–121CrossRefGoogle Scholar
  43. 43.
    Cutsuridis V, Cobb S, Graham BP (2010) Encoding and retrieval in a model of the hippocampal CA1 microcircuit. Hippocampus 20(3):423–446.  https://doi.org/10.1002/hipo.20661 Google Scholar
  44. 44.
    Romani A, Marchetti C, Bianchi D, Leinekugel X, Poirazi P, Migliore M, Marie H (2013) Computational modeling of the effects of amyloid-beta on release probability at hippocampal synapses. Front Comput Neurosci 7:1.  https://doi.org/10.3389/fncom.2013.00001 CrossRefGoogle Scholar
  45. 45.
    Zou X, Coyle D, Wong-Lin K, Maguire L (2011) Computational study of hippocampal-septal theta rhythm changes due to beta-amyloid-altered ionic channels. PLoS ONE 6(6):e21579.  https://doi.org/10.1371/journal.pone.0021579 CrossRefGoogle Scholar
  46. 46.
    Cohen MX (2017) Where does EEG come from and what does it mean? Trends Neurosci 40(4):208–218. https://doi.org/10.1016/j.tins.2017.02.004 CrossRefGoogle Scholar
  47. 47.
    Koroshetz W, Gordon J, Adams A, Beckel-Mitchener A, Churchill J, Farber G, Freund M, Gnadt J, Hsu NS, Langhals N, Lisanby S, Liu G, Peng GCY, Ramos K, Steinmetz M, Talley E, White S (2018) The state of the NIH BRAIN initiative. J Neurosci 38(29):6427–6438.  https://doi.org/10.1523/JNEUROSCI.3174-17.2018 CrossRefGoogle Scholar
  48. 48.
    Goutagny R, Jackson J, Williams S (2009) Self-generated theta oscillations in the hippocampus. Nat Neurosci 12(12):1491–1493. https://doi.org/10.1038/nn.2440 CrossRefGoogle Scholar
  49. 49.
    Jackson J, Goutagny R, Williams S (2011) Fast and slow gamma rhythms are intrinsically and independently generated in the subiculum. J Neurosci 31(34):12104–12117.  https://doi.org/10.1523/JNEUROSCI.1370-11.2011 CrossRefGoogle Scholar
  50. 50.
    Ferguson KA, Chatzikalymniou AP, Skinner FK (2017) Combining theory, model, and experiment to explain how intrinsic theta rhythms are generated in an in vitro whole hippocampus preparation without oscillatory inputs. eNeuro 4(4).  https://doi.org/10.1523/ENEURO.0131-17.2017
  51. 51.
    Ferguson KA, Huh CYL, Amilhon B, Manseau F, Williams S, Skinner FK (2015) Network models provide insights into how oriens-lacunosum-moleculare and bistratified cell interactions influence the power of local hippocampal CA1 theta oscillations. Frontiers Syst Neurosci 9:110.  https://doi.org/10.3389/fnsys.2015.00110 CrossRefGoogle Scholar
  52. 52.
    Chatzikalymniou AP, Skinner FK (2018) Deciphering the contribution of Oriens-Lacunosum/Moleculare (OLM) cells to intrinsic theta rhythms using biophysical local field potential (LFP) models. eNeuro pp ENEURO.0146–18.2018.  https://doi.org/10.1523/ENEURO.0146-18.2018
  53. 53.
    Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I (2016) Interneuronal mechanisms of hippocampal theta oscillation in a full-scale model of the rodent CA1 circuit. eLife 5:e18566.  https://doi.org/10.7554/eLife.18566 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Frances K. Skinner
    • 1
    • 2
    Email author
  • Alexandra Chatzikalymniou
    • 1
    • 3
  1. 1.Krembil Research InstituteUniversity Health NetworkTorontoCanada
  2. 2.Department of Medicine (Neurology) and PhysiologyUniversity of TorontoTorontoCanada
  3. 3.Department of PhysiologyUniversity of TorontoTorontoCanada

Personalised recommendations