Advertisement

Lignin Conversion to Carbon Fibre

  • Oluwashina Phillips Gbenebor
  • Samson Oluropo Adeosun
Chapter

Abstract

Recent investigations on lignin are aimed at developing high-value materials from its products. This study proliferates as a result of relative low cost, high abundance and renewable characteristics of the biopolymer. One of the major products affirmed to exhibit such added value compared to other lignin products is carbon fibre (CF), an important component of composite materials known for its wide range of tensile strengths and tensile modulus, corrosion resistance, good electrical and thermal conductivities and lightweight with a density between 1 and 3 g cm−3. Containing approximately 90 wt.% carbon, it is useful in aircraft brakes, military and commercial planes, lithium batteries, sporting goods, space structures and structural reinforcement in construction materials. The production of carbon materials from lignin is a difficult one as it is highly substituted with oxygen functional groups, which makes the material highly prone to crosslinking reactions for the formation of anisotropic carbons. Various steps, such as spinning of precursor fibres, stabilisation, carbonisation and sometimes graphitisation, surface treatment and sizing, have been employed in the production of CF from one of its major sources (pulp and paper industry). To further enhance the production and properties of CF from lignin, other industrial by-products such as brewery waste need to be investigated while alternative CF production techniques can be carried out.

References

  1. 1.
    B. Kamm, M. Kamm, Appl. Microbiol. Biotechnol. 64, 137–145 (2004)CrossRefGoogle Scholar
  2. 2.
    P. Langan, A.K. Naskar, F. Chen, M.J. Biddy, C.E. Wyman, P. Gilna, B.H. Davison, J.N. Saddler, R.A. Dixon, T.J. Tschaplinski, M.F. Davis, M. Keller, G.A. Tuskan, R. Chandra, G.T. Beckham, A.J. Ragauskas, Science 344, 1246843 (2014)CrossRefGoogle Scholar
  3. 3.
    L. Santarelli, M. Saxe, C. Gross, A. Surget, S. Dulawa, N. Weisstaub, J. Lee, R. Duman, O. Arancio, F. Battaglia, C. Beizung, R. Hen, Science 301, 805–809 (2014)CrossRefGoogle Scholar
  4. 4.
    L. Kitzing, C. Mitchell, P.E. Morthorst, Energy Policy 51, 192–201 (2012)CrossRefGoogle Scholar
  5. 5.
    J.A. Melero, J. Iglesias, A. Garcia, Energy Environ. Sci. 5, 7393–7420 (2012)CrossRefGoogle Scholar
  6. 6.
    P.J. Dauenhauer, G.W. Huber, Green Chem. 16, 382 (2014)CrossRefGoogle Scholar
  7. 7.
    B.E. Dale, R.G. Ong, Biotechnol. Prog. 28, 893–898 (2012)CrossRefGoogle Scholar
  8. 8.
    P.C.A. Bruijnincx, B.M. Weckhuysen, Angew. Chem. Int. Ed. 52, 11980–11987 (2013)CrossRefGoogle Scholar
  9. 9.
    J.M. Rosas, R. Berenguer, M.J. Valero-Romero, J. RodrÃguez-Mirasol, T. Cordero, Front. Mater. 1, 1–17 (2014)CrossRefGoogle Scholar
  10. 10.
    M. Kleinert, T. Barth, Energy Fuels 22, 1371–1379 (2008)CrossRefGoogle Scholar
  11. 11.
    T. Werpy, G. Petersen, US Dep. Energy, 1–76 (2004)Google Scholar
  12. 12.
    M. Yáñez-S, B. Matsuhiro, C. Nuñez, S. Pan, C.A. Hubbell, P. Sannigrahi, A.J. Ragauskas, Polym. Degrad. Stab. 110, 184–194 (2014)CrossRefGoogle Scholar
  13. 13.
    A. Brandt, J. Gräsvik, J.P. Hallett, T. Welton, Green Chem. 15, 550–583 (2013)CrossRefGoogle Scholar
  14. 14.
    H. Chen, in H. Chen (Ed.), Springer Dordrecht, 2014, pp. 25–71Google Scholar
  15. 15.
    P. Alvira, E. Tomás-Pejó, M. Ballesteros, M.J. Negro, Bioresour. Technol. 101, 4851–4861 (2010)CrossRefGoogle Scholar
  16. 16.
    N. Akhtar, K. Gupta, D. Goyal, A. Goyal, Environ. Prog. Sustain. Energy 35, 489–511 (2016)CrossRefGoogle Scholar
  17. 17.
    A. Recherche, Catal. Today 27, 195–202 (1996)CrossRefGoogle Scholar
  18. 18.
    Y. Sun, J. Cheng, Bioresour. Technol. 83, 1–11 (2002)CrossRefGoogle Scholar
  19. 19.
    J. Li, G. Henriksson, G. Gellerstedt, Bioresour. Technol. 98, 3061–3068 (2007)CrossRefGoogle Scholar
  20. 20.
    P.N. Williamson, Pulp Pap. Can. 88, 47–49 (1987)Google Scholar
  21. 21.
    B. Wang, X.-J. Shen, J.-L. Wen, R.-C. Sun, RSC Adv. 6, 57986–57995 (2016)CrossRefGoogle Scholar
  22. 22.
    X.-J. Shen, B. Wang, H. Pan-li, J.-L. Wen, R.-C. Sun, RSC Adv. 6, 45315–45325 (2016)CrossRefGoogle Scholar
  23. 23.
    P. Azadi, O.R. Inderwildi, R. Farnood, D.A. King, Renew. Sust. Energ. Rev. 21, 506–523 (2013)CrossRefGoogle Scholar
  24. 24.
    B. Joffres, D. Laurenti, N. Charon, A. Daudin, A. Quignard, C. Geantet, Oil Gas Sci. Technol. Rev. IFP Energies Nouv. 68, 753–763 (2013)CrossRefGoogle Scholar
  25. 25.
    M.P. Pandey, C.S. Kim, Chem. Eng. Technol. 34, 29–41 (2011)CrossRefGoogle Scholar
  26. 26.
    B. Güvenatam, E.H.J. Heeres, E.A. Pidko, E.J.M. Hensen, Catal. Today 259, 460–466 (2016)CrossRefGoogle Scholar
  27. 27.
    M.M. Hepditch, R.W. Thring, Can. J. Chem. Eng. 78, 226–231 (2000)CrossRefGoogle Scholar
  28. 28.
    B. Güvenatam, E.H.J. Heeres, E.A. Pidko, E.J.M. Hensen, Catal. Today 269, 9–20 (2016)CrossRefGoogle Scholar
  29. 29.
    Y.S.S. Kubo, N. Ishikawa, Y. Uraki, Mokuzai Gakkaishi 43, 655–662 (1997)Google Scholar
  30. 30.
    Holzforsch. Int. J. Biol. Chem. Phys. Technol. Wood 50, 144 (1996)Google Scholar
  31. 31.
    S. Kubo, J.F. Kadla, J. Polym. Environ. 13, 97–105 (2005)CrossRefGoogle Scholar
  32. 32.
    F. Derbyshire, R. Andrews, D. Jacques, M. Jagtoyen, G. Kimber, T. Rantell, Fuel 80, 345–356 (2001)CrossRefGoogle Scholar
  33. 33.
    M. Akdere, S. Schriever, G. Seide, T. Gries, Int. J. Cloth. Sci. Technol. 28, 293–299 (2016)CrossRefGoogle Scholar
  34. 34.
    J. Long, Y. Xu, T. Wang, Z. Yuan, R. Shu, Q. Zhang, L. Ma, Appl. Energy 141, 70–79 (2015)CrossRefGoogle Scholar
  35. 35.
    V.B. Gupta, Manuf. Fibre Technol. (Springer, Dordrecht, 1997), pp. 67–97CrossRefGoogle Scholar
  36. 36.
    S. Kubo, Y. Uraki, Y. Sano, Carbon N. Y. 36, 1119–1124 (1998)CrossRefGoogle Scholar
  37. 37.
    I. Dallmeyer, F. Ko, J.F. Kadla, J. Wood Chem. Technol. 30, 315–329 (2010)CrossRefGoogle Scholar
  38. 38.
    I. Dallmeyer, F. Ko, J.F. Kadla, Ind. Eng. Chem. Res. 53, 2697–2705 (2014)CrossRefGoogle Scholar
  39. 39.
    I. Dallmeyer, L.T. Lin, Y. Li, F. Ko, J.F. Kadla, Macromol. Mater. Eng. 299, 540–551 (2014)CrossRefGoogle Scholar
  40. 40.
    D.I. Choi, J.-N. Lee, J. Song, P.-H. Kang, J.-K. Park, Y.M. Lee, J. Solid State Electrochem. 17, 2471–2475 (2013)CrossRefGoogle Scholar
  41. 41.
    N.-Y. Teng, I. Dallmeyer, J.F. Kadla, J. Wood Chem. Technol. 33, 299–316 (2013)CrossRefGoogle Scholar
  42. 42.
    C. Lai, P. Kolla, Y. Zhao, H. Fong, A.L. Smirnova, Electrochim. Acta 130, 431–438 (2014)CrossRefGoogle Scholar
  43. 43.
    S. Hu, Y.L. Hsieh, J. Mater. Chem. A 1, 11279–11288 (2013)CrossRefGoogle Scholar
  44. 44.
    S. Hu, S. Zhang, N. Pan, Y. Lo Hsieh, J. Power Sources 270, 106–112 (2014)CrossRefGoogle Scholar
  45. 45.
    L. Lin, Y. Li, F.K. Ko, J. Fiber Bioeng. Inform. 6, 335–347 (2013)CrossRefGoogle Scholar
  46. 46.
    C. Lu, C. Blackwell, Q. Ren, E. Ford, ACS Sustain. Chem. Eng. 5, 2949–2959 (2017)CrossRefGoogle Scholar
  47. 47.
    S. Otani, Y. Fukuoka, B. Igarashi, K. Sasaki, Method for Producing Carbonized Lignin Fiber, US3,461,082, 1969Google Scholar
  48. 48.
    J. Jin, A.A. Ogale, J. Appl. Polym. Sci. 135, 45903 (2018)CrossRefGoogle Scholar
  49. 49.
    N. Behabtu, N. Behabtu, C.C. Young, D.E. Tsentalovich, O. Kleinerman, X. Wang, A.W.K. Ma, E.A. Bengio, R.F. Waarbeek, J.J. De Jong, R.E. Hoogerwerf, S.B. Fairchild, J.B. Ferguson, B. Maruyama, J. Kono, Y. Talmon, Y. Cohen, M.J. Otto, M. Pasquali, 182, 182–187 (2013)Google Scholar
  50. 50.
    C. Jiang, A. Saha, C. Xiang, C.C. Young, J.M. Tour, M. Pasquali, A.A. Martí, ACS Nano 7, 4503–4510 (2013)CrossRefGoogle Scholar
  51. 51.
    C. Jiang, A. Saha, C.C. Young, D.P. Hashim, C.E. Ramirez, P.M. Ajayan, M. Pasquali, A.A. Martí, ACS Nano 8, 9107–9112 (2014)CrossRefGoogle Scholar
  52. 52.
    L.M. Ericson, H. Fan, H. Peng, V.A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. Guthy, A.N. Parra-Vasquez, M.J. Kim, S. Ramesh, R.K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W.W. Adams, W.E. Billups, M. Pasquali, W.F. Hwang, R.H. Hauge, J.E. Fischer, R.E. Smalley, Science 305, 1447–1450 (2004)CrossRefGoogle Scholar
  53. 53.
    X. Dong, C. Lu, P. Zhou, S. Zhang, L. Wang, D. Li, RSC Adv. 5, 42259–42265 (2015)CrossRefGoogle Scholar
  54. 54.
    S.P. Maradur, C.H. Kim, S.Y. Kim, B.H. Kim, W.C. Kim, K.S. Yang, Synth. Met. 162, 453–459 (2012)CrossRefGoogle Scholar
  55. 55.
    A. Oroumei, M. Naebe, Fibers Polym. 18, 2079–2093 (2017)CrossRefGoogle Scholar
  56. 56.
    K. Xia, Q. Ouyang, Y. Chen, X. Wang, X. Qian, L. Wang, ACS Sustain. Chem. Eng. 4, 159–168 (2016)CrossRefGoogle Scholar
  57. 57.
    M. Zhang, A.A. Ogale, in Polym. Precursor-Derived Carbon (American Chemical Society, 2014), pp. 137–152 SE–6Google Scholar
  58. 58.
    R. Ruiz-Rosas, J. Bedia, M. Lallave, I.G. Loscertales, A. Barrero, J. Rodríguez-Mirasol, T. Cordero, Carbon N. Y. 48, 696–705 (2010)CrossRefGoogle Scholar
  59. 59.
    M. Thunga, K. Chen, D. Grewell, M.R. Kessler, Carbon N. Y. 68, 159–166 (2013)CrossRefGoogle Scholar
  60. 60.
    N. Yusof, A.F. Ismail, J. Anal. Appl. Pyrolysis 93, 1–13 (2012)CrossRefGoogle Scholar
  61. 61.
    S. Young Jang, S. Ko, Y. Pyo Jeon, J. Choi, N. Kang, H.-C. Kim, H.-I. Joh, S. Lee, Evaluating the stabilization of isotropic pitch fibers for optimal tensile properties of carbon fibers. J. Ind. Eng. Chem. 45, 316–322 (2017)CrossRefGoogle Scholar
  62. 62.
    Y. Liu, H.G. Chae, S. Kumar, Carbon N. Y. 49, 4487–4496 (2011)CrossRefGoogle Scholar
  63. 63.
    S. Chatterjee, E.B. Jones, A.C. Clingenpeel, A.M. McKenna, O. Rios, N.W. McNutt, D.J. Keffer, A. Johs, ACS Sustain. Chem. Eng. 2, 2002–2010 (2014)CrossRefGoogle Scholar
  64. 64.
    I. Brodin, M. Ernstsson, G. Gellerstedt, E. Sjöholm, Holzforschung 66, 141–147 (2012)CrossRefGoogle Scholar
  65. 65.
    I. Norberg, Y. Nordström, R. Drougge, G. Gellerstedt, E. Sjöholm, J. Appl. Polym. Sci. 128, 3824–3830 (2013)CrossRefGoogle Scholar
  66. 66.
    A. Poeppel, D.E. Frank, Stabilization of Lignin Carbon Fibers with Crosslinkers, European Patent EP 2644758A1 (2013)Google Scholar
  67. 67.
    M. Zhang, J. Jin, A. Ogale, Fibers 3, 184–196 (2015)CrossRefGoogle Scholar
  68. 68.
    J. Lin, S. Kubo, T. Yamada, K. Koda, Y. Uraki, BioResources 7, 5634–5646 (2012)Google Scholar
  69. 69.
    C. Lai, Z. Zhou, L. Zhang, X. Wang, Q. Zhou, Y. Zhao, Y. Wang, X.F. Wu, Z. Zhu, H. Fong, J. Power Sources 247, 134–141 (2014)CrossRefGoogle Scholar
  70. 70.
    I. Brodin, E. Sjöholm, G. Gellerstedt, J Anal Appl Pyrol 87, 70–77 (2010)CrossRefGoogle Scholar
  71. 71.
    W. Qin, J.F. Kadla, Ind. Eng. Chem. Res. 50, 12548–12555 (2011)CrossRefGoogle Scholar
  72. 72.
    J. Luo, Lignin-Based Carbon Fiber (The University of Maine, 2010)Google Scholar
  73. 73.
    M. Zhang, Carbon Fibers Derived from Dry-Spinning of Modified Lignin Precursors (Clemson University, 2016)Google Scholar
  74. 74.
    R.C. Eckert, Z. Abdullah, Carbon Fibers from Kraft Softwood Lignin, US 7,678,358 B2, 2010Google Scholar
  75. 75.
    Q. Li, S. Xie, W.K. Serem, M.T. Naik, L. Liu, J.S. Yuan, Green Chem. 19, 1628–1634 (2017)CrossRefGoogle Scholar
  76. 76.
    C. Olsson, E. Sjöholm, R. Anders, Holzforschung 71, 275 (2017)CrossRefGoogle Scholar
  77. 77.
    M. Foston, G.A. Nunnery, X. Meng, Q. Sun, F.S. Baker, A. Ragauskas, Carbon N. Y. 52, 65–73 (2013)CrossRefGoogle Scholar
  78. 78.
    D.A. Baker, N.C. Gallego, F.S. Baker, J. Appl. Polym. Sci. 124, 227–234 (2012)CrossRefGoogle Scholar
  79. 79.
    R. Ding, H. Wu, M. Thunga, N. Bowler, M.R. Kessler, Carbon N. Y. 100, 126–136 (2016)CrossRefGoogle Scholar
  80. 80.
    J. Luo, J. Genco, B. Cole, R. Fort, BioResources 6, 4566–4593 (2011)Google Scholar
  81. 81.
    M. Cho, M. Karaaslan, S. Chowdhury, F. Ko, S. Renneckar, ACS Sustain. Chem. Eng. 6, 6434–6444 (2018)CrossRefGoogle Scholar
  82. 82.
    M. Schreiber, S. Vivekanandhan, A.K. Mohanty, M. Misra, ACS Sustain. Chem. Eng. 3, 33–41 (2015)CrossRefGoogle Scholar
  83. 83.
    N. Meek, D. Penumadu, O. Hosseinaei, D. Harper, S. Young, T. Rials, Compos. Sci. Technol. 137, 60–68 (2016)CrossRefGoogle Scholar
  84. 84.
    H. Kleinhans, L. Salmén, J. Appl. Polym. Sci. 133, 1–7 (2016)CrossRefGoogle Scholar
  85. 85.
    V. Poursorkhabi, A.K. Mohanty, M. Misra, J. Appl. Polym. Sci. 133 (2016)Google Scholar
  86. 86.
    F.F.S. Baker, Energy, 1–28 (2009)Google Scholar
  87. 87.
    S. Kubo, Y. Uraki, Y. Sano, J. Wood Sci. 49, 188–192 (2003)CrossRefGoogle Scholar
  88. 88.
    Q. Yan, J. Li, X. Zhang, E.B. Hassan, C. Wang, J. Zhang, Z. Cai, J. Nanopart. Res. 20, 223 (2018)CrossRefGoogle Scholar
  89. 89.
    F.S. Baker, Low Cost Carbon Fiber from Renewable Resources, US Department of Energy Progress Report, Project ID: LM005, http://www.ornl.gov/~webworks/cppr/y2001/pres/111380.pdf (2010)
  90. 90.
    Q. Yan, X. Zhang, J. Li, E.B. Hassan, C. Wang, J. Zhang, Z. Cai, J. Mater. Sci. 53, 8020–8029 (2018)CrossRefGoogle Scholar
  91. 91.
    H. Qin, Y. Zhou, J. Huang, C. Zhang, B. Wang, S. Jin, Q. Zhou, Int. J. Electrochem. Sci. 12, 10599–10604 (2017)CrossRefGoogle Scholar
  92. 92.
    S.-J. Park, L.-Y. Meng, In: Carbon Fibers. Springer Series in Materials Science, vol 210. Springer, Dordrecht, 101–133 (2015)Google Scholar
  93. 93.
    S.K. Singh, J.D. Ekhe, RSC Adv. 4, 27971–27978 (2014)CrossRefGoogle Scholar
  94. 94.
    K. Sudo, K. Shimizu, N. Nakashima, A. Yokoyama, J. Appl. Polym. Sci. 48, 1485–1491 (1993)CrossRefGoogle Scholar
  95. 95.
    K. Sudo, K. Shimizu, J. Appl. Polym. Sci. 44, 127–134 (1992)CrossRefGoogle Scholar
  96. 96.
    T. Josefsson, H. Lennholm, G. Gellerstedt, Holzforschung 56, 289 (2002)CrossRefGoogle Scholar
  97. 97.
    D. Robert, M. Bardet, A. Energy, A.E. Co, Cellul. Chem. Technol. 22, 221–230 (1988)Google Scholar
  98. 98.
    C. Zhao, Y. Kou, A.A. Lemonidou, X. Li, J.A. Lercher, Angew. Chem. Int. Ed. 48, 3987–3990 (2009)CrossRefGoogle Scholar
  99. 99.
    I. Brodin, E. Sjöholm, G. Gellerstedt, Holzforschung 63, 290–297 (2009)CrossRefGoogle Scholar
  100. 100.
    J.L. Braun, K.M. Holtman, J.F. Kadla, Carbon N. Y. 43, 385–394 (2005)CrossRefGoogle Scholar
  101. 101.
    W.G. Glasser, V. Davé, C.E. Frazier, J. Wood Chem. Technol. 13, 545–559 (1993)CrossRefGoogle Scholar
  102. 102.
    R. Mörck, H. Yoshida, K.P. Kringstad, H. Hatakeyama, Holzforschung 40, 51–56 (1986)CrossRefGoogle Scholar
  103. 103.
    R. Mörck, A. Reimann, K.P. Kringstad, Holzforschung 42, 111–116 (1988)CrossRefGoogle Scholar
  104. 104.
    M. Kleinert, T. Barth, in 15th Eur. Biomass Conf. (Berlin, 2007), pp. 1297–1301Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Oluwashina Phillips Gbenebor
    • 1
  • Samson Oluropo Adeosun
    • 1
  1. 1.Department of Metallurgical and Materials EngineeringUniversity of LagosLagosNigeria

Personalised recommendations