The Automated Acquisition of Expert Knowledge Using a Service Department as an Example

  • Justyna Patalas-MaliszewskaEmail author
  • Adam Dudek
  • Sławomir Kłos
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


In this article, an example of the use of ontology for the automated acquisition of expert knowledge in a service department is presented. The first part of the article presents an overview of the literature on knowledge acquisition methods and an evaluation of knowledge tools. The model for the Automated Acquisition of Expert Knowledge (AA-EK) is then presented and a formal representation of it, using ontology, is provided. The last part illustrates how the AA-EK model is used, using a real-time case study.


Expert knowledge Knowledge acquisition Expert knowledge formalisation 


  1. 1.
    Nonaka, I., Takeuchi, H.: Creating Knowledge in the Organisation. Poltext, Warsaw (2000)Google Scholar
  2. 2.
    Polanyi, M.: The Tacit Dimension. Anchor Books, Garden City (1967)Google Scholar
  3. 3.
    Noh, J.B., Lee, K.C., Kim, J.K., Lee, J.K., Kim, S.H.: A case-based reasoning approach to cognitive map-driven tacit knowledge management. Expert Syst. Appl. 19(4), 249–259 (2000)CrossRefGoogle Scholar
  4. 4.
    Brockmann, E.N., Anthony, W.P.: Tacit knowledge and strategic decision making. Group Organ. Manag. 27(4), 436–455 (2002)CrossRefGoogle Scholar
  5. 5.
    Hoffman, R.R., Shadbolt, N.R.A., Mike, B., Klein, G.: Eliciting knowledge from experts: a methodological analysis. Organ. Behav. Hum. Decis. Process. 62(2), 129–158 (1995)CrossRefGoogle Scholar
  6. 6.
    Tang, F., Jifeng, M., MacLachlan, D.L.: Implication of network size and structure on organizations knowledge transfer. Expert Syst. Appl. 34(2), 1109–1114 (2008)CrossRefGoogle Scholar
  7. 7.
    Araújo, A.F., Varela, M.L.R., Gomes, M.S., Barreto, R.C.C., Trojanowska, J.: Development of an intelligent and automated system for lean industrial production adding maximum productivity and efficiency in the production process. In: Hamrol, A., Ciszak, O., Legutko, S., Jurczyk, M. (eds.) Advances in Manufacturing. Lecture Notes in Mechanical Engineering, pp. 131–140 (2018)Google Scholar
  8. 8.
    Leu, G., Abbass, H.: A multi-disciplinary review of knowledge acquisition methods: from human to autonomous eliciting agents. Knowl.-Based Syst. 105, 1–22 (2016)CrossRefGoogle Scholar
  9. 9.
    Cooke, N.J.: Varieties of knowledge elicitation techniques. Int. J. Hum.-Comput. Stud. 41(6), 80–849 (1994)CrossRefzbMATHGoogle Scholar
  10. 10.
    Patalas-Maliszewska, J., Dudek, A.: A model of tacit knowledge transformation for the service department in a manufacturing company: a case study. Found. Manag. Int. J. 8(1), 175–188 (2016)CrossRefGoogle Scholar
  11. 11.
    Gruber, R.T.: Ontolingua: A Mechanism to Support Portable Ontologies. Stanford University (1992)Google Scholar
  12. 12.
    Neumayr, B., Schuetz, C., Jeusfeld, M.A., Schrefl, M.: Dual deep modeling: multi-level modeling with dual potencies and its formalization in F-Logic. Softw. Syst. Model. 17(1), 1–36 (2016)Google Scholar
  13. 13.
    Slimani, T.: Ontology development: a comparing study on tools, languages and formalisms. Indian J. Sci. Technol. 8(24), 1–12 (2015)CrossRefGoogle Scholar
  14. 14.
    Negri, E., Fumagalli, L., Garetti, M., Tanca, L.: A review of semantic languages for the conceptual modelling of the manufacturing domain. In: Proceedings of the XIX Summer School “Francesco Turco” Industrial Mechanical Plants-Senigallia, Italy (2014)Google Scholar
  15. 15.
    Motta, E.: An overview of the OCML modelling language. In: The 8th Workshop on Methods and Languages (1998)Google Scholar
  16. 16.
    Xiaomeng, S., Ilebrekke, L.: A comparative study of ontology languages and tools. In: International Conference on Advanced Information Systems Engineering, pp. 761–765. Springer (2002)Google Scholar
  17. 17.
    Gomez-Pérez, A.: Ontological engineering: a state of the art. In: Expert Update: Knowledge Based Systems and Applied Artificial Intelligence, pp. 33–43 (1999)Google Scholar
  18. 18.
    Heflin, J., Hendler, J., Luke, S.: SHOE: a knowledge representation language for internet applications (1999)Google Scholar
  19. 19.
    Horrocks, I., Patel-Schneider, P.F., Van Harmelen, F.: From SHIQ and RDF to OWL: the making of a web ontology language. Web Semant.: Sci. Serv. Agents World Wide Web 1(1), 7–26 (2003)CrossRefGoogle Scholar
  20. 20.
    Czarnecki, A.: IT technologies used in the design and implementation of ontologies. In: Orłowski, C. (ed.) Management of Information Technology: State and Prospects of Development, pp. 83–94. Pomeranian Scientific and Technical Publisher (2006). (in Polish)Google Scholar
  21. 21.
    Czajkowski, K., Trela, T.: Semantic Web–standard, tools, implementations. Studia Informatica 33(2A), 379–393 (2012)Google Scholar
  22. 22.
    Mach-Król, M.: Knowledge and ontologies in temporal intelligent systems. Inf. Econ. 1(35), 28–35 (2015). (in Polish)Google Scholar
  23. 23.
    Goczyła, K.: Ontologies in information systems, EXIT (2011). (in Polish)Google Scholar
  24. 24.
    Kempa, A.: Application of an extended inference methodology based on case-textual CBR in working with text documents, Organizational Support Systems (2005). (in Polish)Google Scholar
  25. 25.
    Hernes, M., Maleszka, M., Nguyen, N.T., Bytniewski, A.: The automatic summarization of text documents in the cognitive integrated management information system. In: Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1387–1396. IEEE (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Justyna Patalas-Maliszewska
    • 1
    Email author
  • Adam Dudek
    • 2
  • Sławomir Kłos
    • 1
  1. 1.Institute of Computer Science and Production ManagementUniversity of Zielona GóraZielona GóraPoland
  2. 2.Institute of Technical ScienceUniversity of Applied Science in NysaNysaPoland

Personalised recommendations