Advertisement

Resource-Aware Parameter Tuning for Real-Time Applications

  • Dirk GabrielEmail author
  • Walter Stechele
  • Stefan Wildermann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11479)

Abstract

Executing multiple applications on a multi-core system while the workload of all applications varies brings the challenge of dynamically adapting resource allocations and parametrizing with respect to constraints e.g. timing limits of real-time applications. We present a hybrid approach which extracts a set of Pareto-optimal operating points during design time which are used to dynamically parameterize the periodic application during run-time. The setup is done at the beginning of each iteration of the execution and exclusively allocates processing elements from the system depending on the current workload. The parametrization is performed with the observed information about workload complexity and allocated resources. Therefore guarantees on time limits can be granted for all iterations including situations when the number of available processing elements has been decreased sharply.

Keywords

Self-aware application Resource-aware application Reliability Parameter tuning Resource reservation 

Notes

Acknowledgement

This work was partly supported by the German Research Foundation (DFG), Projectnumber 146371743, TRR 89 Invasive Computing.

References

  1. 1.
    Akesson, B., Molnos, A., Hansson, A., Angelo, J.A., Goossens, K.: Composability and predictability for independent application development, verification, and execution. In: Hübner, M., Becker, J. (eds.) Multiprocessor System-on-Chip, pp. 25–56. Springer, New York (2011).  https://doi.org/10.1007/978-1-4419-6460-1_2CrossRefGoogle Scholar
  2. 2.
    Azad, P., Asfour, T., Dillmann, R.: Combining Harris interest points and the sift descriptor for fast scale-invariant object recognition. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4275–4280, October 2009.  https://doi.org/10.1109/IROS.2009.5354611
  3. 3.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of Fourth Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  4. 4.
    Hoffmann, H., Eastep, J., Santambrogio, M.D., Miller, J.E., Agarwal, A.: Application heartbeats: a generic interface for specifying program performance and goals in autonomous computing environments. In: Proceedings of the 7th International Conference on Autonomic Computing, ICAC 2010, pp. 79–88. ACM, New York (2010).  https://doi.org/10.1145/1809049.1809065
  5. 5.
    Hoffmann, H., Sidiroglou, S., Carbin, M., Misailovic, S., Agarwal, A., Rinard, M.: Dynamic knobs for responsive power-aware computing. In: Proceedings of the Sixteenth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS XVI, pp. 199–212. ACM, New York (2011).  https://doi.org/10.1145/1950365.1950390
  6. 6.
    Kelter, T., Falk, H., Marwedel, P., Chattopadhyay, S., Roychoudhury, A.: Bus-aware multicore WCET analysis through TDMA offset bounds. In: Proceedings of the 2011 23rd Euromicro Conference on Real-Time Systems, ECRTS 2011, pp. 3–12. IEEE Computer Society, Washington, DC (2011).  https://doi.org/10.1109/ECRTS.2011.9
  7. 7.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157, September 1999.  https://doi.org/10.1109/ICCV.1999.790410
  8. 8.
    Paul, J., et al.: Resource-aware Harris corner detection based on adaptive pruning. In: Maehle, E., Römer, K., Karl, W., Tovar, E. (eds.) ARCS 2014. LNCS, vol. 8350, pp. 1–12. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-04891-8_1CrossRefGoogle Scholar
  9. 9.
    Teich, J.: Invasive algorithms and architectures. IT - Inf. Technol. 50(5), 300–310 (2009).  https://doi.org/10.1524/itit.2008.0499CrossRefGoogle Scholar
  10. 10.
    Weichslgartner, A., Wildermann, S., Gangadharan, D., Glaß, M., Teich, J.: A design-time/run-time application mapping methodology for predictable execution time in MPSoCs (2017).  https://doi.org/10.1145/3274665
  11. 11.
    Yan, J., Zhang, W.: WCET analysis for multi-core processors with shared L2 instruction caches. In: Proceedings of the 2008 IEEE Real-Time and Embedded Technology and Applications Symposium, RTAS 2008, pp. 80–89, IEEE Computer Society, Washington, DC (2008).  https://doi.org/10.1109/RTAS.2008.6

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dirk Gabriel
    • 1
    Email author
  • Walter Stechele
    • 1
  • Stefan Wildermann
    • 2
  1. 1.Chair of Integrated SystemsTechnical University of MunichMunichGermany
  2. 2.Chair of Computer Science 12Friedrich–Alexander University Erlangen–NürnbergErlangenGermany

Personalised recommendations