Skip to main content

Fundamentals of Drug Metabolism and Pharmacogenomics Within a Learning Healthcare System Workflow Perspective

  • Chapter
  • First Online:
Personalized and Precision Medicine Informatics

Part of the book series: Health Informatics ((HI))

  • 841 Accesses

Abstract

This chapter introduces fundamental concepts of pharmacogenomics, including drug metabolism, and provides an informatics workflow-based perspective inspired by a learning healthcare system framework. Our intent is that the reader sees pharmacogenomics as a foundation of precision medicine, which is reliant upon informatics to deliver actionable patient-tailored knowledge at the point of care. Further, pharmacogenomics knowledge is poised to be further developed so as to be amenable to multi-drug comorbid disease treatment necessitated by precision medicine practice. Upon reviewing this chapter, we hope the reader understands how informatics is uniquely suited to i) enhance clinic-based precision medicine practice through appropriate dissemination of patient-tailored actionable pharmacogenomics knowledge, and ii) to advance the knowledge base underpinning pharmacogenomics by gleaning insights from real world outcomes of these same clinic-based populations. The methodologic considerations highlighted within this workflow-base perspective encompass end-to-end forward and reverse translational informatics activities, designed to both appropriately deploy existing pharmacogenomics knowledge, as well as contribute to its advancement by harnessing insights from real-world data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Editors’ note: for more details on machine learning algorithm and model selection, error estimation and avoiding over- and under-fitting the reader can refer to Chap. 8.

References

  1. Borchardt JK. The beginnings of drug therapy: ancient mesopotamian medicine. Drug News Perspect. 2002;15(3):187–92.

    Article  PubMed  Google Scholar 

  2. Chalmers I, Clarke M. Commentary: the 1944 patulin trial: the first properly controlled multicentre trial conducted under the aegis of the British Medical Research Council. Int J Epidemiol. 2004;33(2):253–60.

    Article  PubMed  Google Scholar 

  3. Fleming A. On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzæ. Br J Exp Pathol. 1929;10(3):226–36.

    CAS  PubMed Central  Google Scholar 

  4. Finch CE. Evolution of the human lifespan and diseases of aging: roles of infection, inflammation, and nutrition. PNAS. 2010;107(Suppl 1):1718–24.

    Article  CAS  PubMed  Google Scholar 

  5. Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. Compr Physiol. 2012 Apr;2(2):1143–211.

    PubMed  PubMed Central  Google Scholar 

  6. Popkin BM. Global nutrition dynamics: the world is shifting rapidly toward a diet linked with noncommunicable diseases. Am J Clin Nutr. 2006;84(2):289–98.

    Article  CAS  PubMed  Google Scholar 

  7. Weinshilboum R, Wang L. Pharmacogenomics: bench to bedside. Nat Rev Drug Discov. 2004;3(9):739–48.

    Article  CAS  PubMed  Google Scholar 

  8. Nebert DW. Pharmacogenetics and pharmacogenomics: why is this relevant to the clinical geneticist? Clin Genet. 1999;56(4):247–58.

    Article  CAS  PubMed  Google Scholar 

  9. Pirmohamed M. Pharmacogenetics and pharmacogenomics. Br J Clin Pharmacol. 2001;52(4):345–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Abbott S, Fairbanks DJ. Experiments on plant hybrids by Gregor Mendel. Genetics. 2016;204(2):407–22.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mendel G. Experiments on plant hybrids. Verhandlungen des naturforschenden Vereines in Brunn. 1866;4:3–44.

    Google Scholar 

  12. Motulsky AG. Drug reactions, enzymes, and biochemical genetics. JAMA. 1957;165(7):835–7.

    Article  CAS  Google Scholar 

  13. Vogel F. Moderne Probleme der Humangenetik. In: Heilmeyer L, Schoen R, de Rudder B, editors. Ergebnisse der Inneren Medizin und Kinderheilkunde. Berlin, Heidelberg: Springer; 1959. p. 52–125.

    Chapter  Google Scholar 

  14. Vesell ES, Page JG. Genetic control of drug levels in man: phenylbutazone. Science. 1968;159(3822):1479–80.

    Article  CAS  PubMed  Google Scholar 

  15. Vesell ES, Page JG. Genetic control of drug levels in man: antipyrine. Science. 1968;161(3836):72–3.

    Article  CAS  PubMed  Google Scholar 

  16. Cappellini M, Fiorelli G. Glucose-6-phosphate dehydrogenase deficiency. Lancet. 2008;371(9606):64–74.

    Article  CAS  PubMed  Google Scholar 

  17. Eichelbaum M, Spannbrucker N, Steincke B, Dengler HJ. Defective N-oxidation of sparteine in man: a new pharmacogenetic defect. Eur J Clin Pharmacol. 1979;16(3):183–7.

    Article  CAS  PubMed  Google Scholar 

  18. Mahgoub A, Dring LG, Idle JR, Lancaster R, Smith RL. Polymorphic hydroxylation of debrisoquine in man. Lancet. 1977;310(8038):584–6.

    Article  Google Scholar 

  19. Gonzalez FJ, Vilbois F, Hardwick JP, McBride OW, Nebert DW, Gelboin HV, et al. Human debrisoquine 4-hydroxylase (P450IID1): cDNA and deduced amino acid sequence and assignment of the CYP2D locus to chromosome 22. Genomics. 1988;2(2):174–9.

    Article  CAS  PubMed  Google Scholar 

  20. Kimura S, Umeno M, Skoda RC, Meyer UA, Gonzalez FJ. The human debrisoquine 4-hydroxylase (CYP2D) locus: sequence and identification of the polymorphic CYP2D6 gene, a related gene, and a pseudogene. Am J Hum Genet. 1989;45(6):889–904.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Goldstein DB. Pharmacogenetics in the laboratory and the clinic. N Engl J Med. 2003;348(6):553–6.

    Article  PubMed  Google Scholar 

  22. Evans WE, Relling MV. Moving towards individualized medicine with pharmacogenomics. Nature. 2004;429:464–8.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang J, Chiodini R, Badr A, Zhang G. The impact of next-generation sequencing on genomics. J Genet Genomics. 2011;38(3):95–109.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Weinshilboum RM. Inheritance and drug response. N Engl J Med. 2003;348:529–37.

    Article  PubMed  Google Scholar 

  25. Evans WE, McLeod HL. Pharmacogenomics – drug disposition, drug targets, and side effects. N Engl J Med. 2003;348(6):538–49.

    Article  CAS  PubMed  Google Scholar 

  26. Davis A, Long R. Pharmacogenetics research network and Knowledge Base: 1st Annual Scientific Meeting. Pharmacogenomics. 2001;2(3):285–9.

    Article  CAS  PubMed  Google Scholar 

  27. Giacomini KM, Brett CM, Altman RB, Benowitz NL, Dolan ME, Flockhart DA, et al. The pharmacogenetics research network: from SNP discovery to clinical drug response. Clin Pharmacol Ther. 2007;81(3):328–45.

    Article  CAS  PubMed  Google Scholar 

  28. Klein TE, Chang JT, Cho MK, Easton KL, Fergerson R, Hewett M, et al. Integrating genotype and phenotype information: an overview of the PharmGKB project. Pharmacogenomics J. 2001;1(3):167–70.

    Article  CAS  PubMed  Google Scholar 

  29. Gottesman O, Kuivaniemi H, Tromp G, Faucett WA, Li R, Manolio TA, et al. The electronic medical records and genomics (eMERGE) network: past, present, and future. Genet Med. 2013;15(10):761–71.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Manolio TA, Chisholm RL, Ozenberger B, Roden DM, Williams MS, Wilson R, et al. Implementing genomic medicine in the clinic: the future is here. Genet Med. 2013;15(4):258–67.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rasmussen-Torvik LJ, Stallings SC, Gordon AS, Almoguera B, Basford MA, Bielinski SJ, et al. Design and anticipated outcomes of the eMERGE-PGx project: a multicenter pilot for preemptive pharmacogenomics in electronic health record systems. Clin Pharmacol Ther. 2014;96(4):482–9.

    Article  CAS  PubMed  Google Scholar 

  32. Kirby JC, Speltz P, Rasmussen LV, Basford M, Gottesman O, Peissig PL, et al. PheKB: a catalog and workflow for creating electronic phenotype algorithms for transportability. J Am Med Inform Assoc. 2016;23(6):1046–52.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Etheredge LM. A rapid-learning health system. Health Aff. 2007;26(2):w107–18.

    Article  Google Scholar 

  34. Mandl KD, Kohane IS, McFadden D, Weber GM, Natter M, Mandel J, et al. Scalable collaborative infrastructure for a learning healthcare system (SCILHS): architecture. J Am Med Inform Assoc. 2014;21(4):615–20.

    Article  PubMed  PubMed Central  Google Scholar 

  35. McGinnis JM, Aisner D, Olsen L. The learning healthcare system: workshop summary. Washington, DC: National Academies Press; 2007.

    Google Scholar 

  36. Tenenbaum JD, Avillach P, Benham-Hutchins M, Breitenstein MK, Crowgey EL, Hoffman MA, et al. An informatics research agenda to support precision medicine: seven key areas. J Am Med Inform Assoc. 2016;23(4):791–5.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gardner RM, Overhage JM, Steen EB, Munger BS, Holmes JH, Williamson JJ, et al. Core content for the subspecialty of clinical informatics. J Am Med Inform Assoc. 2009;16(2):153–7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Safran C, Shabot MM, Munger BS, Holmes JH, Steen EB, Lumpkin JR, et al. Program requirements for fellowship education in the subspecialty of clinical informatics. J Am Med Inform Assoc. 2009;16(2):158–66.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shortliffe EH. President’s column: subspecialty certification in clinical informatics. J Am Med Inform Assoc. 2011;18(6):890–1.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.

    Article  CAS  PubMed  Google Scholar 

  41. Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975;94(3):441–8.

    Article  CAS  PubMed  Google Scholar 

  42. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. PNAS. 1977;74(12):5463–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes JC, et al. Nucleotide sequence of bacteriophage φX174 DNA. Nature. 1977;265(5596):687–95.

    Article  CAS  PubMed  Google Scholar 

  44. Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol. 2008;26(10):1135–45.

    Article  CAS  PubMed  Google Scholar 

  45. Cooper GM, Johnson JA, Langaee TY, Feng H, Stanaway IB, Schwarz UI, et al. A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood. 2008;112(4):1022–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Limdi NA, Veenstra DL. Warfarin pharmacogenetics. Pharmacotherapy. 2008;28(9):1084–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Limdi NA, Veenstra DL. Expectations, validity, and reality in pharmacogenetics. J Clin Epidemiol. 2010;63(9):960–9.

    Article  PubMed  Google Scholar 

  48. Motsinger-Reif AA, Jorgenson E, Relling MV, Kroetz DL, Weinshilboum R, Cox NJ, et al. Genome-wide association studies in pharmacogenomics: successes and lessons. Pharmacogenet Genomics. 2013;23(8):383–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gargis AS, Kalman L, Berry MW, Bick DP, Dimmock DP, Hambuch T, et al. Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat Biotechnol. 2012;30(11):1033–6.

    Article  CAS  PubMed  Google Scholar 

  50. Gargis AS, Kalman L, Bick DP, da Silva C, Dimmock DP, Funke BH, et al. Good laboratory practice for clinical next-generation sequencing informatics pipelines. Nat Biotechnol. 2015;33(7):689–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lih C-J, Takebe N. Considerations of developing an NGS assay for clinical applications in precision oncology: the NCI-MATCH NGS assay experience. Curr Probl Cancer. 2017;41(3):201–11.

    Article  PubMed  Google Scholar 

  52. Lubin IM, Kalman L, Gargis AS. Guidelines and approaches to compliance with regulatory and clinical standards: quality control procedures and quality assurance. In: Wong L-JC, editor. Next generation sequencing: translation to clinical diagnostics. New York, NY: Springer New York; 2013. p. 255–73. https://doi.org/10.1007/978-1-4614-7001-4_14.

    Chapter  Google Scholar 

  53. Strom SP. Current practices and guidelines for clinical next-generation sequencing oncology testing. Cancer Biol Med. 2016;13(1):3–11.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Panoutsopoulou K, Walter K. Quality control of common and rare variants. In: Evangelou E, editor. Genetic epidemiology: methods and protocols. New York, NY: Springer New York; 2018. p. 25–36. https://doi.org/10.1007/978-1-4939-7868-7_3.

    Chapter  Google Scholar 

  55. Schaid DJ, Chen W, Larson NB. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat Rev Genet. 2018;19(8):491–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gudbjartsson DF, Helgason H, Gudjonsson SA, Zink F, Oddson A, Gylfason A, et al. Large-scale whole-genome sequencing of the Icelandic population. Nat Genet. 2015;47(5):435–44.

    Article  CAS  PubMed  Google Scholar 

  57. Johnson RC, Nelson GW, Troyer JL, Lautenberger JA, Kessing BD, Winkler CA, et al. Accounting for multiple comparisons in a genome-wide association study (GWAS). BMC Genomics. 2010;11(1):724.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Popejoy AB, Fullerton SM. Genomics is failing on diversity. Nat News. 2016;538(7624):161–4.

    Article  CAS  Google Scholar 

  59. Martin A, Downing J, Maden M, Fleeman N, Alfirevic A, Haycox A, et al. An assessment of the impact of pharmacogenomics on health disparities: a systematic literature review. Pharmacogenomics. 2017;18(16):1541–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ackerman MJ. Genetic purgatory and the cardiac channelopathies: exposing the variants of uncertain/unknown significance issue. Heart Rhythm. 2015;12(11):2325–31.

    Article  PubMed  Google Scholar 

  61. Kwok PY. Methods for genotyping single nucleotide polymorphisms. Annu Rev Genomics Hum Genet. 2001;2:235–58.

    Article  CAS  PubMed  Google Scholar 

  62. Roses AD. Pharmacogenetics and the practice of medicine. Nature. 2000;405:857–65.

    Article  CAS  PubMed  Google Scholar 

  63. Kitts A, Sherry S. The single nucleotide polymorphism database (dbSNP) of nucleotide sequence variation. Bethesda, MD: National Center for Biotechnology Information (US); 2011. https://www.ncbi.nlm.nih.gov/books/NBK21088/

    Google Scholar 

  64. Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016;44(D1):D862–8.

    Article  CAS  PubMed  Google Scholar 

  65. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Karczewski K. The genome Aggregation Database (gnomAD). MacArthur Lab. 2017. https://macarthurlab.org/2017/02/27/the-genome-aggregation-database-gnomad/

  67. Relling MV, Klein TE. CPIC: clinical pharmacogenetics implementation consortium of the pharmacogenomics research network. Clin Pharmacol Ther. 2011;89(3):464–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kluyver T, Ragan-Kelley B, Pérez F, Granger BE, Bussonnier M, Frederic J, et al. Jupyter notebooks-a publishing format for reproducible computational workflows. In: ELPUB. 2016. p. 87–90.

    Google Scholar 

  69. Breitenstein MK, Liu H, Maxwell KN, Pathak J, Zhang R. Electronic health record phenotypes for precision medicine: perspectives and caveats from treatment of breast cancer at a single institution. Clin Transl Sci. 2018;11(1):85–92.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Government Printing Office. Clinical Laboratory Improvement Amendments (42 USC 263a) [Internet]. 42. Sect. § 263a. Certification of laboratories; 1988. p. 371–8. https://www.govinfo.gov/content/pkg/USCODE-2011-title42/pdf/USCODE-2011-title42-chap6A-subchapII-partF-subpart2-sec263a.pdf.

  71. Olson RS, Bartley N, Urbanowicz RJ, Moore JH. Evaluation of a tree-based pipeline optimization tool for automating data science. In: Proceedings of the genetic and evolutionary computation conference 2016. New York, NY: ACM; 2016. p. 485–92. (GECCO’16). https://doi.org/10.1145/2908812.2908918.

    Chapter  Google Scholar 

  72. Olson RS, Urbanowicz RJ, Andrews PC, Lavender NA, Kidd LC, Moore JH. Automating biomedical data science through tree-based pipeline optimization. In: Squillero G, Burelli P, editors. Applications of evolutionary computation. Switzerland: Springer International Publishing; 2016. p. 123–37.

    Chapter  Google Scholar 

  73. Orlenko A, Moore JH, Orzechowski P, Olson RS, Cairns J, Caraballo PJ, et al. Considerations for automated machine learning in clinical metabolic profiling: altered homocysteine plasma concentration associated with metformin exposure. Pac Symp Biocomput. 2018;23:460–71.

    PubMed  PubMed Central  Google Scholar 

  74. Urbanowicz RJ, Meeker M, La Cava W, Olson RS, Moore JH. Relief-based feature selection: introduction and review. J Biomed Inform. 2018;85:189–203.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ali M, Aittokallio T. Machine learning and feature selection for drug response prediction in precision oncology applications. Biophys Rev. 2019;11(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  76. Breitenstein, Matthew K, Hu, Vincent, Bhatnagar, R, Ratnagiri, M. Approaching neural net feature interpretation using stacked autoencoders: gene expression profiling of systemic lupus erythematosus patients. In: Proceedings of the AMIA 2019 Informatics Summit. San Francisco, CA; 2019. p. 8.

    Google Scholar 

  77. Crowgey EL, Marsh AG, Robinson KG, Yeager SK, Akins RE. Epigenetic machine learning: utilizing DNA methylation patterns to predict spastic cerebral palsy. BMC Bioinformatics. 2018;19(1):225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2012;92(4):414–7.

    Article  CAS  PubMed  Google Scholar 

  79. Kass-Hout TA, Litwack D. Advancing precision medicine by enabling a collaborative informatics community. FDA Voice. 2015. https://web.archive.org/web/20151222181400/http://blogs.fda.gov/fdavoice/index.php/2015/08/advancing-precision-medicine-by-enabling-a-collaborative-informatics-community/

  80. Klein TE, Ritchie MD. PharmCAT: a pharmacogenomics clinical annotation tool. Clin Pharmacol Ther. 2018;104(1):19–22.

    Article  PubMed  Google Scholar 

  81. Amberger JS, Hamosh A. Searching Online Mendelian Inheritance in Man (OMIM): a knowledgebase of human genes and genetic phenotypes. Curr Protoc Bioinformatics. 2017;27(58):1.2.1–1.2.12.

    Google Scholar 

  82. Wu G, Dawson E, Duong A, Haw R, Stein L. ReactomeFIViz: a Cytoscape app for pathway and network-based data analysis. F1000Res. 2014;3:146.

    PubMed  PubMed Central  Google Scholar 

  83. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44(D1):D457–62.

    Article  CAS  PubMed  Google Scholar 

  84. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45(D1):D362–8.

    Article  CAS  PubMed  Google Scholar 

  85. The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45(D1):D158–69.

    Article  CAS  Google Scholar 

  86. Wilke RA, Mareedu RK, Moore JH. The pathway less traveled: moving from candidate genes to candidate pathways in the analysis of genome-wide data from large scale Pharmacogenetic association studies. Curr Pharmacogenomics Person Med. 2008;6(3):150–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Grados MA, Specht MW, Sung H-M, Fortune D. Glutamate drugs and pharmacogenetics of OCD: a pathway-based exploratory approach. Expert Opin Drug Discov. 2013;8(12):1515–27.

    Article  CAS  PubMed  Google Scholar 

  88. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gene Ontology Consortium. Expansion of the gene ontology knowledgebase and resources. Nucleic Acids Res. 2017;45(D1):D331–8.

    Article  CAS  Google Scholar 

  90. Hoehndorf R, Dumontier M, Gkoutos GV. Identifying aberrant pathways through integrated analysis of knowledge in pharmacogenomics. Bioinformatics. 2012;28(16):2169–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2017;46(D1):D1074–82.

    Article  PubMed Central  CAS  Google Scholar 

  92. Davis AP, Grondin CJ, Johnson RJ, Sciaky D, King BL, McMorran R, et al. The comparative toxicogenomics database: update 2017. Nucleic Acids Res. 2016;45(D1):D972–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Ginsburg GS, Phillips KA. Precision medicine: from science to value. Health Aff. 2018;37(5):694–701.

    Article  Google Scholar 

  94. Becquemont L. Pharmacogenomics of adverse drug reactions: practical applications and perspectives. Pharmacogenomics. 2009;10(6):961–9.

    Article  CAS  PubMed  Google Scholar 

  95. Innocenti F. Genomics and pharmacogenomics in anticancer drug development and clinical response. Berlin: Springer Science & Business Media; 2008. p. 379.

    Google Scholar 

  96. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Guo Y, Dai Y, Yu H, Zhao S, Samuels DC, Shyr Y. Improvements and impacts of GRCh38 human reference on high throughput sequencing data analysis. Genomics. 2017;109(2):83–90.

    Article  CAS  PubMed  Google Scholar 

  98. Schneider VA, Graves-Lindsay T, Howe K, Bouk N, Chen H-C, Kitts PA, et al. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. Genome Res. 2017;27(5):849–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ezkurdia I, Juan D, Rodriguez JM, Frankish A, Diekhans M, Harrow J, et al. Multiple evidence strands suggest that there may be as few as 19 000 human protein-coding genes. Hum Mol Genet. 2014;23(22):5866–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.

    Article  PubMed  CAS  Google Scholar 

  101. Bauer MS, Damschroder L, Hagedorn H, Smith J, Kilbourne AM. An introduction to implementation science for the non-specialist. BMC Psychol. 2015;3:32.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Weitzel KW, Alexander M, Bernhardt BA, Calman N, Carey DJ, Cavallari LH, et al. The IGNITE network: a model for genomic medicine implementation and research. BMC Med Genet. 2016;9:1.

    Google Scholar 

  103. Amendola LM, Berg JS, Horowitz CR, Angelo F, Bensen JT, Biesecker BB, et al. The clinical sequencing evidence-generating research consortium: integrating genomic sequencing in diverse and medically underserved populations. Am J Hum Genet. 2018;103(3):319–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nishimura AA, Tarczy-Hornoch P, Shirts BH. Pragmatic and ethical challenges of incorporating the genome into the electronic medical record. Curr Genet Med Rep. 2014;2(4):201–11.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Caraballo PJ, Bielinski SJ, St Sauver JL, Weinshilboum RM. Electronic medical record-integrated pharmacogenomics and related clinical decision support concepts. Clin Pharmacol Ther. 2017;102(2):254–64.

    Article  CAS  PubMed  Google Scholar 

  106. American Medical Association. The hidden dangers of EHR pop-up fatigue | American Medical Association. 2015. https://www.ama-assn.org/practice-management/digital/hidden-dangers-ehr-pop-fatigue

  107. U.S. Food & Drug Administration. Framework for FDA’s Real-World Evidence Program. 2018. https://www.fda.gov/downloads/ScienceResearch/SpecialTopics/RealWorldEvidence/UCM627769.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew K. Breitenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Breitenstein, M.K., Crowgey, E.L. (2020). Fundamentals of Drug Metabolism and Pharmacogenomics Within a Learning Healthcare System Workflow Perspective. In: Adam, T., Aliferis, C. (eds) Personalized and Precision Medicine Informatics. Health Informatics. Springer, Cham. https://doi.org/10.1007/978-3-030-18626-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18626-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18625-8

  • Online ISBN: 978-3-030-18626-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics