Advertisement

The Grapevine Genome Annotation

  • Jérôme GrimpletEmail author
  • Grant R. Cramer
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

The release of the grapevine genome sequence has allowed the generation of invaluable data on gene function, providing tools for a better understanding of the plant biology. To capitalize on this information, the annotation of the genome has been an ongoing effort performed by the research community on that species. Annotation initiatives can take the form of automatic annotation with gene prediction performed in silico based on the knowledge of other species and transcriptomic data as well as manual curation and integration of results from the literature. The International Grape Genome Program created recently a committee to harmonize the annotation process. The primary aims of the committee are to provide a unified high quality and highly accessible annotation of grapevine genes. To reach that objective, standard nomenclature for locus identifiers and conventions for a gene naming system were set up. Genome annotation is a work in progress because of new improved annotation technologies and new discoveries of structural components and functions within the genome. As technology and knowledge on genome functioning improves, it is expected that new challenges and perspectives will arise in the field of genome annotation such as the integration of the role of non-coding areas of the genome or the integration of polymorphic diversity within cultivars.

Keywords

Nomenclature Protein-coding gene structure Genome annotation Manual curation 

References

  1. Adam-Blondon AF, Jaillon O, Vezzulli S, Zharkikh A, Troggio M, Velasco R (2011) Genome sequence initiatives. In: Adam-Blondon A-F, Martinez-Zapater JM, Kole C (eds) Genetics, genomics, and breeding of grapes. Science Publishers, New York, pp 211–234.  https://doi.org/10.1201/b10948-10CrossRefGoogle Scholar
  2. Allen JE, Salzberg SL (2005) JIGSAW: integration of multiple sources of evidence for gene prediction. Bioinformatics 21(18):3596–3603.  https://doi.org/10.1093/bioinformatics/bti609CrossRefPubMedGoogle Scholar
  3. Bemer M, Heijmans K, Airoldi C, Davies B, Angenent GC (2010) An atlas of type I MADS box gene expression during female gametophyte and seed development in Arabidopsis. Plant Physiol 154(1):287–300.  https://doi.org/10.1104/pp.110.160770CrossRefPubMedPubMedCentralGoogle Scholar
  4. Canaguier A, Grimplet J, Di Gaspero G, Scalabrin S, Duchene E, Choisne N, Mohellibi N, Guichard C, Rombauts S, Le Clainche I, Berard A, Chauveau A, Bounon R, Rustenholz C, Morgante M, Le Paslier MC, Brunel D, Adam-Blondon AF (2017) A new version of the grapevine reference genome assembly (12X.v2) and of its annotation (VCost.v3). Genom Data 14(Supplement C):56–62.  https://doi.org/10.1016/j.gdata.2017.09.002CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chapman B, Bellgard M (2017) Plant proteogenomics: improvements to the grapevine genome annotation. Proteomics 17(21):1700197.  https://doi.org/10.1002/pmic.201700197CrossRefGoogle Scholar
  6. Chin CS, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, Dunn C, O’Malley R, Figueroa-Balderas R, Morales-Cruz A, Cramer GR, Delledonne M, Luo C, Ecker JR, Cantu D, Rank DR, Schatz MC (2016) Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods 13(12):1050–1054.  https://doi.org/10.1038/nmeth.4035CrossRefPubMedPubMedCentralGoogle Scholar
  7. Fasoli M, Dal Santo S, Zenoni S, Tornielli GB, Farina L, Zamboni A, Porceddu A, Venturini L, Bicego M, Murino V, Ferrarini A, Delledonne M, Pezzotti M (2012) The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. Plant Cell 24(9):3489–3505.  https://doi.org/10.1105/tpc.112.100230CrossRefPubMedPubMedCentralGoogle Scholar
  8. Foissac S, Gouzy J, Rombauts S, Mathe C, Amselem J, Sterck L, de Peer YV, Rouze P, Schiex T (2008) Genome annotation in plants and fungi: EuGene as a model platform. Curr Bioinform 3(2):87–97CrossRefGoogle Scholar
  9. Fouquet R, Léon C, Ollat N, Barrieu F (2008) Identification of grapevine aquaporins and expression analysis in developing berries. Plant Cell Rep 27(9):1541–1550.  https://doi.org/10.1007/s00299-008-0566-1CrossRefPubMedGoogle Scholar
  10. Gambino G, Dal Molin A, Boccacci P, Minio A, Chitarra W, Avanzato CG, Tononi P, Perrone I, Raimondi S, Schneider A, Pezzotti M, Mannini F, Gribaudo I, Delledonne M (2017) Whole-genome sequencing and SNV genotyping of ‘Nebbiolo’ (Vitis vinifera L.) clones. Sci Rep 7(1):17294.  https://doi.org/10.1038/s41598-017-17405-yCrossRefPubMedPubMedCentralGoogle Scholar
  11. Ghan R, Van Sluyter SC, Hochberg U, Degu A, Hopper DW, Tillet RL, Schlauch KA, Haynes PA, Fait A, Cramer GR (2015) Five omic technologies are concordant in differentiating the biochemical characteristics of the berries of five grapevine (Vitis vinifera L.) cultivars. BMC Genom 16(1):946.  https://doi.org/10.1186/s12864-015-2115-yCrossRefGoogle Scholar
  12. Grimplet J, Adam-Blondon A-F, Bert P-F, Bitz O, Cantu D, Davies C, Delrot S, Pezzotti M, Rombauts S, Cramer G (2014) The grapevine gene nomenclature system. BMC Genom 15(1):1077CrossRefGoogle Scholar
  13. Grimplet J, Agudelo Romero P, Teixeira R, Martinez Zapater JM, Fortes AM (2016a) Structural and functional analysis of the GRAS gene family in grapevine indicates a role of GRAS proteins in the control of development and stress responses. Front Plant Sci 7:353.  https://doi.org/10.3389/fpls.2016.00353CrossRefPubMedPubMedCentralGoogle Scholar
  14. Grimplet J, Martinez-Zapater JM, Carmona MJ (2016b) Structural and functional annotation of the MADS-box transcription factor family in grapevine. BMC Genom 17(1):80.  https://doi.org/10.1186/s12864-016-2398-7CrossRefGoogle Scholar
  15. Howe KL, Chothia T, Durbin R (2002) GAZE: a generic framework for the integration of gene-prediction data by dynamic programming. Genome Res 12(9):1418–1427.  https://doi.org/10.1101/gr.149502CrossRefPubMedPubMedCentralGoogle Scholar
  16. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P, French-Italian Public Consortium for Grapevine Genome C (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–467.  https://doi.org/10.1038/nature06148CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jiao C, Gao M, Wang X, Fei Z (2015) Transcriptome characterization of three wild Chinese Vitis uncovers a large number of distinct disease related genes. BMC Genom 16:223.  https://doi.org/10.1186/s12864-015-1442-3CrossRefGoogle Scholar
  18. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann Y, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowki J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ, Szustakowki J (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921.  https://doi.org/10.1038/35057062CrossRefPubMedPubMedCentralGoogle Scholar
  19. Minio A, Massonnet M, Figueroa-Balderas R, Vondras AM, Blanco-Ulate B, Cantu D (2019a) Iso-Seq allows genome-independent transcriptome profiling of grape berry development. G3 Genes Genomes Genet 9(3):755–767.  https://doi.org/10.1534/g3.118.201008CrossRefGoogle Scholar
  20. Minio A, Massonnet M, Figueroa-Balderas R et al (2019b) Diploid genome assembly of the wine grape carmenere. G3 Genes Genomes Genet 9:1331–1337Google Scholar
  21. Nejat N, Mantri N (2018) Emerging roles of long non-coding RNAs in plant response to biotic and abiotic stresses. Crit Rev Biotechnol 38(1):93–105.  https://doi.org/10.1080/07388551.2017.1312270CrossRefPubMedGoogle Scholar
  22. Nicolas P, Lecourieux D, Kappel C, Cluzet S, Cramer G, Delrot S, Lecourieux F (2014) The basic leucine zipper franscription factor ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 is an important transcriptional regulator of abscisic acid-dependent grape berry ripening processes. Plant Physiol 164(1):365–383.  https://doi.org/10.1104/pp.113.231977CrossRefPubMedGoogle Scholar
  23. Parage C, Tavares R, Rety S, Baltenweck-Guyot R, Poutaraud A, Renault L, Heintz D, Lugan R, Marais GA, Aubourg S, Hugueney P (2012) Structural, functional, and evolutionary analysis of the unusually large stilbene synthase gene family in grapevine. Plant Physiol 160(3):1407–1419.  https://doi.org/10.1104/pp.112.202705CrossRefPubMedPubMedCentralGoogle Scholar
  24. Roach MJ, Johnson DL, Bohlmann J, van Vuuren HJJ, Jones SJM, Pretorius IS, Schmidt SA, Borneman AR (2018) Population sequencing reveals clonal diversity and ancestral inbreeding in the grapevine cultivar Chardonnay. PLoS Genet 14(11):e1007807.  https://doi.org/10.1371/journal.pgen.1007807CrossRefPubMedPubMedCentralGoogle Scholar
  25. Shelden MC, Howitt SM, Kaiser BN, Tyerman SD (2009) Identification and functional characterisation of aquaporins in the grapevine, Vitis vinifera. Funct Plant Biol 36(12):1065–1078.  https://doi.org/10.1071/FP09117CrossRefGoogle Scholar
  26. Southan C (2017) Last rolls of the yoyo: Assessing the human canonical protein count [version 1; referees: 1 approved, 2 approved with reservations], vol 6. vol 448CrossRefGoogle Scholar
  27. Souvorov A, Kapustin Y, Kiryutin B, Chetvernin V, Tatusova T, Lipman D (2010) Gnomon–NCBI eukaryotic gene prediction toolGoogle Scholar
  28. Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B (2006) AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res 34(Web Server issue):W435–W439.  https://doi.org/10.1093/nar/gkl200CrossRefPubMedPubMedCentralGoogle Scholar
  29. Sterck L, Billiau K, Abeel T, Rouze P, Van de Peer Y (2012) ORCAE: online resource for community annotation of eukaryotes. Nat Methods 9(11):1041.  https://doi.org/10.1038/nmeth.2242CrossRefPubMedGoogle Scholar
  30. Steward CA, Parker APJ, Minassian BA, Sisodiya SM, Frankish A, Harrow J (2017) Genome annotation for clinical genomic diagnostics: strengths and weaknesses. Genome Med 9(1):49.  https://doi.org/10.1186/s13073-017-0441-1CrossRefPubMedPubMedCentralGoogle Scholar
  31. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigo R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A, Zandieh A, Zhu X (2001) The sequence of the human genome. Science 291(5507):1304–1351.  https://doi.org/10.1126/science.1058040CrossRefPubMedGoogle Scholar
  32. Venturini L, Ferrarini A, Zenoni S, Tornielli GB, Fasoli M, Dal Santo S, Minio A, Buson G, Tononi P, Zago ED, Zamperin G, Bellin D, Pezzotti M, Delledonne M (2013) De novo transcriptome characterization of Vitis vinifera cv. Corvina unveils varietal diversity. BMC Genom 14:41.  https://doi.org/10.1186/1471-2164-14-41CrossRefGoogle Scholar
  33. Vitulo N, Forcato C, Carpinelli EC, Telatin A, Campagna D, D’Angelo M, Zimbello R, Corso M, Vannozzi A, Bonghi C, Lucchin M, Valle G (2014) A deep survey of alternative splicing in grape reveals changes in the splicing machinery related to tissue, stress condition and genotype. BMC Plant Biol 14:99.  https://doi.org/10.1186/1471-2229-14-99CrossRefPubMedPubMedCentralGoogle Scholar
  34. Wang J, Meng X, Dobrovolskaya OB, Orlov YL, Chen M (2017) Non-coding RNAs and their roles in stress response in plants. Genomics Proteom Bioinform 15(5):301–312.  https://doi.org/10.1016/j.gpb.2017.01.007CrossRefGoogle Scholar
  35. Wang L, Park HJ, Dasari S, Wang S, Kocher J-P, Li W (2013) CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res 41(6):e74–e74.  https://doi.org/10.1093/nar/gkt006CrossRefPubMedPubMedCentralGoogle Scholar
  36. Wong DCJ, Schlechter R, Vannozzi A, Höll J, Hmmam I, Bogs J, Tornielli GB, Castellarin SD, Matus JT (2016) A systems-oriented analysis of the grapevine R2R3-MYB transcription factor family uncovers new insights into the regulation of stilbene accumulation. DNA Res Int J Rapid Publ Rep Genes Genomes 23(5):451–466.  https://doi.org/10.1093/dnares/dsw028CrossRefGoogle Scholar
  37. Wong DCJ, Zhang L, Merlin I, Castellarin SD, Gambetta GA (2018) Structure and transcriptional regulation of the major intrinsic protein gene family in grapevine. BMC Genom 19(1):248.  https://doi.org/10.1186/s12864-018-4638-5CrossRefGoogle Scholar
  38. Wucher V, Legeai F, Hédan B, Rizk G, Lagoutte L, Leeb T, Jagannathan V, Cadieu E, David A, Lohi H, Cirera S, Fredholm M, Botherel N, Leegwater PAJ, Le Béguec C, Fieten H, Johnson J, Alföldi J, André C, Lindblad-Toh K, Hitte C, Derrien T (2017) FEELnc: a tool for long non-coding RNA annotation and its application to the dog transcriptome. Nucleic Acids Res 45(8):e57–e57.  https://doi.org/10.1093/nar/gkw1306CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de AragónInstituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza)ZaragozaSpain
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of NevadaRenoUSA

Personalised recommendations