Advertisement

Scion Breeding for Resistance to Biotic Stresses

  • Ian DryEmail author
  • Summaira Riaz
  • Marc Fuchs
  • Mark Sosnowski
  • Mark Thomas
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

The majority of grapevine cultivars used for wine, table grape and dried-fruit production are derived from the Eurasian grape species Vitis vinifera because of its superior aroma and flavour characteristics. However, this species has little or no genetic resistance against the major pests and pathogens that attack above-ground parts of the grapevine including the trunk, canopy and bunches. As a result, grape production is highly dependent on the frequent use of fungicides and pesticides, which has significant implications for the economic and environmental sustainability of grape production. This chapter will summarize our current knowledge of the different resistance loci/genes that have been identified in wild grapevine species that could potentially be used to develop new grapevine cultivars with enhanced genetic resistance by marker-assisted selection.

Keywords

Powdery mildew Downy mildew Botrytis bunch rot Erysiphe necator Plasmopora viticola Botrytis cinerea Trunk diseases Xylella fastidiosa Marker-assisted breeding Resistance 

References

  1. Acevedo-Garcia J, Kusch S, Panstruga R (2014) Magical mystery tour: MLO proteins in plant immunity and beyond. New Phytol 204:273–281PubMedCrossRefPubMedCentralGoogle Scholar
  2. Agurto M, Schlechter RO, Armijo G, Solano E, Serrano C, Contreras RA, Zuniga GE, Arce-Johnson P (2017) RUN1 and REN1 pyramiding in grapevine (Vitis vinifera cv. Crimson seedless) displays an improved defense response leading to enhanced resistance to powdery mildew (Erysiphe necator). Front Plant Sci 8:758PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alonso-Villaverde V, Boso S, Luis Santiago J, Gago P, Martínez M-C (2008) Relationship between susceptibility to Botrytis bunch rot and grape cluster morphology in the Vitis vinifera L. cultivar Albariño. Int J Fruit Sci 8:251–265CrossRefGoogle Scholar
  4. Alonso-Villaverde V, Voinesco F, Viret O, Spring JL, Gindro K (2011) The effectiveness of stilbenes in resistant Vitaceae: ultrastructural and biochemical events during Plasmopara viticola infection process. Plant Physiol Biochem 49:265–274PubMedCrossRefPubMedCentralGoogle Scholar
  5. Ambers CP (2013) A historical hypothesis on the origin of the Norton grape. J Wine Res 24:85–95CrossRefGoogle Scholar
  6. Anderson C, Choisne N, Adam-Blondon A-F, Dry IB (2011) Positional cloning of disease resistance genes in grapevine. In: Kole C (ed) Genetics, genomics, and breeding of grapes. CRC Press, Versailles, pp 186–210CrossRefGoogle Scholar
  7. Antonielli L, Compant S, Strauss J, Sessitsch A, Berger H (2014) Draft genome sequence of Phaeomoniella chlamydospora strain RR-HG1, a grapevine trunk disease (esca)-related member of the Ascomycota. Genome Announc 2:e00098-00014CrossRefGoogle Scholar
  8. Barba P, Lillis J, Luce RS, Travadon R, Osier M, Baumgartner K, Wilcox WF, Reisch BI, Cadle-Davidson L (2018) Two dominant loci determine resistance to Phomopsis cane lesions in F1 families of hybrid grapevines. Theor Appl Genet 131:1173–1189PubMedPubMedCentralCrossRefGoogle Scholar
  9. Barrett HC (1953) A survey of black rot resistance of the foliage of wild grape species. Proc Am Soc Hortic Sci 62:319–322Google Scholar
  10. Becker T, Knoche M (2012) Water induces microcracks in the grape berry cuticle. Vitis 51:141–142Google Scholar
  11. Bellin D, Peressotti E, Merdinoglu D, Wiedemann-Merdinoglu S, Adam-Blondon AF, Cipriani G, Morgante M, Testolin R, Di Gaspero G (2009) Resistance to Plasmopara viticola in grapevine ‘Bianca’ is controlled by a major dominant gene causing localised necrosis at the infection site. Theor Appl Genet 120:163–176PubMedCrossRefPubMedCentralGoogle Scholar
  12. Berlanas C, Songy A, Clément C, Fontaine F, Gramaje D (2017) Variation amongst ‘Tempranillo’ clones in susceptibility to neofusicoccum parvum. Phytopathol Meditter 56:545Google Scholar
  13. Bertsch C, Ramírez-Suero M, Magnin-Robert M, Larignon P, Chong J, Abou-Mansour E, Spagnolo A, Clément C, Fontaine F (2013) Grapevine trunk diseases: complex and still poorly understood. Plant Pathol 62:243–265CrossRefGoogle Scholar
  14. Billones-Baaijens R, Jones EE, Ridgway HJ, Jaspers MV (2014) Susceptiblity of common rootstock and scion varieties of grapevines to Botryosphaeriaceae species. Australas Plant Pathol 43:25–31CrossRefGoogle Scholar
  15. Blanc S, Wiedemann-Merdinoglu S, Dumas V, Mestre P, Merdinoglu D (2012) A reference genetic map of Muscadinia rotundifolia and identification of Ren5, a new major locus for resistance to grapevine powdery mildew. Theor Appl Genet 125:1663–1675PubMedCrossRefPubMedCentralGoogle Scholar
  16. Blanco-Ulate B, Rolshausen PE, Cantu D (2013a) Draft genome sequence of Neofusicoccum parvum isolate UCR-NP2, a fungal vascular pathogen associated with grapevine cankers. Genome Announc 1:e00339-00313Google Scholar
  17. Blanco-Ulate B, Rolshausen PE, Cantu D (2013b) Draft genome sequence of the ascomycete Phaeoacremonium aleophilum strain UCR-PA7, a causal agent of the esca disease complex in grapevines. Genome Announc 1:e00390-00313Google Scholar
  18. Blanco-Ulate B, Rolshausen PE, Cantu D (2013c) Draft genome sequence of the grapevine dieback fungus Eutypa lata UCR-EL1. Genome Announc 1:e00228-00213Google Scholar
  19. Blasi P, Blanc S, Wiedemann-Merdinoglu S, Prado E, Ruhl EH, Mestre P, Merdinoglu D (2011) Construction of a reference linkage map of Vitis amurensis and genetic mapping of Rpv8, a locus conferring resistance to grapevine downy mildew. Theor Appl Genet 123:43–53CrossRefGoogle Scholar
  20. Borve J, Sekse L, Stensvand A (2000) Cuticular fractures promote postharvest fruit rot in sweet cherries. Plant Dis 84:1180–1184PubMedCrossRefPubMedCentralGoogle Scholar
  21. Bouquet A (1986) Introduction dans l’espe`ce Vitis vinifera L. d’uncaracte`re de re´sistance a` l’oidium (Uncinula necator Schw. Burr.) issu de l’espe`ce Muscadinia rotundifolia (Michx.) Small. Vignevini 12:141–146Google Scholar
  22. Brewer MT, Milgroom MG (2010) Phylogeography and population structure of the grape powdery mildew fungus, Erysiphe necator, from diverse Vitis species. BMC Evolut Biol 10:268CrossRefGoogle Scholar
  23. Brunetto G, de Melo GWB, Terzano R, Del Buono D, Astolfi S, Tomasi N, Pii Y, Mimmo T, Cesco S (2016) Copper accumulation in vineyard soils: rhizosphere processes and agronomic practices to limit its toxicity. Chemosphere 162:293–307PubMedCrossRefPubMedCentralGoogle Scholar
  24. Butault J-P, Dedryver C-A, Gary C, Guichard L, Jacquet F, Meynard JM, Nicot P, Pitrat M, Reau R, Sauphanor B, Savini I, Volay T (2010) Synthèse du rapport d’étude Écophyto R&D: quelles voies pour réduire l’usage des pesticides? INRA Editions 978-2-7380-1272-2Google Scholar
  25. Cadle-Davidson L (2008) Variation within and between Vitis spp. for foliar resistance to the downy mildew pathogen Plasmopara viticola. Plant Dis 92:1577–1584PubMedCrossRefPubMedCentralGoogle Scholar
  26. Cadle-Davidson L, Chicoine DR, Consolie NH (2011) Variation within and among Vitis spp. for foliar resistance to the powdery mildew pathogen Erysiphe necator. Plant Dis 95:202–211PubMedCrossRefPubMedCentralGoogle Scholar
  27. Carter MV (1991) The status of Eutypa lata as a pathogen. C.A.B., WallingfordGoogle Scholar
  28. Caudwell A (1990) Epidemiology and characterization of Flavescence doree (Fd) and other grapevine yellows. Agronomie 10:655–663CrossRefGoogle Scholar
  29. Cipriani G, Foria S, Monte C, Testolin R, Di Gaspero G (2018) Pyramidizing resistance genes in grape: a breeding program for the selection of ‘elite’ cultivars. Paper presented at the XIIth international grapevine breeding and genetics conference, Bordeaux, FranceGoogle Scholar
  30. Clayton CN, Ridings WH (1970) Grape Rust, Physopella ampelopsidis, on Vitis rotundifolia in North Carolina. Phytopathology 60:1022CrossRefGoogle Scholar
  31. Colcol JF, Baudoin AB (2016) Sensitivity of Erysiphe necator and Plasmopara viticola in Virginia to QoI fungicides, Boscalid, Quinoxyfen, Thiophanate Methyl, and Mefenoxam. Plant Dis 100:337–344PubMedCrossRefPubMedCentralGoogle Scholar
  32. Coleman C, Copetti D, Cipriani G, Hoffmann S, Kozma P, Kovacs L, Morgante M, Testolin R, Di Gaspero G (2009) The powdery mildew resistance gene REN1 co-segregates with an NBS-LRR gene cluster in two Central Asian grapevines. BMC Genet 10:89PubMedPubMedCentralCrossRefGoogle Scholar
  33. Correa J, Mamani M, Munoz-Espinoza C, Laborie D, Munoz C, Pinto M, Hinrichsen P (2014) Heritability and identification of QTLs and underlying candidate genes associated with the architecture of the grapevine cluster (Vitis vinifera L.). Theor Appl Genet 127:1143–1162PubMedPubMedCentralCrossRefGoogle Scholar
  34. Crall JM, Stover LH (1957) The significance of Pierce’s disease in the decline of bunch grapes in Florida. Phytopathology 47:518Google Scholar
  35. Creasy G, Creasy LL (2009) Chapter 9—Grapevine pests, diseases and disorders. In: Grapes crop production science in horticulture. CABI Publishing, UK, pp 229–296Google Scholar
  36. Dal Bosco D, Sinski I, Ritschel PS, Camargo UA, Fajardo TVM, Harakava R, Quecini V (2018) Expression of disease resistance in genetically modified grapevines correlates with the contents of viral sequences in the T-DNA and global genome methylation. Transgenic Res 27:379–396CrossRefGoogle Scholar
  37. Dalbó MA, Weeden NF, Reisch BI (2000) QTL analysis of disease resistance in interspecific hybrid grapes. Acta Hortic 528:215–219Google Scholar
  38. Daykin ME, Milholland RD (1984) Histopathology of Ripe Rot caused by Colletotrichum gloeosporioides on Muscadine grape. Phytopathology 74:1339–1341CrossRefGoogle Scholar
  39. De Cleene M, De Ley J (1976) The host range of crown gall. Bot Rev 442:389–466CrossRefGoogle Scholar
  40. Delmotte F, Mestre P, Schneider C, Kassemeyer HH, Kozma P, Richart-Cervera S, Rouxel M, Deliere L (2014) Rapid and multiregional adaptation to host partial resistance in a plant pathogenic oomycete: evidence from European populations of Plasmopara viticola, the causal agent of grapevine downy mildew. Infect Genet Evol 27:500–508PubMedCrossRefPubMedCentralGoogle Scholar
  41. Dermastia M, Bertaccini A, Constable F, Mehle N (2017) Grapevine yellow diseases and their phytoplasma agents: biology and Detection. Springer briefs in agriculture. Springer, Cham, pp 1–95CrossRefGoogle Scholar
  42. Di Gaspero G, Copetti D, Coleman C, Castellarin SD, Eibach R, Kozma P, Lacombe T, Gambetta G, Zvyagin A, Cindric P, Kovacs L, Morgante M, Testolin R (2012) Selective sweep at the Rpv3 locus during grapevine breeding for downy mildew resistance. Theor Appl Genet 124:277–286PubMedCrossRefPubMedCentralGoogle Scholar
  43. Divilov K, Barba P, Cadle-Davidson L, Reisch BI (2018) Single and multiple phenotype QTL analyses of downy mildew resistance in interspecific grapevines. Theor Appl Genet 131:1133–1143PubMedPubMedCentralCrossRefGoogle Scholar
  44. Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11:539–548PubMedCrossRefPubMedCentralGoogle Scholar
  45. Dry IB, Thomas MR (2015) Disease resistance: fast-tracking grape breeding for disease resistance. Wine Vitic J 30:52–55Google Scholar
  46. Duan C-G, Wang C-H, Guo H-S (2012) Application of RNA silencing to plant disease resistance. Silence 3:5PubMedPubMedCentralCrossRefGoogle Scholar
  47. Eibach R, Zyprian E, Welter L, Töpfer R (2007) The use of molecular markers for pyramiding resistance genes in grapevine breeding. Vitis 46:120–124Google Scholar
  48. Elmer PAG, Michailides TJ (2004) Epidemiology of Botrytis cinerea in orchard and vine crops. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, Dordrecht, pp 243–272Google Scholar
  49. Esteve-Turrillas FA, Agullo C, Abad-Somovilla A, Mercader JV, Abad-Fuentes A (2016) Fungicide multiresidue monitoring in international wines by immunoassays. Food Chem 196:1279–1286PubMedCrossRefPubMedCentralGoogle Scholar
  50. Eveillard S, Jollard C, Labroussaa F, Khalil D, Perrin M, Desque D, Salar P, Razan F, Hevin C, Bordenave L, Foissac X, Masson JE, Malembic-Maher S (2016) Contrasting susceptibilities to Flavescence doree in Vitis vinifera, rootstocks and wild Vitis species. Front Plant Sci 7:1762PubMedPubMedCentralCrossRefGoogle Scholar
  51. Feechan A, Jermakow AM, Torregrosa L, Panstruga R, Dry IB (2008) Identification of grapevine MLO gene candidates involved in susceptibility to powdery mildew. Funct Plant Biol 35:1255–1266CrossRefGoogle Scholar
  52. Feechan A, Kabbara S, Dry IB (2011) Mechanisms of powdery mildew resistance in the Vitaceae family. Mol Plant Path 12:263–274CrossRefGoogle Scholar
  53. Feechan A, Anderson C, Torregrosa L, Jermakow A, Mestre P, Wiedemann-Merdinoglu S, Merdinoglu D, Walker AR, Cadle-Davidson L, Reisch B, Aubourg S, Bentahar N, Shrestha B, Bouquet A, Adam-Blondon AF, Thomas MR, Dry IB (2013) Genetic dissection of a TIR-NB-LRR locus from the wild North American grapevine species Muscadinia rotundifolia identifies paralogous genes conferring resistance to major fungal and oomycete pathogens in cultivated grapevine. Plant J 76:661–674PubMedCrossRefGoogle Scholar
  54. Feechan A, Kocsis M, Riaz S, Zhang W, Gadoury DM, Walker MA, Dry IB, Reisch B, Cadle-Davidson L (2015) Strategies for RUN1 deployment using RUN2 and REN2 to manage grapevine powdery mildew informed by studies of race specificity. Phytopathology 105:1104–1113PubMedCrossRefGoogle Scholar
  55. Feliciano AJ, Eskalen A, Gubler WD (2004) Differential susceptibility of three grapevine cultivars to Phaeoacremonium aleophilum and Phaeomoniella chlamydospora in California. Phytopathol Mediterr 43:66–69Google Scholar
  56. Finkers R, van den Berg P, van Berloo R, ten Have A, van Heusden AW, van Kan JAL, Lindhout P (2007) Three QTLs for Botrytis cinerea resistance in tomato. Theor Appl Genet 114:585–593PubMedCrossRefPubMedCentralGoogle Scholar
  57. Fischer BM, Salakhutdinov I, Akkurt M, Eibach R, Edwards KJ, Topfer R, Zyprian EM (2004) Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet 108:501–515PubMedPubMedCentralCrossRefGoogle Scholar
  58. Foria S, Magris G, Morgante M, Di Gaspero G (2018) The genetic background modulates the intensity of Rpv3-dependent downy mildew resistance in grapevine. Plant Breed 137:220–228CrossRefGoogle Scholar
  59. Fritschi FB, Lin H, Walker MA (2007) Xylella fastidiosa population dynamics in grapevine genotypes differing in susceptibility to Pierce’s disease. Am J Enol Vitic 58:326–332Google Scholar
  60. Fu YQ, van Silfhout A, Shahin A, Egberts R, Beers M, van der Velde A, van Houten A, van Tuyl JM, Visser RGF, Arens P (2017) Genetic mapping and QTL analysis of Botrytis resistance in Gerbera hybrida. Mol Breed 37:13PubMedPubMedCentralCrossRefGoogle Scholar
  61. Fuchs M, Lemaire O (2017) Novel approaches for virus disease management. In: Meng B, Martelli GP, Golino DA, Fuchs MF (eds) Grapevine viruses: molecular biology, diagnostics and management. Springer, Berlin, pp 599–621CrossRefGoogle Scholar
  62. Fussler L, Kobes N, Bertrand F, Mauray M, Grosman J, Savary S (2008) A characterization of grapevine trunk diseases in France from data generated by the National Grapevine Wood Diseases Survey. Phytopathology 98:571–579PubMedCrossRefPubMedCentralGoogle Scholar
  63. Gabler FM, Smilanick JL, Mansour M, Ramming DW, Mackey BE (2003) Correlations of morphological, anatomical, and chemical features of grape berries with resistance to Botrytis cinerea. Phytopathology 93:1263–1273PubMedCrossRefPubMedCentralGoogle Scholar
  64. Gadino AN, Walton VM, Dreves AJ (2011) Impact of vineyard pesticides on a beneficial arthropod, Typhlodromus pyri (Acari: Phytoseiidae), in laboratory bioassays. J Econ Entomol 104:970–977PubMedCrossRefPubMedCentralGoogle Scholar
  65. Gadoury DM, Cadle-Davidson L, Wilcox WF, Dry IB, Seem RC, Milgroom MG (2012) Grapevine powdery mildew (Erysiphe necator): a fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Mol Plant Pathol 13:1–16PubMedCrossRefPubMedCentralGoogle Scholar
  66. Gambino G, Gribaudo I, Leopold S, Schartl A, Laimer M (2005) Molecular characterization of grapevine plants transformed with GFLV resistance genes: I. Plant Cell Rep 24:655–662PubMedCrossRefPubMedCentralGoogle Scholar
  67. Gambino G, Perrone I, Carra A, Chitarra W, Boccacci P, Marinoni DT, Barberis M, Maghuly F, Laimer M, Gribaudo I (2010) Transgene silencing in grapevines transformed with GFLV resistance genes: analysis of variable expression of transgene, siRNAs production and cytosine methylation. Transgenic Res 19:17–27PubMedCrossRefPubMedCentralGoogle Scholar
  68. Gao YR, Han YT, Zhao FL, Li YJ, Cheng Y, Ding Q, Wang YJ, Wen YQ (2016) Identification and utilization of a new Erysiphe necator isolate NAFU1 to quickly evaluate powdery mildew resistance in wild Chinese grapevine species using detached leaves. Plant Physiol Biochem 98:12–24PubMedCrossRefPubMedCentralGoogle Scholar
  69. Gessler C (2011) Plasmopora viticola: a review of knowledgr on downy mildew of grapevine and effective disease management. Phytopathol Mediterr 50:3–44Google Scholar
  70. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227PubMedCrossRefPubMedCentralGoogle Scholar
  71. Gölles R, Moser R, Puhringer H, Katinger H, Da Camara Laimer, Machado M, Minafra A, Savino V, Saldarelli P, Da Camara Machado A (2000) Transgenic grapevines expressing coat protein gene sequences of grapevine fanleaf virus, arabisa mosaic virus, grapevine virus A and grapevine virus B. Acta Hortic 528:305–311Google Scholar
  72. Gonsalves D, Ferreira S, Suzuki J, Tripathi S (2008) Papaya. Compendium of transgenic crop plants. Blackwell Publishing, OxfordGoogle Scholar
  73. Gramaje D, Urbez-Torres JR, Sosnowski MR (2018) Managing grapevine trunk diseases with respect to etiology and epidemiology: current strategies and future prospects. Plant Dis 102:12–39CrossRefGoogle Scholar
  74. Guan X, Essakhi S, Laloue H, Nick P, Bertsch C, Chong J (2016) Mining new resources for grape resistance against Botryosphaeriaceae: a focus on Vitis vinifera subsp. sylvestris. Plant Pathol 65:273–284CrossRefGoogle Scholar
  75. Gururani MA, Venkatesh J, Upadhyaya CP, Nookaraju A, Pandey SK, Park SW (2012) Plant disease resistance genes: current status and future directions. Physiol Mol Plant Pathol 78:51–65CrossRefGoogle Scholar
  76. Halbrooks MC, Mortensen JA (1989) Origin and significance of Florida hybrid bunch grapes and rootstocks. HortScience 24:546–550Google Scholar
  77. Hamblin J (2015) Factors affecting grapevine susceptibility to Eutypa dieback. University of Adelaide, AdelaideGoogle Scholar
  78. Hennessy CR, Daly AM, Hearnden MN (2007) Assessment of grapevine cultivars for resistance to Phakopsora euvitis. Aust Plant Pathol 36:313–317CrossRefGoogle Scholar
  79. Herzog K, Wind R, Topfer R (2015) Impedance of the grape berry cuticle as a novel phenotypic trait to estimate resistance to Botrytis cinerea. Sensors (Basel) 15:12498–12512CrossRefGoogle Scholar
  80. Hewitt WB (1958) The probable home of Pierce’s disease virus. Am J Enol Vitic 9:94–98Google Scholar
  81. Highet A, Wicks T (1998) The incidence of eutypa dieback in South Australian vineyards. Aust N Z Grapegrower Winemaker 414:135–136Google Scholar
  82. Hoffmann S, Di Gaspero G, Kovacs L, Howard S, Kiss E, Galbacs Z, Testolin R, Kozma P (2008) Resistance to Erysiphe necator in the grapevine ‘Kishmish vatkana’ is controlled by a single locus through restriction of hyphal growth. Theor Appl Genet 116:427–438PubMedPubMedCentralCrossRefGoogle Scholar
  83. Hofstetter V, Buyck B, Croll D, Viret O, Couloux A, Gindro K (2012) What if esca disease of grapevine were not a fungal disease? Fungal Divers 54:51–67CrossRefGoogle Scholar
  84. Hopkins DL (1989) Xylella fastidiosa—Xylem-limited bacterial pathogen of plants. Annu Rev Phytopathol 27:271–290CrossRefGoogle Scholar
  85. Hopkins DL, Purcell AH (2002) Xylella fastidiosa: cause of Pierce’s disease of grapevine and other emergent diseases. Plant Dis 86:1056–1066PubMedCrossRefPubMedCentralGoogle Scholar
  86. Huang P, Xiu J, Zhang H, Guo X, Li C, Guo Z, Qian W (1988) A preliminary report on hermaphrodites Vitis amurensis cv ShuangYou. Acta Agric Univ Jilinensis 10:31–33Google Scholar
  87. Hwang C-F, Sapkota S, Chen L-L, Yang S, Cadle-Davidson L (2018) QTL mapping of downy mildew and botrytis bunch rot resistance in a Vitis aestivalis-derived ‘Norton’-based population. Paper presented at the XIIth international grapevine breeding and genetics conference, Bordeaux, FranceGoogle Scholar
  88. Jang MH, Moon YS, Noh JH, Kim SH, Hong SK, Yun HK (2011) In vitro evaluation system for varietal resistance against Ripe rot caused by Colletotrichum acutatum in grapevines. Hortic Environ Biotechnol 52:52–57CrossRefGoogle Scholar
  89. Jardak-Jamoussi R, Winterhagen P, Bouamama B, Dubois C, Mliki A, Wetzel T, Ghorbel A, Reustle GM (2009) Development and evaluation of a GFLV inverted repeat construct for genetic transformation of grapevine. Plant Cell Tissue Organ 97:187–196CrossRefGoogle Scholar
  90. Jelly NS, Schellenbaum P, Walter B, Maillot P (2012) Transient expression of artificial microRNAs targeting Grapevine fanleaf virus and evidence for RNA silencing in grapevine somatic embryos. Transgenic Res 21:1319–1327PubMedCrossRefPubMedCentralGoogle Scholar
  91. Kim GH, Yun HK, Choi CS, Park JH, Jung YJ, Park KS, Dane F, Kang KK (2008) Identification of AFLP and RAPD markers linked to anthracnose resistance in grapes and their conversion to SCAR markers. Plant Breed 127:418–423CrossRefGoogle Scholar
  92. Komarek M, Cadkova E, Chrastny V, Bordas F, Bollinger JC (2010) Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects. Environ Int 36:138–151PubMedCrossRefPubMedCentralGoogle Scholar
  93. Krivanek AF, Walker MA (2005) Vitis resistance to Pierce’s disease is characterized by differential Xylella fastidiosa populations in stems and leaves. Phytopathology 95:44–52PubMedCrossRefPubMedCentralGoogle Scholar
  94. Krivanek AF, Stevenson JF, Walker MA (2005) Development and comparison of symptom indices for quantifying grapevine resistance to Pierce’s disease. Phytopathology 95:36–43PubMedCrossRefPubMedCentralGoogle Scholar
  95. Krivanek A, Riaz S, Walker MA (2006) Identification and molecular mapping of PdR1, a primary resistance gene to Pierce’s disease in Vitis. Theor Appl Genet 112:1125–1131PubMedCrossRefPubMedCentralGoogle Scholar
  96. Kuczmog A, Galambos A, Horvath S, Matai A, Kozma P, Szegedi E, Putnoky P (2012) Mapping of crown gall resistance locus Rcg1 in grapevine. Theor Appl Genet 125:1565–1574PubMedCrossRefPubMedCentralGoogle Scholar
  97. Kusch S, Panstruga R (2017) mlo-based resistance: an apparently universal “weapon” to defeat powdery mildew disease. Mol Plant Microbe Interact 30:179–189PubMedCrossRefPubMedCentralGoogle Scholar
  98. Kyrkou I, Pusa T, Ellegaard-Jensen L, Sagot MF, Hansen LH (2018) Pierce’s disease of grapevines: a review of control strategies and an outline of an epidemiological model. Front Microbiol 9:2141PubMedPubMedCentralCrossRefGoogle Scholar
  99. Laimer M, Lemaire O, Herrbach E, Goldschmidt V, Minafra A, Bianco P, Wetzel T (2009) Resistance to viruses, phytoplasmas and their vectors in the grapevine in Europe: a review. J Plant Pathol 91:7–23Google Scholar
  100. Landi L, Murolo S, Romanazzi G (2012) Colonization of Vitis spp. wood by sGFP-transformed Phaeomoniella chlamydospora, a tracheomycotic fungus involved in esca disease. Phytopathology 102:290–297PubMedCrossRefPubMedCentralGoogle Scholar
  101. Le Moal J, Rolland M, Goria S, Wagner V, De Crouy-Chanel P, Rigou A, De Mouzon J, Royere D (2014) Semen quality trends in French regions are consistent with a global change in environmental exposure. Reproduction 147:567–574PubMedCrossRefPubMedCentralGoogle Scholar
  102. Legrand V, Dalmayrac S, Latche A, Pech JC, Bouzayen M, Fallot J, Torregrosa L, Bouquet A, Roustan JP (2003) Constitutive expression of Vr-ERE gene in transformed grapevines confers enhanced resistance to eutypine, a toxin from Eutypa lata. Plant Sci 164:809–814CrossRefGoogle Scholar
  103. Lin H, Leng H, Guo Y, Kondo S, Zhao Y, Shi G, Guo X (2019) QTLs and candidate genes for downy mildew resistance conferred by interspecific grape (V. vinifera L. × V. amurensis Rupr.) crossing. Sci Hortic 244:200–207CrossRefGoogle Scholar
  104. Loomis NH (1958) Performance of Vitis species in the south as an indication of their relative resistance to Pierce’s disease. Plant Dis Rep 42:833–836Google Scholar
  105. Loschiavo A, Sosnowski M, Wicks T (2007) Incidence of eutypa dieback in the Adelaide hills. Aust NZ Grapegrower Winemaker 519:26–29Google Scholar
  106. Maghuly F, Leopold S, Machado AD, Fernandez EB, Khan MA, Gambino G, Gribaudo I, Schartl A, Laimer M (2006) Molecular characterization of grapevine plants transformed with GFLV resistance genes: II. Plant Cell Rep 25:546–553PubMedCrossRefPubMedCentralGoogle Scholar
  107. Mahanil S, Ramming D, Cadle-Davidson M, Owens C, Garris A, Myles S, Cadle-Davidson L (2012) Development of marker sets useful in the early selection of Ren4 powdery mildew resistance and seedlessness for table and raisin grape breeding. Theor Appl Genet 124:23–33PubMedCrossRefPubMedCentralGoogle Scholar
  108. Maliogka V, Martelli GP, Fuchs M, Katis N (2014) Control of viruses infecting grapevine. Adv Virus Res 91:175–227PubMedCrossRefPubMedCentralGoogle Scholar
  109. Mannini F, Digiaro M (2017) The effects of viruses and viral diseases on grapes and wine. In: Meng B, Martelli GP, Golino DA, Fuchs M (eds) Grapevine viruses: molecular biology, diagnostics and management. Springer, BerlinGoogle Scholar
  110. Marchi G (2001) Susceptibility to esca of various grapevine (Vitis vinifera) cultivars grafted on different rootstocks in a vineyard in the province of Siena (Italy). Phytopathol Mediterr 40:27–36Google Scholar
  111. Marguerit E, Boury C, Manicki A, Donnart M, Butterlin G, Nemorin A, Wiedemann-Merdinoglu S, Merdinoglu D, Ollat N, Decroocq S (2009) Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theor Appl Genet 118:1261–1278PubMedCrossRefPubMedCentralGoogle Scholar
  112. Martelli GP (2017) An overview of grapevine viruses, viroids and the diseases they cause. In: Meng B, Martelli GP, Golino DA, Fuchs MF (eds) Grapevine viruses: molecular biology, diagnostics and management. Springer, Berlin, pp 31–46CrossRefGoogle Scholar
  113. Martinelli L, Buzkhan N, Minafra A, Saldarelli P, Costa D, Poletti V, Festi S, Perl A, Martelli GP (2000) Genetic transformation of tobacco and grapevines for resistance to viruses related to the rugose wood disease complex. Acta Hortic 528:321–327Google Scholar
  114. Mauro MC, Toutain S, Walter B, Pinck L, Otten L, Coutos-Thevenot P, Deloire A, Barbier P (1995) High efficiency regeneration of grapevine plants transformed with the GFLV coat protein gene. Plant Sci 112:97–106CrossRefGoogle Scholar
  115. McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential and durable resistance. Annu Rev Phytopathol 40:349–379PubMedCrossRefPubMedCentralGoogle Scholar
  116. Mejlhede N, Kyjovska Z, Backes G, Burhenne K, Rasmussen SK, Jahoor A (2006) EcoTILLING for the identification of allelic variation in the powdery mildew resistance genes mlo and Mla of barley. Plant Breed 125:461–467CrossRefGoogle Scholar
  117. Merdinoglu D, Wiedemann-Merdinoglu S, Coste P, Dumas V, Haetty S, Butterlin G, Greif C (2003) Genetic analysis of downy mildew resistance derived from Muscadinia rotundifolia. Acta Hortic 603:451–456CrossRefGoogle Scholar
  118. Merdinoglu D, Schneider C, Prado E, Wiedemann-Merdinoglu S, Mestre P (2018) Breeding for durable resistance to downy and powdery mildew in grapevine. OENO One 52:189–195CrossRefGoogle Scholar
  119. Morales-Cruz A, Amrine KCH, Blanco-Ulate B, Lawrence DP, Travadon R, Rolshausen PE, Baumgartner K, Cantu D (2015) Distinctive expansion of gene families associated with plant cell wall degradation, secondary metabolism, and nutrient uptake in the genomes of grapevine trunk pathogens. BMC Genom 16:469CrossRefGoogle Scholar
  120. Morales-Cruz A, Allenbeck G, Figueroa-Balderas R, Ashworth VE, Lawrence DP, Travadon R, Smith RJ, Baumgartner K, Rolshausen PE, Cantu D (2018) Closed-reference metatranscriptomics enables in planta profiling of putative virulence activities in the grapevine trunk disease complex. Mol Plant Pathol 19:490–503CrossRefGoogle Scholar
  121. Moreira FM, Madini A, Marino R, Zulini L, Stefanini M, Velasco R, Kozma P, Grando MS (2010) Genetic linkage maps of two interspecific grape crosses (Vitis spp.) used to localize quantitative trait loci for downy mildew resistance. Tree Genet Genomes 7:153–167CrossRefGoogle Scholar
  122. Mortensen JA (1968) The inheritance of resistance to Pierce’s disease in Vitis. J Am Soc Hortic Sci 92:331–337Google Scholar
  123. Mortensen JA (1981) Sources and inheritance of resistance to Anthracnose in Vitis. J Hered 72:423–426CrossRefGoogle Scholar
  124. Mortensen JA (1988) Blanc Du Bois grape. HortScience 23:418–419Google Scholar
  125. Mortensen JA, Stover LH, Balerdi CF (1977) Sources of resistance to Pierce’s disease in Vitis. J Am Soc Hortic Sci 102:695–697Google Scholar
  126. Mundt CC (2018) Pyramiding for resistance durability: theory and practice. Phytopathology 108:792–802PubMedCrossRefPubMedCentralGoogle Scholar
  127. Murolo S, Romanazzi G (2014) Effects of grapevine cultivar, rootstock and clone on esca disease. Australas Plant Pathol 43:215–221CrossRefGoogle Scholar
  128. Naegele RP (2018) Evaluation of host resistance to Botrytis bunch rot in Vitis spp. and its correlation with botrytis leaf spot. HortScience 53:204–207CrossRefGoogle Scholar
  129. Newman KL, Almeida RPP, Purcell AH, Lindow SE (2003) Use of a green fluorescent strain for analysis of Xyella fastidiosa colonization of Vitis vinifera. Appl Environ Microb 69:7319–7327CrossRefGoogle Scholar
  130. Ochssner I, Hausmann L, Topfer R (2016) Rpv14, a new genetic source for Plasmopara viticola resistance conferred by Vitis cinerea. Vitis 55:79–81Google Scholar
  131. Oliver JE, Fuchs M (2011) Tolerance and resistance to viruses and their vectors in Vitis sp.: a virologist’s perspective of the literature. Am J Enol Vitic 62:438–451CrossRefGoogle Scholar
  132. Panstruga R (2005) Discovery of novel conserved peptide domains by ortholog comparison within plant multi-protein families. Plant Mol Biol 59:485–500PubMedCrossRefPubMedCentralGoogle Scholar
  133. Pap D, Riaz S, Dry IB, Jermakow A, Tenscher AC, Cantu D, Olah R, Walker MA (2016) Identification of two novel powdery mildew resistance loci, Ren6 and Ren7, from the wild Chinese grape species Vitis piasezkii. BMC Plant Biol 16:170PubMedPubMedCentralCrossRefGoogle Scholar
  134. Park CJ, Han SW, Chen XW, Ronald PC (2010) Elucidation of XA21-mediated innate immunity. Cell Microbiol 12:1017–1025PubMedPubMedCentralCrossRefGoogle Scholar
  135. Patil S, Honrao B, Karmkar S (1998) Reaction of some grape germplasm against the rust diseases. J Maharashtra Agric Univ 23:138–140Google Scholar
  136. Pauquet J, Bouquet A, This P, Adam-Blondon AF (2001) Establishment of a local map of AFLP markers around the powdery mildew resistance gene Run1 in grapevine and assessment of their usefulness for marker assisted selection. Theor Appl Genet 103:1201–1210CrossRefGoogle Scholar
  137. Pedneault K, Provost C (2016) Fungus resistant grape varieties as a suitable alternative for organic wine production: benefits, limits, and challenges. Sci Hortic 208:57–77CrossRefGoogle Scholar
  138. Peressotti E, Wiedemann-Merdinoglu S, Delmotte F, Bellin D, Di Gaspero G, Testolin R, Merdinoglu D, Mestre P (2010) Breakdown of resistance to grapevine downy mildew upon limited deployment of a resistant variety. BMC Plant Biol 10:147PubMedPubMedCentralCrossRefGoogle Scholar
  139. Perry RL, Mollenhauer HH, Bowen HH (1974) Electron photomicroscopy verification of Pierce’s disease on grape plants from Texas. Plant Dis Rep 58:780–782Google Scholar
  140. Pessina S, Lenzi L, Perazzolli M, Campa M, Dalla Costa L, Urso S, Vale G, Salamini F, Velasco R, Malnoy M (2016) Knockdown of MLO genes reduces susceptibility to powdery mildew in grapevine. Hortic Res 3:16016PubMedPubMedCentralCrossRefGoogle Scholar
  141. Pezet R, Gindro K, Viret O, Richter H (2004a) Effects of resveratrol, viniferins and pterostilbene on Plasmopara viticola zoospore mobility and disease development. Vitis 43:145–148Google Scholar
  142. Pezet R, Gindro K, Viret O, Spring JL (2004b) Glycosylation and oxidative dimerization of resveratrol are respectively associated to sensitivity and resistance of grapevine cultivars to downy mildew. Physiol Mol Plant Pathol 65:297–303CrossRefGoogle Scholar
  143. Pierce N (1892) The California vine disease: a preliminary report of investigations. US Dept of Agriculture, Bulletin No. 2, Washington, MDGoogle Scholar
  144. Pouzoulet J, Pivovaroff AL, Santiago LS, Rolshausen PE (2014) Can vessel dimension explain tolerance toward fungal vascular wilt diseases in woody plants? Lessons from Dutch elm disease and esca disease in grapevine. Front Plant Sci 5:253PubMedPubMedCentralCrossRefGoogle Scholar
  145. Raanan R, Gunier RB, Balmes JR, Beltran AJ, Harley KG, Bradman A, Eskenazi B (2017) Elemental sulfur use and associations with pediatric lung function and respiratory symptoms in an agricultural community (California, USA). Environ Health Perspect 125:087007PubMedPubMedCentralCrossRefGoogle Scholar
  146. Raju BC, Goheen AC, Teliz D, Nyland G (1979) Occurrence of Pierce’s disease of grapevines in Mexico. Phytopathology 69:919Google Scholar
  147. Ramming DW, Gabler F, Smilanick J, Cadle-Davidson M, Barba P, Mahanil S, Cadle-Davidson L (2011) A single dominant locus, ren4, confers rapid non-race-specific resistance to grapevine powdery mildew. Phytopathology 101:502–508PubMedCrossRefPubMedCentralGoogle Scholar
  148. Ren C, Liu XJ, Zhang Z, Wang Y, Duan W, Li SH, Liang ZC (2016) CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Sci Rep 6:32289PubMedPubMedCentralCrossRefGoogle Scholar
  149. Rex F, Fechter I, Hausmann L, Topfer R (2014) QTL mapping of black rot (Guignardia bidwellii) resistance in the grapevine rootstock ‘Borner’ (V. riparia Gm183 × V. cinerea Arnold). Theor Appl Genet 127:1667–1677PubMedCrossRefPubMedCentralGoogle Scholar
  150. Riaz S, Krivanek AF, Xu K, Walker MA (2006) Refined mapping of the Pierce’s disease resistance locus, PdR1, and Sex on an extended genetic map of Vitis rupestris × V arizonica. Theor Appl Genet 113:1317–1329CrossRefGoogle Scholar
  151. Riaz S, Vezzulli S, Harbertson ES, Walker MA (2007) Use of molecular markers to correct grape breeding errors and determine the identity of novel sources of resistance to Xiphinema index and Pierce’s disease. Am J Enol Vitic 58:494–498Google Scholar
  152. Riaz S, Tenscher AC, Graziani R, Walker MA (2008) Using marker-assisted selection to breed for Pierce’s disease resistance in grape. Am J Enol Vitic 59:341a–341aGoogle Scholar
  153. Riaz S, Tenscher AC, Graziani R, Walker MA (2009) Breeding winegrapes with resistance to Pierce’s disease. Am J Enol Vitic 60:388a–389aGoogle Scholar
  154. Riaz S, Tenscher AC, Ramming DW, Walker MA (2011) Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding. Theor Appl Genet 122:1059–1073PubMedCrossRefPubMedCentralGoogle Scholar
  155. Riaz S, Boursiquot JM, Dangl GS, Lacombe T, Laucou V, Tenscher AC, Walker MA (2013) Identification of mildew resistance in wild and cultivated Central Asian grape germplasm. BMC Plant Biol 13:149PubMedPubMedCentralCrossRefGoogle Scholar
  156. Riaz S, Huerta-Acosta K, Tenscher AC, Walker MA (2018a) Genetic characterization of Vitis germplasm collected from the southwestern US and Mexico to expedite Pierce’s disease-resistance breeding. Theor Appl Genet 131:1589–1602CrossRefGoogle Scholar
  157. Riaz S, Pap D, Tenscher A, Walker A (2018b) Durable powdery mildew resistance in grapevines: myth or reality. Paper presented at the XIIth International Grapevine Breeding and Genetics Conference, Bordeaux, FranceGoogle Scholar
  158. Ribéreau-Gayon J, Ribéreau-Gayon P, Seguin G (1980) Botrytis cinerea in enology. In: Coley-Smith JR, Verhoff K, Jarvis WR (eds) The biology of Botrytis. Academic Press, London, pp 251–274Google Scholar
  159. Richter R, Rossmann S, Töpfer R, Theres K, Zyprian E (2017) Genetic analysis of loose cluster architecture in grapevine. BIO Web Conf 9:01016CrossRefGoogle Scholar
  160. Robinson J, Harding J, Vouillamoz J (2012) Wine grapes: a complete guide to 1,368 vine varieties, including their origins and flavours. Penguin Books Ltd, LondonGoogle Scholar
  161. Rolshausen PE, Greve LC, Labavitch JM, Mahoney NE, Molyneux RJ, Gubler WD (2008) Pathogenesis of Eutypa lata in grapevine: Identification of virulence factors and biochemical characterization of cordon dieback. Phytopathology 98:222–229PubMedPubMedCentralCrossRefGoogle Scholar
  162. Rowe HC, Kliebenstein DJ (2008) Complex genetics control natural variation in Arabidopsis thaliana resistance to Botrytis cinerea. Genetics 180:2237–2250PubMedPubMedCentralCrossRefGoogle Scholar
  163. Roznki D, Hoffmann S, Kozma P (2017) Screening a large set of grape accessions for resistance against black rot (Guignardia bidwellii/(Ell.)). Mitteilungen Klosterneuburg, Rebe und Wein, Obstbau und Früchteverwertung 67:149–157Google Scholar
  164. Salvagnin U, Malnoy M, Thoming G, Tasin M, Carlin S, Martens S, Vrhovsek U, Angeli S, Anfora G (2018) Adjusting the scent ratio: using genetically modified Vitis vinifera plants to manipulate European grapevine moth behaviour. Plant Biotechnol J 16:264–271PubMedCrossRefPubMedCentralGoogle Scholar
  165. Sánchez-Mora FD, Saifert L, Zanghelini J, Assumpção WT, Guginski-Piva CA, Giacometti R, Novak EI, Klabunde GH, Eibach R, Dal Vesco L, Nodari RO, Welter LJ (2017) Behavior of grape breeding lines with distinct resistance alleles to downy mildew (Plasmopara viticola). Crop Breed Appl Biotechnol 17:141–149CrossRefGoogle Scholar
  166. Sanford JC, Johnston SA (1985) The concept of parasite-derived resistance—deriving resistance genes from the parasites own genome. J Theor Biol 113:395–405CrossRefGoogle Scholar
  167. Sapkota S, Chen L-L, Schreiner K, Ge H, Hwang C-F (2015) A phenotypic study of Botrytis bunch rot resistance in Vitis aestivalis-derived ‘Norton’ grape. Trop Plant Pathol 40:279–282CrossRefGoogle Scholar
  168. Saponari M, Boscia D, Nigro F, Martelli GP (2013) Identification of DNA sequences related to Xylella fastidiosa in Oleander, Almond and Olive trees exhibiting leaf scorch symptoms in Apulia (Southern Italy). J Plant Pathol 95:668Google Scholar
  169. Saporta R, San Pedro T, Gisbert C (2016) Attempts at grapevine (Vitis vinifera L.) breeding through genetic transformation: the main limiting factors. Vitis 55:173–186Google Scholar
  170. Schwander F, Eibach R, Fechter I, Hausmann L, Zyprian E, Topfer R (2012) Rpv10: a new locus from the Asian Vitis gene pool for pyramiding downy mildew resistance loci in grapevine. Theor Appl Genet 124:163–176PubMedCrossRefPubMedCentralGoogle Scholar
  171. Scorza R, Cordts JM, Gray DJ, Gonsalves D, Emershad RL, Ramming DW (1996) Producing transgenic ‘Thompson Seedless’ grape (Vitis vinifera L) plants. J Am Soc Hortic Sci 121:616–619CrossRefGoogle Scholar
  172. Scorza R, Ravelonandro M, Callahan A, Zagrai I, Polak J, Malinowski T, Cambra M, Levy L, Damsteegt V, Krska B, Cordts J, Gonsalves D, Dardick C (2016) ‘HoneySweet’ (C5), the first genetically engineered plum pox virus-resistant Plum (Prunus domestica L.) cultivar. HortScience 51:601–603CrossRefGoogle Scholar
  173. Shavrukov YN, Dry IB, Thomas MR (2004) Inflorescence and bunch architecture development in Vitis vinifera L. Aust J Grape Wine Res 10:116–124CrossRefGoogle Scholar
  174. Smithyman RP, Howell GS, Miller DP (1998) The use of competition for carbohydrates among vegetative and reproductive sinks to reduce fruit set and Botrytis bunch rot in Seyval blanc grapevines. Am J Enol Vitic 49:163–170Google Scholar
  175. Soler N, Fagoaga C, Chiibi S, López C, Moreno P, Navarro L, Flores R, Peña L (2011) RNAi-mediated protection against Citrus tristeza virus in transgenic Citrus plants non coding RNAs in Plants, RNA technologies. Springer, BerlinGoogle Scholar
  176. Song R, Lu W, Wang J, Shen Y, Shi G, Li W (1998) A new grapevine variety of Vitis amurensis. China Fruits 4:5–7Google Scholar
  177. Song S, Fu P, Lu J (2018) Downy mildew resistant QTLs in Vitis amurensis ‘Shuang Hong’ grapevine. Paper presented at the XIIth International Grapevine Breeding and Genetics Conference, Bordeaux, FranceGoogle Scholar
  178. Sosnowski MR, Lardner R, Wicks TJ, Scott ES (2007) The influence of grapevine cultivar and isolate of Eutypa lata on wood and foliar symptoms. Plant Dis 91:924–931PubMedCrossRefPubMedCentralGoogle Scholar
  179. Sosnowski M, Ayres M, McCarthy M, Wicks T, Scott E (2016) Investigating the potential for resistance to grapevine trunk diseases. Wine Vitic J 31:41–45Google Scholar
  180. Stam R, McDonald BA (2018) When resistance gene pyramids are not durable—the role of pathogen diversity. Mol Plant Pathol 19:521–524PubMedPubMedCentralCrossRefGoogle Scholar
  181. Staudt G (1997) Evaluation of resistance to grapevine powdery mildew (Uncinula necator [Schw.] Burr., anamorph Oidium tuckeri Berk.) in accessions of Vitis species. Vitis 36:151–154Google Scholar
  182. Staudt G, Kassemeyer HH (1995) Evaluation of downy mildew resistance in various accessions of wild Vitis species. Vitis 34:225–228Google Scholar
  183. Stoner WN (1953) Leafhopper transmission of a degeneration of grape in Florida and its relation to Pierce’s disease. Phytopathology 43:611–615Google Scholar
  184. Szegedi E, Kozma P (1984) Studies on the inheritance of resistance to Crown Gall disease of grapevine. Vitis 23:121–126Google Scholar
  185. Tasin M, Backman AC, Bengtsson M, Ioriatti C, Witzgall P (2006) Essential host plant cues in the grapevine moth. Naturwissenschaften 93:141–144PubMedCrossRefPubMedCentralGoogle Scholar
  186. Teh SL, Fresnedo-Ramirez J, Clark MD, Gadoury DM, Sun Q, Cadle-Davidson L, Luby JJ (2017) Genetic dissection of powdery mildew resistance in interspecific half-sib grapevine families using SNP-based maps. Mol Breed 37:1PubMedPubMedCentralCrossRefGoogle Scholar
  187. Tello J, Ibanez J (2018) What do we know about grapevine bunch compactness? A state-of-the-art review. Aust J Grape Wine Res 24:6–23CrossRefGoogle Scholar
  188. Tello J, Aguirrezabal R, Hernaiz S, Larreina B, Montemayor MI, Vaquero E, Ibanez J (2015) Multicultivar and multivariate study of the natural variation for grapevine bunch compactness. Aust J Grape Wine Res 21:277–289CrossRefGoogle Scholar
  189. Tello J, Torres-Perez R, Grimplet J, Ibanez J (2016) Association analysis of grapevine bunch traits using a comprehensive approach. Theor Appl Genet 129:227–242PubMedCrossRefPubMedCentralGoogle Scholar
  190. Thiery D, Louapre P, Muneret L, Rusch A, Sentenac G, Vogelweith F, Iltis C, Moreau J (2018) Biological protection against grape berry moths. A review. Agron Sustain Dev 38:15CrossRefGoogle Scholar
  191. Tobias PA, Guest DI (2014) Tree immunity: growing old without antibodies. Trends Plant Sci 19:367–370PubMedCrossRefPubMedCentralGoogle Scholar
  192. Travadon R, Baumgartner K, Rolshausen PE, Gubler WD, Sosnowski MR, Lecomte P, Halleen F, Peros JP (2012) Genetic structure of the fungal grapevine pathogen Eutypa lata from four continents. Plant Pathol 61:85–95CrossRefGoogle Scholar
  193. Travadon R, Rolshausen PE, Gubler WD, Cadle-Davidson L, Baumgartner K (2013) Susceptibility of cultivated and wild Vitis spp. to wood infection by fungal trunk pathogens. Plant Dis 97:1529–1536PubMedCrossRefPubMedCentralGoogle Scholar
  194. Vail ME, Marois JJ (1991) Grape cluster architecture and the susceptibility of berries to Botrytis cinerea. Phytopathology 81:188–191CrossRefGoogle Scholar
  195. Vail ME, Wolpert JA, Gubler WD, Rademacher MR (1998) Effect of cluster tightness on Botrytis bunch rot in six Chardonnay clones. Plant Dis 82:107–109PubMedCrossRefPubMedCentralGoogle Scholar
  196. Venuti S, Copetti D, Foria S, Falginella L, Hoffmann S, Bellin D, Cindric P, Kozma P, Scalabrin S, Morgante M, Testolin R, Di Gaspero G (2013) Historical introgression of the downy mildew resistance gene Rpv12 from the Asian species Vitis amurensis into grapevine varieties. PLoS ONE 8:e61228PubMedPubMedCentralCrossRefGoogle Scholar
  197. Vezzulli S, Malacarne G, Masuero D, Vecchione A, Haile ZM, Banchi E, Velasco R, Stefanini M, Vhrovsek U, Zulini L, Franceschi P, Moser C (2018) The Rpv3-3 locus and stilbenoid induction mediate downy mildew resistance in a grapevine inter-specific population. In: XIIth international grapevine breeding and genetics conference, Bordeaux, France, 2018Google Scholar
  198. Wan Y, Schwaniniger H, He P, Wang Y (2007) Comparison of resistance to powdery mildew and downy mildew in Chinese wild grapes. Vitis 46:132–136Google Scholar
  199. Wan R, Hou X, Wang X, Qu J, Singer SD, Wang Y, Wang X (2015) Resistance evaluation of Chinese wild Vitis genotypes against Botrytis cinerea and different responses of resistant and susceptible hosts to the infection. Front Plant Sci 6:854PubMedPubMedCentralGoogle Scholar
  200. Wang Y, Liu Y, He P, Lamikanra O, Lu J (1998) Resistance of Chinese Vitis species to Elsinoe ampelina (de Bary) Shear. HortScience 33:123–126CrossRefGoogle Scholar
  201. Wang YP, Cheng X, Shan QW, Zhang Y, Liu JX, Gao CX, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951PubMedCrossRefPubMedCentralGoogle Scholar
  202. Wang XH, Tu MX, Wang DJ, Liu JW, Li YJ, Li Z, Wang YJ, Wang XP (2018) CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnol J 16:844–855PubMedCrossRefPubMedCentralGoogle Scholar
  203. Welter LJ, Gokturk-Baydar N, Akkurt M, Maul E, Eibach R, Topfer R, Zyprian EM (2007) Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L). Mol Breed 20:359–374CrossRefGoogle Scholar
  204. Wilcox WF, Gubler WD, Uyemoto JK (2015) Diseases caused by biotic factors. In: Compendium of grape diseases, disorders, and pests, 2nd edn. APS Press, St Paul, MN, pp 17–146Google Scholar
  205. Zabadal TJ, Dittmer TW (1998) Vine management systems affect yield, fruit quality, cluster compactness, and fruit rot of ‘Chardonnay’ grape. HortScience 33:806–809CrossRefGoogle Scholar
  206. Zendler D, Schneider P, Töpfer R, Zyprian E (2017) Fine mapping of Ren3 reveals two loci mediating hypersensitive response against Erysiphe necator in grapevine. Euphytica 213:68CrossRefGoogle Scholar
  207. Zyprian E, Ochssner I, Schwander F, Simon S, Hausmann L, Bonow-Rex M, Moreno-Sanz P, Grando MS, Wiedemann-Merdinoglu S, Merdinoglu D, Eibach R, Topfer R (2016) Quantitative trait loci affecting pathogen resistance and ripening of grapevines. Mol Genet Genom 291:1573–1594CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ian Dry
    • 1
    Email author
  • Summaira Riaz
    • 2
  • Marc Fuchs
    • 3
  • Mark Sosnowski
    • 4
  • Mark Thomas
    • 1
  1. 1.CSIRO Agriculture and FoodUrrbraeAustralia
  2. 2.Department of Viticulture and EnologyUniversity of California DavisDavisUSA
  3. 3.Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, New York State Agricultural Experiment StationCornell UniversityGenevaUSA
  4. 4.South Australian Research and Development Institute and the University of AdelaideUrrbraeAustralia

Personalised recommendations