Advertisement

Biofuel Production from Sugarcane in Brazil

  • Felipe A. F. Antunes
  • Anuj K. Chandel
  • Ruly Terán-Hilares
  • Thais S. S. Milessi
  • Beatriz M. Travalia
  • Felipe A. Ferrari
  • Andrés F. Hernandez-Pérez
  • Lucas Ramos
  • Paulo F. Marcelino
  • Larissa P. Brumano
  • Gilda M. Silva
  • Marcus B. S. Forte
  • Júlio C. Santos
  • Maria G. A. Felipe
  • Silvio S. da Silva
Chapter

Abstract

The development of sustainable and clean energy sources has gained great importance worldwide due to realization of the urgent need to curb greenhouse gases’ emissions in order to mitigate the effects of climate change. Sugarcane biofuels are important alternative to fossil fuels as they offer environmental and socioeconomic advantages. Brazil leads the world for ethanol production from cane juice, an abundant renewable source in the country. In this context, the status of sugarcane crop in Brazil, capacity of its sugar and ethanol industry, and the current standing of its lignocellulosic biorefineries are presented in this chapter. Additionally, the impact of biofuels economy of Brazil, as well as the acceptance and adaptability at the user’s end are discussed. Moreover, new possibilities of 2G biofuel production after prospective technological improvements to make them even feasible are presented.

Keywords

Sugarcane Brazil Biofuels Bioethanol Biomass Sugars 

References

  1. Aditiya HB, Mahlia TMI, Chong WT, Nur H, Sebayang AH (2016) Second-generation bioethanol production: a critical review. Renew Sust Energ Rev 66:631–653.  https://doi.org/10.1016/j.rser.2016.07.015CrossRefGoogle Scholar
  2. Albarelli JQ, Ensinas AV, Silva MA (2014) Product diversification to enhance economic viability of second-generation ethanol production in Brazil: the case of the sugar and ethanol joint production. Chem Eng Res Des 92:1470–1481.  https://doi.org/10.1016/j.cherd.2013.11.016CrossRefGoogle Scholar
  3. ANA (Brazilian National Water Agency) (2017) Levantamento da cana-de-açúcar irrigada na região centro-sul do Brasil. http://arquivos.ana.gov.br/institucional/spr/_LevantamentoCanaIrrigada_posCE_CEDOC_SemISBN2.pdf. Accessed 30 Jun 2017
  4. Antunes FAF, Milessi TSS, Chandel AK, Moraes VP, Freitas WLC, da Silva SS (2014) Innovated approach to produce 2G etanol from sugarcane bagasse hydrolysate by immobilized cells of a xylose-fermenting yeast isolated from Brazilian forest. In: Mendez-Vilas A (ed) Industrial, medical and environmental applications of microorganisms: current status and trends, 1st edn. Wageningen Academic Publishers, Wageningen, pp 453–457Google Scholar
  5. Badin MRS, Godoy DH (2014) International trade regulatory challenges in Brazil: some lessons from the promotion of ethanol. Lat Am Policy 5:39–61CrossRefGoogle Scholar
  6. Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86(11):2273–2282.  https://doi.org/10.1016/j.apenergy.2009.03.015CrossRefGoogle Scholar
  7. Barros CP, Gil-Alana LI, Wanke P (2014) Ethanol consumption in Brazil: empirical facts based on persistence, seasonality and breaks. Biomass Bioenergy 63:313–320.  https://doi.org/10.1016/j.biombioe.2014.02.012CrossRefGoogle Scholar
  8. Basso LC, Basso TO, Rocha SN (2011) Ethanol production in Brazil: the industrial process and its impact on yeast fermentation. In: Bernardes MAS (ed) Biofuel production: recent developments and prospects. InTech, Rijeka, pp 85–100Google Scholar
  9. Brazilian National Bank for Sustainable and Social Development and Brazilian Center of Management and Strategic Studies (2008) Sugarcane-based bioethanol: energy for sustainable development/coordination BNDES and CGEE – Rio de Janeiro. ISBN: 978-85-87545-27-5, p 304Google Scholar
  10. Brennan L, Owende P (2010) Biofuels from microalgae: a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557–577.  https://doi.org/10.1016/j.rser.2009.10.009CrossRefGoogle Scholar
  11. Caldwell J (2007) Fueling a new farm economy: creating incentives for biofuels in agriculture and trade policy. http://www.americanprogress.org/issues/2007/01/pdf/farm_economy.pdf. Accessed 28 July 2017
  12. Canilha L, Carvalho W, Felipe MGA, Silva JBA, Giulietti M (2010) Ethanol production from sugarcane bagasse hydrolysate using Pichia stipitis. Appl Biochem Biotechnol 161:84–92.  https://doi.org/10.1007/s12010-009-8792-8CrossRefPubMedGoogle Scholar
  13. Canilha L, Chandel AK, Milessi TSS, Antunes FAF, Freitas WLC, Felipe MGA, da Silva SS (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification and ethanol fermentation. J Biomed Biotechnol 2012:1–15.  https://doi.org/10.1155/2012/989572CrossRefGoogle Scholar
  14. Carvalho AFA, Neto PO, Silva DF, Pastore GM (2013) Xylo-oligosaccharides from lignocellulosic materials: chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Res Int 51(1):75–85.  https://doi.org/10.1016/j.foodres.2012.11.021CrossRefGoogle Scholar
  15. Carvalho AL, Menezes RSC, Nobrega RS, Pinto AS, Ometto JPHB, von Randow C, Giarolla A (2015) Impact of climate changes on potential sugarcane yield in Pernambuco, northeastern region of Brazil. Renew Energy 78:26–34.  https://doi.org/10.1016/j.renene.2014.12.023CrossRefGoogle Scholar
  16. Castro AM, Pereira N (2010) Production, properties and application of cellulases in the hydrolysis of agroindustrial residues. Quim Nova 33(1):181–188.  https://doi.org/10.1590/S0100-40422010000100031CrossRefGoogle Scholar
  17. Center for Advanced Studies on Applied Economics (2016) GDP agribusiness –Brazil outlook. http://www.cepea.esalq.usp.br/upload/kceditor/files/Relatorio%20PIBAGRO%20Brasil_DEZEMBRO.pdf. Accessed 6 July 2017
  18. Chagas ALS (2014) Socio-economic and ambient impacts of sugarcane expansion in Brazil: effects of the second-generation ethanol production. In: Silva SS, Kumar AC (eds) Biofuels in Brazil: fundamental aspects, recent developments, and future perspectives, 1st edn. Springer International Publisher, New York, pp 435–441Google Scholar
  19. Coelho ST, Lucon JGO, Guardabassi P (2006) Brazilian sugarcane ethanol: lessons learned. Energy Sustain Dev 10(2):26–39.  https://doi.org/10.1016/S0973-0826(08)60529-3CrossRefGoogle Scholar
  20. CONAB (2017) National Supply Company (2017) Monitoring of Brazilian sugarcane season, season 2017/18. http://www.conab.gov.br/OlalaCMS/uploads/arquivos/17_04_20_14_04_31_boletim_cana_portugues_-_1o_lev_-_17-18.pdf. Accessed 6 Apr 2017
  21. Cruz MG, Guerreiro E, Raiher AP (2012) A evolução da produção de etanol no Brasil, no período de 1975 a 2009. Rev Econ Nordeste 43(4):141–159Google Scholar
  22. Demirbas MF (2009) Biorefineries for biofuel upgrading: a critical review. Appl Energy 86(1):151–161.  https://doi.org/10.1016/j.apenergy.2009.04.043CrossRefGoogle Scholar
  23. Dias MOS, Junqueira TL, Cavalett O, Cunha MP, Jesus CDF, Mantelatto PE, Rossell CEV, Maciel Filho R, Bonomi A (2013) Cogeneration in integrated first and second-generation ethanol from sugarcane. Chem Eng Res Des 91(8):1411–1417.  https://doi.org/10.1016/j.cherd.2013.05.009CrossRefGoogle Scholar
  24. Du X, Carriquiry M (2013) Flex-fuel vehicle adoption and dynamics of ethanol prices: lessons from Brazil. Energy Policy 59:507–512.  https://doi.org/10.1016/j.enpol.2013.04.008CrossRefGoogle Scholar
  25. ECEX Foreign Trade Department (2010). http://www.mdic.gov.br/comercio-exterior/estatisticas-de-comercio-exterior. Accessed 12 Apr 2017
  26. FAO (2014) FAOSTAT Crops. Food and Agriculture Organization of the United Nations. Accessed in Jul 29, 2017. Available at http://www.fao.org/faostat/en/#data/QC
  27. Ferreira A Jr, Souza JL, Lyra GB, Teodoro I, dos Santos MA, Porfirio ACS (2012) Crescimento e fotossíntese de cana-de-açúcar em função de variáveis biométricas e meteorológicas. Eng Agr Amb 16(11):1229–1236.  https://doi.org/10.1590/S1415-43662012001100012CrossRefGoogle Scholar
  28. Fischer G, Prieler S, Van Velthuizen H, Lensink SM, Londo M, de Wit M (2010) Biofuel production potentials in Europe: sustainable use of cultivated land and pastures. Part I: land productivity potentials. Biomass Bioenergy 34:159–172.  https://doi.org/10.1016/j.biombioe.2009.07.008CrossRefGoogle Scholar
  29. Food and Agriculture Organization of the United Nations (2016). http://www.fao.org/faostat/en/#data/QC. Accessed 13 Nov 2018
  30. Food and Agriculture Organization of the United Nations (2017). http://www.fao.org/news/archive/news-by-date/2017/en/. Accessed 13 Sept 2017
  31. Gallardo ALF, Bond A (2011) Capturing the implications of land use change in Brazil through environmental assessment: time for a strategic approach? Environ Impact Assess Rev 31:261–270.  https://doi.org/10.1016/j.eiar.2010.06.002CrossRefGoogle Scholar
  32. Gilio L, Moraes MAFD (2016) Sugarcane industry’s socioeconomic impact in São Paulo, Brazil: a spatial dynamic panel approach. Energy Econ 58:27–37CrossRefGoogle Scholar
  33. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101(13):4775–4800.  https://doi.org/10.1016/j.eneco.2016.06.005CrossRefPubMedGoogle Scholar
  34. Globo (2016) Cana-de-açúcar: Globo Rural faz balanço da crise do setor. http://g1.globo.com/economia/agronegocios/noticia/2016/06/cana-de-acucar-globo-rural-faz-balanco-da-crise-do-setor.html. Accessed 14 Aug 2017
  35. Goldemberg J (2008) The Brazilian biofuels industry: a review. Biotechnol Biofuels 1(6):1–7.  https://doi.org/10.1186/1754-6834-1-6CrossRefGoogle Scholar
  36. Goldemberg J, Guardabassi P (2009) The potential for first-generation ethanol production from sugarcane. Biofuels Bioprod Biorefin 4(1):17–24.  https://doi.org/10.1002/bbb.186CrossRefGoogle Scholar
  37. Goldemberg J, Coelho ST, Guardabassi P (2008) The sustainability of ethanol production from sugarcane. Energy Policy 36(6):2086–2097.  https://doi.org/10.1016/j.enpol.2008.02.028CrossRefGoogle Scholar
  38. Goldemberg J, Mello FFC, Cerri CEP, Davies CA, Cerri CC (2014) Meeting the global demand for biofuels in 2021 through sustainable land use change policy. Energy Policy 69:14–18.  https://doi.org/10.1016/j.enpol.2014.02.008CrossRefGoogle Scholar
  39. Gonzalez R, Daystar J, Jett M (2012) Economics of cellulosic ethanol production in a thermochemical pathway for softwood, hardwood, corn Stover and switchgrass. Fuel Process Technol 94:113–122.  https://doi.org/10.1016/j.fuproc.2011.10.003CrossRefGoogle Scholar
  40. Hamelinck CN, Hooijdonk GV, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410.  https://doi.org/10.1016/j.biombioe.2004.09.002CrossRefGoogle Scholar
  41. International Energy Agency (2006) The energy situation in Brazil: an overview. http://www.iea.org/textbase/papers/2006/brazil.pdf. Accessed 21 July 2017
  42. Janssen R, Rutz DD (2011) Sustainability of biofuels in Latin America: risks and opportunities. Energy Policy 39(10):5717–5725.  https://doi.org/10.1016/j.enpol.2011.01.047CrossRefGoogle Scholar
  43. Khan MT, Seema N, Khan IA, Yasmine S (2017) Applications and potential of sugarcane as an energy crop. In: Gorawala P, Mandhatri S (eds) Agricultural research updates, vol 16. Nova Science Publishers, New York, pp 1–24Google Scholar
  44. Leal MRLV, Galdos MV, Scarpare FV, Seabra JEA, Walter A, Oliveira COF (2013) Sugarcane straw availability, quality, recovery and energy use: a literature review. Biomass Bioenergy 53:11–19.  https://doi.org/10.1016/j.biombioe.2013.03.007CrossRefGoogle Scholar
  45. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69(6):627–642.  https://doi.org/10.1007/s00253-005-0229-xCrossRefPubMedGoogle Scholar
  46. Lopes ML, Paulillo SCL, Godoy A, Cherubin RA, Lorenzi MS, Giometti FH, Bernardino CD, Amonrim Neto HB, Amorim HV (2016) Ethanol production in Brazil: a bridge between science and industry. Braz J Microbiol 47(1):64–76.  https://doi.org/10.1016/j.bjm.2016CrossRefPubMedPubMedCentralGoogle Scholar
  47. Loureiro ME, Barbosa MHP, Lopes FJP, Silvério FO (2011) Sugarcane breeding and selection for more efficient biomass conversion in cellulosic ethanol. In: Buckeridge MS, Goldman GH (eds) Routes to cellulosic ethanol. Springer, New York, pp 199–239CrossRefGoogle Scholar
  48. Lucon O, Goldemberg J (2009) Crise financeira, energia e sustentabilidade no Brasil. Estudos Avançados, 23(65):121–130CrossRefGoogle Scholar
  49. Luk J, Fernandes H, Kumar A (2010) A conceptual framework for siting biorefineries in the Canadian prairies. Biofuels Bioprod Biorefin 4(4):408–422.  https://doi.org/10.1002/bbb.233CrossRefGoogle Scholar
  50. Luz Jr LFL, Kaminski M, Kozak RH, Ndiaye PM (2009) Bioetanol, biodiesel e biocombustíveis: perspectivas para o futuro. Instituto de PesquisaEconômicaAplicada: regional, urbano e ambiental, 3:53–57Google Scholar
  51. Macedo IC, Seabra JEA, Silva JEAR (2008) Greenhouse gases emissions in the production and use of ethanol from sugarcane in Brazil: the 2005/2006 averages and a prediction for 2020. Biomass Bioenergy 32:582–595.  https://doi.org/10.1016/j.biombioe.2007.12.006CrossRefGoogle Scholar
  52. Machado FBP (2017) Brasil, a Doce Terra – História do Setor. https://www.agencia.cnptia.embrapa.br/Repositorio/historia_da_cana_000fhc62u4b02wyiv80efhb2attuk4ec.pdf. Accessed in 2 June 2017
  53. Manochio C, Andrade BR, Rodrigues RP, Moraes BS (2017) Ethanol from biomass: a comparative overview. Renew Sust Energ Rev 80:743–755.  https://doi.org/10.1016/j.rser.2017.05.063CrossRefGoogle Scholar
  54. MAPA (2006) Brazilian Agroenergy Plan 2006–2011. Ministry of Agriculture, Livestock and Food Supply, Secretariat for Production and Agroenergy, Embrapa, Brazil, DFGoogle Scholar
  55. MAPA (2009) Sugarcane agroecological zoning. Expand the production, preserve live and assure the future. http://www.agricultura.gov.br/acesso-a-informacao/acoes-e-programas/cartasde-servico/politica-de-agroenergia/zoneamento-agroecologico-da-cana-de-acucar-zaecana. Accessed 22 June 2017
  56. MAPA (2017) Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de RelaçõesInternacionais do Agronegócio. BalançaComercial do Agronegócio – Maio/2017. Accessed in Apr 23, 2017. Available in: http://www.agricultura.gov.br/noticias/soja-representa-quase-50-das-exportacoes-brasileiras-do-agronegocio-em-maio/nota-maio-2017.docx
  57. Marin F, Nassif D (2013) Mudanças climáticas e a cana-de-açúcar no Brasil: Fisiologia, conjuntura e cenário futuro. Rev Bras Eng Agríc Ambient 17(2):232–239CrossRefGoogle Scholar
  58. Martinelli LA, Garrett R, Ferraz S, Naylor R (2011) Sugar and ethanol production as a rural development strategy in Brazil: evidence from the state of São Paulo. Agric Syst 104(5):419–428.  https://doi.org/10.1016/j.agsy.2011.01.006CrossRefGoogle Scholar
  59. Mendes FM, Dias MOS, Ferraz A, Milagres AMF, Santos JC, Bonomi A (2017) Techno-economic impacts of varied compositional profiles of sugarcane experimental hybrids on a biorefinery producing sugar, ethanol and electricity. Chem Eng Res Des 125:72–78.  https://doi.org/10.1016/j.cherd.2017.06.023CrossRefGoogle Scholar
  60. Mendonça MA (2008) Expansão da produção de álcool combustível no Brasil: uma análise baseada nas curvas de aprendizagem. Paper presented at the 46th Brazilian Rural Economy, Administration and Sociology Congress, Rio Branco, 20–23 June 2008Google Scholar
  61. Meneghin F, Nassar AM (2013) A cana vai voltar a crescer? http://www.iconebrasil.org.br/publicacoes/artigos. Accessed in 20 June 2017
  62. Michellon E, Santos AAL, Rodrigues JRA (2008) Breve descrição do Proálcool e perspectivas futuras Para o etanol produzido no Brasil. Paper presented at the 46th Brazilian rural economy, administration and sociology congress, Rio Branco, 20–23 June 2008Google Scholar
  63. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second-generation biofuels: a comprehensive review. Renew Sust Energ Rev 14(2):578–597.  https://doi.org/10.1016/j.rser.2009.10.003CrossRefGoogle Scholar
  64. Nardon L, Aten K (2008) Beyond a better mousetrap: a cultural analysis of the adoption of ethanol in Brazil. J World Bus 43(3):261–273CrossRefGoogle Scholar
  65. Nass LL, Pereira PAA, Ellis D (2007) Biofuels in Brazil: an overview. Crop Sci 47(6):2228–2237.  https://doi.org/10.2135/cropsci2007.03.0166CrossRefGoogle Scholar
  66. National Institute for Applied Economic Research (2010) Biocombustíveis no Brasil: etanol e biodiesel. In: Série: Eixos do desenvolvimento brasileiro. http://www.ipea.gov.br/portal/images/stories/PDFs/100526_comunicadodoipea_53.pdf. Accessed 29 July 2017
  67. National Supply Company (2017) Monitoring of Brazilian sugarcane season, season 2017/18. http://www.conab.gov.br/OlalaCMS/uploads/arquivos/17_04_20_14_04_31_boletim_cana_portugues_-_1o_lev_-_17-18.pdf. Accessed 6 Apr 2017
  68. Neves MA, Kimura T, Shimizu N, Nakajima M (2007) State of art and future trends of bioethanol production. Dyn Biochem Process Biotechnol Mol Biol 1(1):1–14Google Scholar
  69. Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37(1):52–68.  https://doi.org/10.1016/j.pecs.2010.01.003CrossRefGoogle Scholar
  70. NOVACANA (2013) 116 fotos da 1ª usina de etanol celulósico do Brasil: 85% concluída. https://www.novacana.com/fotos/granbio. Accessed 23 June 2017
  71. NOVACANA (2017a) As usinas de Açúcar e Etanol do Brasil. https://www.novacana.com/usinas-brasil/. Accessed 14 July 14 2017
  72. NOVACANA (2017b) Biocombustíveis geram 1,7 milhão de empregos no mundo, diz relatório. https://www.novacana.com/n/cana/trabalhadores/biocombustiveis-1-7-milhao-empregos-mundo-300517/. Accessed 17 July 17, 2017
  73. Pazuch FA, Nogueira CEC, Souza SNM, Micuanski VC, Friedrich L, Lenz AM (2017) Economic evaluation of the replacement of sugar cane bagasse by vinasse, as a source of energy in a power plant in the state of Paraná, Brazil. Renew Sustain Energy Rev 76:34–42.  https://doi.org/10.1016/j.rser.2017.03.047CrossRefGoogle Scholar
  74. Phalan B (2009) The social and environmental impacts of biofuels in Asia: an overview. Appl Energy 88(1):S21–S29.  https://doi.org/10.1016/j.apenergy.2009.04.046CrossRefGoogle Scholar
  75. Pinto Gâs (2015) A expansão não conflituosa entre a produção de etanol e a produção de alimentos no Brasil. Dissertation, Universidade Estadual PaulistaGoogle Scholar
  76. Ribeiro BE (2013) Beyond commonplace biofuels: social aspects of ethanol. Energy Policy 57:355–362.  https://doi.org/10.1016/j.enpol.2013.02.004CrossRefGoogle Scholar
  77. Rodrigues D, Ortiz L (2006) VITAE CIVILIS (Intitute for Development, Environment and Peace. Em direção à sustentabilidade da produção de etanol de cana de açúcar no Brasil. http://www.agencia.cnptia.embrapa.br/Repositorio/cana4_000g7qv63sq02wx5ok0wtedt3xughe7o.pdf. Accessed 9 Apr 2017
  78. Rodrigues RCLB, Rocha GJM, Rodrigues JRD, Filho HJ, Felipe MD, Pessoa A Jr (2010) Scale-up of diluted sulfuric acid hydrolysis for producing sugarcane bagasse hemicellulosic hydrolysate (SBHH). Bioresour Technol 101(4):1247–1253.  https://doi.org/10.1016/j.biortech.2009.09.034CrossRefPubMedGoogle Scholar
  79. Ruffato-Ferreira V, Barreto RC, Júnior AO, Silva WL, Viana DB, Nascimento JAS, Freitas MAV (2017) A foundation for the strategic long-term planning of the renewable energy sector in Brazil: hydroelectricity and wind energy in the face of climate change scenarios. Renew Sustain Energy Rev 72:1124–1137.  https://doi.org/10.1016/j.rser.2016.10.020CrossRefGoogle Scholar
  80. Sanchez Badin MR, Godoy DHO (2014) International trade regulatory challenges in Brazil: some lessons from the promotion of ethanol. Lat Am Policy 5(1):39–61CrossRefGoogle Scholar
  81. Scheiterle L, Ulmer A, Birner R et al (2017) From commodity-based value chains to biomass-based value webs: the case of sugarcane in Brazil’s bioeconomy. J Clean Prod 172:3851–3863.  https://doi.org/10.1016/j.jclepro.2017.05.150CrossRefGoogle Scholar
  82. SECEX (2017) Estatísticas de Comércio Exterior. Accessed in Apr 12, 2017. Available in: http://www.mdic.gov.br/comercio-exterior/estatisticas-de-comercio-exterior
  83. Spera S, Vanweya L, Mustard J (2017) The drivers of sugarcane expansion in Goiás, Brazil. Land Use Policy 66:111–119.  https://doi.org/10.1016/j.landusepol.2017.03.037CrossRefGoogle Scholar
  84. Sugarcane Industry Union (2017). http://www.unicadata.com.br/historico-de-producao-e-moagem.php. Accessed 2 July 2017
  85. Wilkinson J, Herrera S (2010) Biofuels in Brazil: debates and impacts. J Peasant Stud 37(4):749–768CrossRefGoogle Scholar
  86. Zapata C, Nieuwenhuis P (2009) Driving on liquid sunshine – the Brazilian biofuel experience: a policy driven analysis. Bus Strateg Environ 18(8):518–541.  https://doi.org/10.1002/bse.616CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Felipe A. F. Antunes
    • 1
  • Anuj K. Chandel
    • 1
  • Ruly Terán-Hilares
    • 1
  • Thais S. S. Milessi
    • 1
  • Beatriz M. Travalia
    • 2
  • Felipe A. Ferrari
    • 2
  • Andrés F. Hernandez-Pérez
    • 1
  • Lucas Ramos
    • 1
  • Paulo F. Marcelino
    • 1
  • Larissa P. Brumano
    • 1
  • Gilda M. Silva
    • 1
  • Marcus B. S. Forte
    • 2
  • Júlio C. Santos
    • 1
  • Maria G. A. Felipe
    • 1
  • Silvio S. da Silva
    • 1
  1. 1.Department of BiotechnologyEngineering School of Lorena, University of São PauloSão PauloBrazil
  2. 2.Department of Food EngineeringUniversity of CampinasCampinasBrazil

Personalised recommendations