Advertisement

Fungal Diseases of Animals: Symptoms and Their Cure by Natural Products

  • Hilal Ahmad Ganaie
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

From ancient times people have been using medicinal plants for the treatment of a wide variety of diseases. This traditional use of plants is based upon pragmatic, timeless trial and error, correlating certain plants to the management and cure of particular diseases. The traditional way by which these plants were used can still be found in communities, passed down through natural history, and still prevails. MAPs possess a wide range of pharmacological activities. The use of medicinal plants has been increasing steadily with notable use in the pharmaceutical, cosmetic and food industries. With the discovery and extensive consumption of synthetic antibiotics, some resistant strains of microbes like multidrug-resistant strains of Mycobacterium tuberculosis, Klebsiella pneumoniae and Pseudomonas aeruginosa, penicillin-resistant Streptococcus pneumoniae (PRSP), methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VREF) have emerged and are a threat to the successful treatment of different dreadful diseases associated with these microbes. Thus, it is a strong challenge to the scientist community to search for alternatives to curb these dreadful diseases.

The antibacterial activity of various plant extracts was tested against a set of bacterial strains, including both Gram-positive and Gram-negative bacterial strains. The activity was determined by agar well diffusion method. The plant shows a broad spectrum of antibacterial activity. Methanolic extract was found to be the most active against all the bacterial strains tested and showed maximum sensitivity. The methanolic extract of Ajuga bracteosa showed highest sensitivity in all the three concentrations with zones of inhibition of 12.6 ± 1.1, 15.3 ± 1.1 and 18.6 ± 1.7 at 40 μL, 70 μL and 100 μL (4, 7 and 10 mg of plant extract), respectively, against Gram-positive bacteria, Proteus vulgaris.

Keywords

Agar well diffusion method Bacterial strains Kashmir Himalaya Medicinal and aromatic plants Multidrug-resistant strains Traditional medicine 

Notes

Acknowledgements

The author is highly thankful to Dr. Md. Niamat Ali, Associate Professor, and Prof. Bashir A. Ganie for their valuable suggestions during his research. The author is highly thankful to the Editor of the book for the opportunity to contribute a chapter.

References

  1. A.P.H.A (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DCGoogle Scholar
  2. Adetutu A, Morgan WA, Corcoran O (2011) Antibacterial, antioxidant and fibroblast growth stimulation activity of crude extracts of Bridelia ferruginea leaf, a wound-healing plant of Nigeria. J Ethnopharmacol 133(1):116–119PubMedCrossRefGoogle Scholar
  3. Agyare C, Boakye YD, Bekoe EO, Hensel A, Dapaah SO, Appiah T (2016) Review: African medicinal plants with wound healing properties. J Ethnopharmacol 177:85–100PubMedCrossRefGoogle Scholar
  4. Ahmad R (2013) Photochemical, antimicrobial, insecticidal and brine shrimp lethality bioassay of the crude methanolic extract of Ajuga parviflora Benth. Pak J Pharm Sci 26(4):751–756PubMedGoogle Scholar
  5. Ahmad I, Mehmood Z, Mohammad F (1998) Screening of some Indian medicinal plants for their antimicrobial properties. J Ethnopharmacol 62(2):183–193PubMedCrossRefGoogle Scholar
  6. Atta-ur-Rahman Choudhary MI, Thomsen WJ (2001) Bioassay techniques for drug development, vol 16. Harwood Academic Publishers, AmsterdamCrossRefGoogle Scholar
  7. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils–a review. Food Chem Toxicol 46(2):446–475PubMedCrossRefGoogle Scholar
  8. Barry AL (1976) The antimicrobic susceptibility test: principles and practices. Lippincott Williams and Wilkins, PhiladelphiaGoogle Scholar
  9. Bennett SCJ (1931) Cryptococcus pneumonia in Equidae. J Compo Path 44:85–105CrossRefGoogle Scholar
  10. Betina V (1994) Mechanisms of action of antibiotics and mycotoxins. In: Bioactive secondary metabolites of microorganisms. Elsevier Science, Amsterdam, pp 297–375Google Scholar
  11. Bodin E, Lenormand C (1912) Recherches sur les poisons produits par l’ Aspergillus fumigatus. Ann Inst Pasteur 26:371–380Google Scholar
  12. Boe J, Hartmann O, Thjistta T (1939) A serological study of Aspergillus fumigatus. Acta Pathol Microbiol Scand 16:178–186CrossRefGoogle Scholar
  13. Bouhdid S, Abrini J, Amensour M, Zhiri A, Espuny MJ, Manresa A (2010) Functional and ultrastructural changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Cinnamomum verum essential oil. J Appl Microbiol 109(4):1139–1149PubMedCrossRefGoogle Scholar
  14. Bullen JJ (1950) Epizootic lymohangitis. J R Army Vet Cps 21:158–159. 22, 8–11Google Scholar
  15. Canadanovic-Brunet J, Cetkovic G, Djilas S, Tumbas V, Bogdanovic G, Mandic A, Canadanovic V (2008) Radical scavenging, antibacterial, and antiproliferative activities of Melissa officinalis L. extracts. J Med Food 11(1):133143CrossRefGoogle Scholar
  16. Ceni C, Besta C (1905) Sclerosi in placche sperimentale da tossici aspergillari. Sulla persistenza del potere vitale e patogeno della spora aspergillare nell’ organismo animale. Contributo sperimentale alIa recidivita della pellagra. Arch ital Mal ner Mentali 42(125):496Google Scholar
  17. Chomnawang MT, Surassmo S, Wongsariya K, Bunyapraphatsara N (2009) Antibacterial activity of Thai medicinal plants against methicillin-resistant Staphylococcus aureus. Fitoterapia 80(2):102–104PubMedCrossRefGoogle Scholar
  18. Christaki E, Bonos E, Giannenas I, Florou-Paneri P (2012) Aromatic plants as a source of bioactive compounds. Agriculture 2(3):228–243CrossRefGoogle Scholar
  19. Cos P, Vlietinck AJ, Berghe DV, Maes L (2006) Anti-infective potential of natural products: how to develop a stronger In vitro ‘proof-of-concept’. J Ethnopharmacol 106(3):290–302PubMedCrossRefGoogle Scholar
  20. Cox LB, Tolhurst JC (1946) Human torulosis: a clinical, pathological and microbiological study with a report of thirteen cases. Melbourne University Press in Association with Oxford Univ. Press, Melbourne and London, Melbourne, p 149Google Scholar
  21. Curasson G (1942) Traite de pathologie exotique veterinaire et comparee, vol 2, 2nd edn. Maladies Microbiennes, Paris: Vigot FreresGoogle Scholar
  22. Dastmalchi K, Dorman HD, Oinonen PP, Darwis Y, Laakso I, Hiltunen R (2008) Chemical composition and In vitro antioxidative activity of a lemon balm (Melissa officinalis L.) extract. LWT-Food Sci Technol 41(3):391–400CrossRefGoogle Scholar
  23. Delaquis PJ, Stanich K, Girard B, Mazza G (2002) Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int J Food Microbiol 74(1):101–109PubMedCrossRefGoogle Scholar
  24. Dong C, Zhang X, Bao C, Zhu Y, Zhuang L, Tan Z, Tang F (2015) Antibiotic resistance and molecular characterization of Vibrio cholera strains isolated from an outbreak of cholera epidemic in Jiangsu province. Zhonghua yu fang yi xue za zhi [Chinese J Prev Med] 49(2):128–131Google Scholar
  25. Erturk O (2006) Antibacterial and antifungal activity of ethanolic extracts from eleven spice plants. Biologia 61(3):275–278CrossRefGoogle Scholar
  26. Fadli M, Saad A, Sayadi S, Chevalier J, Mezrioui NE, Pagès JM, Hassani L (2012) Antibacterial activity of Thymus maroccanus and Thymus broussonetii essential oils against nosocomial infection–bacteria and their synergistic potential with antibiotics. Phytomedicine 19(5):464–471PubMedCrossRefGoogle Scholar
  27. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668PubMedCrossRefGoogle Scholar
  28. Fred CT (2006) Mechanism of antimicrobial resistance in bacteria. Am J Med 119(6A):3–10Google Scholar
  29. Gaunt LF, Higgins SC, Hughes JF (2005) Interaction of air ions and bactericidal vapours to control micro-organisms. J Appl Microbiol 99(6):1324–1329PubMedCrossRefGoogle Scholar
  30. Gibbons S (2004) Anti-staphylococcal plant natural products. Nat Prod Rep 21(2):263–277PubMedCrossRefGoogle Scholar
  31. Henrici AT (1939) An endotoxin from Aspergillus fumigatus. J lmmunol 36:19–338Google Scholar
  32. Houang ET, Chu YW, Lo WS, Chu KY, Cheng AF (2003) Epidemiology of rifampin ADP-ribosyltransferase (arr-2) and metallo-β-lactamase (blaIMP-4) gene cassettes in class 1 integrons in Acinetobacter strains isolated from blood cultures in 1997–2000. Antimicrob Agents Chemother 47(4):1382–1390PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hyde HA, Richards M, Williams DA (1956) Allergy to mould spores in Britain. Brit Med J 1:886–890PubMedCrossRefGoogle Scholar
  34. Iauk L, Lo Bue AM, Milazzo I, Rapisarda A, Blandino G (2003) Antibacterial activity of medicinal plant extracts against periodontopathic bacteria. Phytother Res 17(6):599–604PubMedCrossRefGoogle Scholar
  35. Israili ZH, Lyoussi B (2009) Ethnopharmacology of the plants of genus Ajuga. Pak J Pharm Sci 22(4):425–462PubMedGoogle Scholar
  36. Kotliar E (1894) Contribution a l’etude de la pseudo-tuberculose aspergillaire. Ann Inst Pasteur 8:479–489Google Scholar
  37. Leber T (1882) Ueber die Wachsthumsbedingungen der SchimmeIpilze im menschlichen und thierischen K~rper. Berl klin Wschr 19:161–164. and 301Google Scholar
  38. Lesbouyrles G (1952) Actinophytose a Streptothrix actinomyces chez Ie mouton. Rec MM Vet 128:465–447Google Scholar
  39. Lin J, Opoku AR, Geheeb-Keller M, Hutchings AD, Terblanche SE, Jäger AK, Van Staden J (1999) Preliminary screening of some traditional Zulu medicinal plants for anti-inflammatory and anti-microbial activities. J Ethnopharmacol 68(1):267–274PubMedCrossRefGoogle Scholar
  40. Lucet A (1897) De l’ Aspergillus fumigatus chez animaux domestioues et dans les oeufs en incubation. Etude clinique et experimentale, vol 108. Ch. Mendel, ParisGoogle Scholar
  41. Macaigne M, Nicaud P (1927a) Recherches sur la sporo-agglutination dans ’aspergillose pulmonaire. C R Soc Biol Paris 96:444–445Google Scholar
  42. Macaigne M, Nicaud P (1927b) Recherches sur les reactions antigeniques dans l’ aspergillose. Intra derma reaction antigenique focale. C R Soc Biol Paris 96:446–448Google Scholar
  43. Manges AR, Johnson JR, Foxman B, O Bryan TT, Fullerton KE, Riley LW (2001) Widespread distribution of urinary tract infections caused by a multidrug-resistant Escherichia coli clonal group. New Engl J Med 345:1007–1013PubMedCrossRefGoogle Scholar
  44. Matsumoto T (1929) Investigation of aspergilli by serological methods. Trans Brit Mycol Soc 14:69–88CrossRefGoogle Scholar
  45. Mayer AC, Emmert (1815) Verschimmelung (Mucedo) im lebenden Korper. Dtsch Arch Anat Physiol (Meek l) 1:310Google Scholar
  46. Mc Grath JT (1954) Cryptococcosis of the central nervous system in domestic animals. Amer J Path 30:651Google Scholar
  47. Norrell SA, Messley KE (1997) Microbiology laboratory manual: Principles and Applications. Prentice-Hall, New JerseyGoogle Scholar
  48. Obici A (1898) Ueber die pathogenen Eigenschaften des Aspergillus fumigatus. Be Hr Path Anat 23:197–237Google Scholar
  49. Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784):299–304PubMedCrossRefGoogle Scholar
  50. Otte W (1928) Die Krankheiten des GeflUgels mit besonderer BerUcksichtigung der Anatomie und der Hygiene. Rich. Schoetz Verlag, Berlin, p 214Google Scholar
  51. Owen R (1832) On the anatomy of the flamingo (Phoonicopterus ruber, Linn.). Proczool Soc Lond 2:141–144Google Scholar
  52. Pallin WA (1904) A treatise on Epizootic lymphangitis, 2nd edn. University Press of Liverpool, London, p 57CrossRefGoogle Scholar
  53. Palmer KL, Kos VN, Gilmore MS (2010) Horizontal gene transfer and the genomics of enterococcal antibiotic resistance. Curr Opin Microbiol 13(5):632–639PubMedPubMedCentralCrossRefGoogle Scholar
  54. Perez C, Pauli M, Bazerque P (1990) An antibiotic assay by the agar well diffusion method. Acta Biol Med Exp 15:113–115Google Scholar
  55. Ploy MC, Lambert T, Couty JP, Denis F (2000) Integrons: an antibiotic resistance gene capture and expression system. Clin Chem Lab Med 38(6):483–487PubMedCrossRefGoogle Scholar
  56. Plunkett JJ (1949) Epizootic lymphangitis. JR Army Vet Cps 20:94–99Google Scholar
  57. Ravi A, Avershina E, Foley SL, Ludvigsen J, Storro O, Oien T, Rudi K (2015) The commensal infant gut meta-mobilome as a potential reservoir for persistent multidrug resistance integrons. Sci Rep 5:1–11CrossRefGoogle Scholar
  58. Renon L (1897) Etude sur l’aspergillose chez les animaux et chez l’homme. Masson et cie, Paris, p 301Google Scholar
  59. Rios JL, Recio MC (2005) Medicinal plants and antimicrobial activity. J Ethnopharmacol 100(1):80–84PubMedCrossRefGoogle Scholar
  60. Rostami H, Kazemi M, Shafiei S (2012) Antibacterial activity of Lavandula officinalis and Melissa officinalis against some human pathogenic bacteria. Asian J Biochem 7(3):133–142CrossRefGoogle Scholar
  61. Rousseau E, Serrurier (1841) Development de cryptogames sur les tissues devert-br-s vivants. CR AcadSci, Paris 13:18–19Google Scholar
  62. Rowe-Magnus DA, Mazel D (1999) Resistance gene capture. Curr Opin Microbiol 2(5):483–488PubMedCrossRefGoogle Scholar
  63. Russell AD, Chopra I (1990) Understanding antibacterial action and resistance. Ellis Horwood, New York, pp 174–175Google Scholar
  64. Saidana D, Mahjoub MA, Boussaada O, Chriaa J, Chéraif I, Daami M, Helal AN (2008) Chemical composition and antimicrobial activity of volatile compounds of Tamarix boveana (Tamaricaceae). Microbiol Res 163(4):445–455PubMedCrossRefGoogle Scholar
  65. Salvin SB (1952) Endotoxin in pathogenic fungi. J lmmunol 69:89–99Google Scholar
  66. Sarkar A, Pazhani GP, Chowdhury G, Ghosh A, Ramamurthy T (2015) Attributes of carbapenemase encoding conjugative plasmid pNDM-SAL from an extensively drug-resistant Salmonella enterica serovar senftenberg. Front Microbiol 6:1–10CrossRefGoogle Scholar
  67. Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A (2004) Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 28(5):519–542CrossRefGoogle Scholar
  68. Segretain G, Verge J, Drieux H, Mariatj F, Paraf A, Labie C, Theron B (1956) Mammite a “Cryptococcus neoformaris”. Bull Acad Vet Fr 29:33–41Google Scholar
  69. Shokeen P, Bala M, Tandon V (2009) Evaluation of the activity of 16 medicinal plants against Neisseria gonorrhoeae. Int J Antimicrob Agents 33(1):86–91PubMedCrossRefGoogle Scholar
  70. Simon J (1955) In vitro inhibition of mixed strains of Cryptococcus neoformans isolated from cattle. Amer J Vet Res 16:394–396PubMedGoogle Scholar
  71. Singh S (1956) Equine cryptococcosis (epizootic lymphangitis). Indian Vet J 32:260–270Google Scholar
  72. Stanojevic D, Comic L, Stefanovic O, Solujic-Sukdolak S (2010) In vitro synergistic antibacterial activity of Salvia officinalis L. and some preservatives. Arch Biol Sci 62(1):167–174CrossRefGoogle Scholar
  73. Sutcliffe J, Mueller J, Utt E (1999) Antibiotic Resistance Mechanisms of Bacterial Pathogens. In: Manual of Industrial Microbiology and Biotechnology, A.L. Demain, J.E. Davies (Eds.), ASM Press, Washington, USA, pp. 759–775Google Scholar
  74. Tally FP (1999) Researchers reveal ways to defeat ‘superbugs’. Drug Discov Today 4(9):395–398PubMedCrossRefGoogle Scholar
  75. Tsuchiya H, Iinuma M (2000) Reduction of membrane fluidity by antibacterial sophoraflavanone G isolated from Sophora exigua. Phytomedicine 7(2):161–165PubMedCrossRefGoogle Scholar
  76. Urbain A, Guillot G (1938) Les aspergilloses aviaires. Rev Path Compo 38:929–955Google Scholar
  77. Uzun E, Sariyar G, Adsersen A, Karakoc B, Otuk G, Oktayoglu E, Pirildar S (2004) Traditional medicine in Sakarya province (Turkey) and antimicrobial activities of selected species. J Ethnopharmacol 95(2):287–296PubMedCrossRefGoogle Scholar
  78. Verge MJ (1927) Les aspergilloses des oiseaux. Rec MM Vet 3:521–528Google Scholar
  79. Webber MA, Piddock LJV (2003) The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 51(1):9–11PubMedCrossRefGoogle Scholar
  80. Yang W, Moore IF, Koteva KP, Bareich DC, Hughes DW, Wright GD (2004) Tet X is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J Biol Chem 279(50):52346–52352PubMedCrossRefGoogle Scholar
  81. Yildirim AB, Karakas FP, Turker AU (2013) In vitro antibacterial and antitumor activities of some medicinal plant extracts, growing in Turkey. Asian Pac J Trop Med 6(8):616–624PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hilal Ahmad Ganaie
    • 1
  1. 1.Centre of Research for Development (CORD)University of KashmirSrinagarIndia

Personalised recommendations