Advertisement

Sudoku: Another Aspect of the Application for Solving the Problem of Optimal Allocation of Resources

  • E. B. OleinikEmail author
  • R. S. Rogulin
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 139)

Abstract

Background/Objectives: to improve production efficiency, it is often necessary to solve various optimization problems. One of them is the task of allocating production resources. The solution of such problems depends on the influence of many factors, so to solve this problem there are different methods.

Methods: it is given a comparative analysis of the main decision methods for continuous and discrete production resource allocation problems.

Findings: the discrete resource allocation problem is considered, it is proposed to use the Sudoku puzzle, which is the task of combinatorial optimization, to solve it. To solve the problem, a package of applied programs Matlab is used and an algorithm for its implementation is presented. The matrix of combinatorial arrangements of groups of workers on production lines is found.

Applications/Improvements: the developed algorithm can be used as an auxiliary tool for making managerial decisions at enterprises with production lines.

Keywords

Task of allocating production resources Sudoku puzzle Discrete allocation problems Linear programming task 

References

  1. 1.
    Goncharov, E.N., Rochetov, Y.A.: Povedeniye veroyatnostnih zhadnih algoritmov dlya mnogostadiynoy zadachy razmeshcheniya. Discret. Anal. Oper. Res. Ser. 2 6(1), 12–32 (1999)Google Scholar
  2. 2.
    Church, R.L., Meadows, M.: Location modeling utilizing maximum service distance criteria. Geograph. Anal. 11, 358–373 (1979)CrossRefGoogle Scholar
  3. 3.
    Mikhaylov, V.Y., Vasilyev, A.V.: Primeneniye bulevih functsiy dlya resheniya practicheskih zadach: Tutorial, p. 103. Kazan State University, Kazan (2015)Google Scholar
  4. 4.
    Beresnev, V.L.: Discretniye zadachy razmesheniya I polinomy ot bulevih peremennih, p. 408. Institute of Mathematics, Novosibirsk (2005)Google Scholar
  5. 5.
    Elizarov, D.E.: Algoritmizaciya resheniya zadachi o razmeshcheniyi na osnove modifikatsciyi metoda vetvey I granits. Vestnik Voronezhckogo tehnologicheskogo universiteta 12(5), 42–48 (2016)Google Scholar
  6. 6.
    Vasil’ev, I.L., Klimentova, K.B.: Metod vetvej i otsechenij dlya dvuhurovnevoj zadachi razmeshcheniya. Konferenciya “Lyapunovskie chteniya & prezentaciya infor macionnyh tekhnologij” (Irkutsk, 19–23 dekabrya 2008g.). Institut dinamiki sistem i teorii upravleniya SO RAN, 11 (2008)Google Scholar
  7. 7.
    Goncharov, E.N.: Metod vetvej i granic dlya prostejshej dvuhurovnevoj zadachi razmeshcheniya predpriyatij. Diskret. analiz i issled. operacij. Ser. 2. 5(1), 19–39 (1998)Google Scholar
  8. 8.
    Drezner, Z.: Dynamic facility location: the progressive p-median problem. Locat. Sci. 3, 1–7 (1995)CrossRefGoogle Scholar
  9. 9.
    Hachaturov, V.R., Veselovskij, V.E.: Kombinatornye metody i algoritmy resheniya zadach diskretnoj optimizacii bol’shoj razmernosti, p. 360. Nauka, Moscow (2000)Google Scholar
  10. 10.
    Voznyuk, I.P., Gimadi, E.H., Filatov, M.Y.: Asimptoticheski tochnyj algoritm dlya resheniya zadachi razmeshcheniya s ogranichennymi ob”emami proizvodstva. Diskretnyj analiz i issledovanie operacij. 8(2), 3–16 (2001)Google Scholar
  11. 11.
    Daskin, M.S.: What you should know about location modeling. Naval Res. Logist. 55, 283–294 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hakimi, S.L.: Optimum distribution of switching centers in a communication network and some related graph theoretic problems. Oper. Res. 13, 462–475 (1965)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Yato, T., Seta, T.: Complexity and completeness of finding another solution and its application to puzzles. In: IPSJ SIG Notes 2002-AL-87-2. IPSJ (2002)Google Scholar
  14. 14.
    Zhang, L., Malik, S.: The quest for efficient Boolean satisfiability y solvers. In: Voronkov, A. (ed.) Proceedings of the 8th International Conference on Computer Aided Deduction (CADE 2002), vol. 2392. LNCS. Springer (2002)Google Scholar
  15. 15.
    Rejngol’d, E.H., Nivergel’t Y.U., Deo, N.: Kombinatornye algoritmy. Teoriya i praktika, Moscow (1980). Mir, 476Google Scholar
  16. 16.
    Beresnev, V.L.: EHffektivnyj algoritm dlya zadachi razmeshcheniya proizvodstva s vpolne uravnoveshennoj matricej. Diskret. analiz i issled. operacij Ser. 1. 5(1), 20–31 (1998)Google Scholar
  17. 17.
    Matworks: Solve Sudoku Puzzles Via Integer Programming: Problem-Based. https://www.mathworks.com/help/optim/examples/solve-sudoku-puzzles-via-integer-programming.html
  18. 18.
    Coelho, L.C., Laporte, G.: A comparison of several enumerative algorithms for Sudoku. J. Oper. Res. Soc. 65(10), 1602–1610 (2014)CrossRefGoogle Scholar
  19. 19.
    Louis Lee, N.Y., Geoffrey, P.G., Johnson-Laird, P.N.: The psychological puzzle of Sudoku. J. Think. Reason. 14(4), 342–364 (2008)CrossRefGoogle Scholar
  20. 20.
    Haythorpe, M.: Reducing the generalised Sudoku problem to the Hamiltonian cycle problem. AKCE Int. J. Graphs Comb. 13(3), 272–282 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Russell, E., Jarvis, F.: Mathematics of Sudoku II. (2006). http://www.afjarvis.staff.shef.ac.uk/maths/russell_jarvis_spec2.pdf
  22. 22.
    Bartlett, A.C., Chartier, T.P., Langville, A.N.: An integer programming model for the Sudoku problem (2007). http://brainfreezepuzzles.com/main/files/chartier_sudoku_preprint.pdf
  23. 23.
    D’yakonov, V.P.: MATLAB. Polnyj samouchitel’, p. 768. DMK Press, Moscow (2012)Google Scholar
  24. 24.
    Imamutdinov, Y.G., Sploshnov, S.V.: Komp’yuternoe modelirovanie zadachi optimal’nogo razmeshcheniya proizvodstva gotovoj produkcii. EHkonomika i banki (1), 46–52 (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Far Eastern Federal UniversityVladivostokRussia

Personalised recommendations