Advertisement

Mathematical Modeling of Temperature Effect on Algal Growth for Biodiesel Application

  • S. M. Zakir Hossain
  • Nader Al-Bastaki
  • Abdulla Mohamed A. Alnoaimi
  • Husny Ezuber
  • Shaikh A. Razzak
  • Mohammad M. Hossain
Chapter
Part of the Innovative Renewable Energy book series (INREE)

Abstract

Microalgae biomass is promising feedstock for the industrial production of biodiesel. Hence, research and development are needed in several domains especially optimizations of growth conditions including temperature effect for mass scale operation (biomass production, harvesting, lipid extraction, etc.). Since in Middle East region, seasonal temperature variation as well as more rapid daily fluctuations are liable to modify the growth conditions of microalgae in outdoor culture and hence affect production efficiency. Therefore, in this study, a mathematical model was developed to calculate how the algae sp. (Chlorella kessleri) will react at different temperatures. The model integrates Monod model and Arrhenius equation, and as such it describes the relationship of algal growth rate with culturing temperature and limiting nutrient concentration. The apparent activation energy and pre-exponential factors were calculated to be 2537 cal/mol and 0.0077 day−1, respectively. The developed models could be useful to visualize the effective impacts of temperature on outdoor algae culture.

Keywords

Microalgae Temperature Specific growth rate Mathematical model Biodiesel 

Notes

Acknowledgments

The author would like to gratefully acknowledge the support provided by King Abdulaziz City for Science and Technology (KACST) through the Science & Technology Unit at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through project No. NSTIP # 13-WAT096-04 as part of the National Science, Technology and Innovation Plan.

References

  1. 1.
    Liam B, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557CrossRefGoogle Scholar
  2. 2.
    Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707CrossRefGoogle Scholar
  3. 3.
    Cheng J, Huang Y, Feng J, Sun J, Zhou J, Cen K (2013) Improving CO2 fixation efficiency by optimizing Chlorella PY-ZU1 culture conditions in sequential bioreactors. Bioresour Technol 144:321CrossRefGoogle Scholar
  4. 4.
    de Morais MG, Costa JAV (2007) Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol Lett 29:1349CrossRefGoogle Scholar
  5. 5.
    Hossain SMZ, Hossain MM, Razzak SA (2018) Optimization of CO2 biofixation by Chlorella vulgaris using a tubular photobioreactor. Chem Eng Technol 41(7):1313CrossRefGoogle Scholar
  6. 6.
    Hossain SMZ, Alnoaimi A, Razzak SA, Ezuber H, Al-Bastaki N, Safdar M, Alkaabi S, Hossain MM (2018) Multiobjective optimization of microalgae (Chlorella sp.) growth in a photobioreactor using Box-Behnken design approach. Can J Chem Eng 96:1903CrossRefGoogle Scholar
  7. 7.
    Kazeem MA, Hossain SMZ, Razzak SA, Hossain MM (2018) Application of central composite design to optimize culture conditions of Chlorella vulgaris in a batch photobioreactor. Chem Prod Process Model 13. https://doi.org/10.1515/cp
  8. 8.
    Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse ORJ, Hankamer BD (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20CrossRefGoogle Scholar
  9. 9.
    Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 19:235CrossRefGoogle Scholar
  10. 10.
    Cantrell KB, Ducey T, Ro KS, Hunt PG (2008) Livestock waste-to-bioenergy generation opportunities. Bioresour Technol 99:7941CrossRefGoogle Scholar
  11. 11.
    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294CrossRefGoogle Scholar
  12. 12.
    Razzak SA, Hossain MM, Lucky RA, Bassi AS, De Lasa H (2013) Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—a review. Renew Sustain Energy Rev 27:622CrossRefGoogle Scholar
  13. 13.
    Zhang D, Dechatiwongse P, del Rio-Chanona EA, Maitland GC, Hellgardt K, Vassiliadis VS (2015) Modelling of light and temperature influences on cyanobacterial growth and biohydrogen production. Algal Res 9:263CrossRefGoogle Scholar
  14. 14.
    Bissinger JE, Montagnes DJS (2008) Predicting marine phytoplankton maximum growth rates from temperature: improving on the Eppley curve using quantile regression. Limnol Oceanogr 53(2):487CrossRefGoogle Scholar
  15. 15.
    Ocampo-López C, Colorado-Arias S, Ramírez-Carmona M (2015) Modeling of microbial growth and ammonia consumption at different temperatures in the production of a polyhydroxyalkanoate (PHA) biopolymer. J Appl Res Technol 13:498CrossRefGoogle Scholar
  16. 16.
    Mohsenpour SF, Richards B, Willoughby N (2012) Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production. Bioresour Technol 125:75CrossRefGoogle Scholar
  17. 17.
    Das P, Lei W, Aziz SS, Obbard JP (2011) Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresour Technol 102:3883CrossRefGoogle Scholar
  18. 18.
    De-Morais MG, Costa JAV (2007) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129:439CrossRefGoogle Scholar
  19. 19.
    Tang D, Han W, Li P, Miao X, Zhong J (2011) CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol 102:3071CrossRefGoogle Scholar
  20. 20.
    Yun YS, Lee SB, Park JM, Lee CI, Yang JW (1997) Carbon dioxide fixation by algal cultivation using wastewater nutrients. J Chem Technol Biotechnol 69:451CrossRefGoogle Scholar
  21. 21.
    Hach Company (2015) Chromotropic acid method. Test "N Tube Vials 10(3):1–6.Google Scholar
  22. 22.
    Goldman JC, Carpenter EJ (1974) A kinetic approach to the effect of temperature on algal growth. Limnol Oceanogr 19(5):756CrossRefGoogle Scholar
  23. 23.
    Haaland PD (1989) Experimental design in biotechnology. CRC Press, Taylor & Francis Group, LondonGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • S. M. Zakir Hossain
    • 1
  • Nader Al-Bastaki
    • 2
  • Abdulla Mohamed A. Alnoaimi
    • 1
  • Husny Ezuber
    • 1
  • Shaikh A. Razzak
    • 3
  • Mohammad M. Hossain
    • 3
  1. 1.Department of Chemical EngineeringUniversity of BahrainZallaqKingdom of Bahrain
  2. 2.Academic Affairs and Scientific ResearchKingdom UniversityRiffaKingdom of Bahrain
  3. 3.Department of Chemical EngineeringKing Fahd University of Petroleum & MineralsDhahranSaudi Arabia

Personalised recommendations