Advertisement

Radiology

  • Hervé J. Brisse
  • Martijn Verhagen
  • Kieran McHugh
  • Claudio GranataEmail author
Chapter

Abstract

Medical imaging plays an essential role in the management of neuroblastic tumours. Imaging is usually the first step for initial diagnosis and disease staging, including identification of image-defined risk factors (see Part II). Imaging is used during percutaneous needle biopsy procedures to guide the needle tract and select the optimal target areas (see Sect. 5.4). Response assessment during chemotherapy is based on both anatomical (tumour volume) and functional imaging (nuclear medicine). Imaging is used for postoperative assessment to identify potential residual disease and surgical complications. The treatment planning for radiation therapy that is recommended for high-risk neuroblastoma (NB) is based on imaging data. Finally, long-term post treatment follow-up includes recurrent imaging which should be adjusted to the risk of local or distant relapse.

References

  1. 1.
    Lonergan GJ, Schwab CM, Suarez ES, Carlson CL. Neuroblastoma, ganglioneuroblastoma, and ganglioneuroma: radiologic-pathologic correlation. Radiographics. 2002;22:911–34.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Hiorns MP, Owens CM. Radiology of neuroblastoma in children. Eur Radiol. 2001;11:2071–81.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Swift CC, Eklund MJ, Kraveka JM, Alazraki AL. Updates in diagnosis, management, and treatment of neuroblastoma. Radiographics. 2018;38:566–80.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Brody AS, Frush DP, Huda W, et al. Radiation risk to children from computed tomography. Pediatrics. 2007;120:677–82.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Journy N, Roue T, Cardis E, et al. Childhood CT scans and cancer risk: impact of predisposing factors for cancer on the risk estimates. J Radiol Prot. 2016;36:N1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Brisse HJ, Aubert B. Niveaux d’exposition en tomodensitométrie multicoupes pédiatrique: résultats de l’enquête dosimétrique SFIPP/IRSN 2007-2008 [CT exposure from pediatric MDCT: results from the 2007-2008 SFIPP/ISRN survey]. J Radiol. 2009;90:207–15.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Goske MJ, Applegate KE, Boylan J, et al. The image gently campaign: working together to change practice. Am J Roentgenol. 2008;190:273–4.CrossRefGoogle Scholar
  8. 8.
    Gay F, Pavia Y, Pierrat N, et al. Dose reduction with adaptive statistical iterative reconstruction for paediatric CT: phantom study and clinical experience on chest and abdomen CT. Eur Radiol. 2014;24:102–11.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Sofka CM, Semelka RC, Kelekis NL, et al. Magnetic resonance imaging of neuroblastoma using current techniques. Magn Reson Imaging. 1999;17:193–8.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Siegel MJ, Jaju A. MR imaging of neuroblastic masses. Magn Reson Imaging Clin N Am. 2008;16:499–513. vi.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Berdon WE, Ruzal-Shapiro C, Abramson SJ, Garvin J. The diagnosis of abdominal neuroblastoma: relative roles of ultrasonography, CT, and MRI. Urol Radiol. 1992;14:252–62.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Siegel MJ, Ishwaran H, Fletcher BD, et al. Staging of neuroblastoma at imaging: report of the Radiology Diagnostic Oncology Group. Radiology. 2002;223:168–75.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Brisse HJ, McCarville MB, Granata C, et al. Guidelines for imaging and staging of neuroblastic tumors: consensus report from the International Neuroblastoma Risk Group Project. Radiology. 2011;261:243–57.PubMedCrossRefGoogle Scholar
  14. 14.
    Brown RE Jr. Safety considerations of anesthetic drugs in children. Expert Opin Drug Saf. 2017;16:445–54.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Sinner B, Becke K, Engelhard K. General anaesthetics and the developing brain: an overview. Anaesthesia. 2014;69:1009–22.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Vutskits L, Xie Z. Lasting impact of general anaesthesia on the brain: mechanisms and relevance. Nat Rev Neurosci. 2016;17:705–17.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Callahan MJ, MacDougall RD, Bixby SD, et al. Ionizing radiation from computed tomography versus anesthesia for magnetic resonance imaging in infants and children: patient safety considerations. Pediatr Radiol. 2018;48:21–30.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Kornreich L, Horev G, Kaplinsky C, et al. Neuroblastoma: evaluation with contrast enhanced MR imaging. Pediatr Radiol. 1991;21:566–9.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Neubauer H, Li M, Muller VR, et al. Diagnostic value of diffusion-weighted MRI for tumor characterization, differentiation and monitoring in pediatric patients with neuroblastic tumors. Rofo. 2017;189:640–50.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Olchowy C, Cebulski K, Lasecki M, et al. The presence of the gadolinium-based contrast agent depositions in the brain and symptoms of gadolinium neurotoxicity - a systematic review. PLoS One. 2017;12:e0171704.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Flood TF, Stence NV, Maloney JA, Mirsky DM. Pediatric brain: repeated exposure to linear gadolinium-based contrast material is associated with increased signal intensity at unenhanced T1-weighted MR imaging. Radiology. 2017;282:222–8.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    McDonald RJ, McDonald JS, Dai D, et al. Comparison of gadolinium concentrations within multiple rat organs after intravenous administration of linear versus macrocyclic gadolinium chelates. Radiology. 2017;0:161594.Google Scholar
  23. 23.
    Runge VM. Critical questions regarding gadolinium deposition in the brain and body after injections of the gadolinium-based contrast agents, safety, and clinical recommendations in consideration of the EMA’s pharmacovigilance and risk assessment committee recommendation for suspension of the marketing authorizations for 4 linear agents. Invest Radiol. 2017;52:317–23.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Tibussek D, Rademacher C, Caspers J, et al. Gadolinium brain deposition after macrocyclic gadolinium administration: a pediatric case-control study. Radiology. 2017;0:161151.Google Scholar
  25. 25.
    Mendichovszky IA, Marks SD, Simcock CM, Olsen OE. Gadolinium and nephrogenic systemic fibrosis: time to tighten practice. Pediatr Radiol. 2008;38:489.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Dumba M, Jawad N, McHugh K. Neuroblastoma and nephroblastoma: a radiological review. Cancer Imaging. 2015;15:5.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161:401–7.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Humphries PD, Sebire NJ, Siegel MJ, Olsen OE. Tumors in pediatric patients at diffusion-weighted MR imaging: apparent diffusion coefficient and tumor cellularity. Radiology. 2007;245:848–54.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Uhl M, Altehoefer C, Kontny U, et al. MRI-diffusion imaging of neuroblastomas: first results and correlation to histology. Eur Radiol. 2002;12:2335–8.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Gahr N, Darge K, Hahn G, et al. Diffusion-weighted MRI for differentiation of neuroblastoma and ganglioneuroblastoma/ganglioneuroma. Eur J Radiol. 2011;79:443.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Demir S, Altinkaya N, Kocer NE, et al. Variations in apparent diffusion coefficient values following chemotherapy in pediatric neuroblastoma. Diagn Interv Radiol. 2015;21:184–8.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Olivier P, Colarinha P, Fettich J, et al. Guidelines for radioiodinated MIBG scintigraphy in children. Eur J Nucl Med Mol Imaging. 2003;30:B45–50.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Franzius C, Schmidt M, Hero B, et al. Procedure guidelines for MIBG-scintigraphy in children. Nuklearmedizin. 2008;47:132–8.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Matthay KK, Shulkin B, Ladenstein R, et al. Criteria for evaluation of disease extent by (123)I-metaiodobenzylguanidine scans in neuroblastoma: a report for the International Neuroblastoma Risk Group (INRG) Task Force. Br J Cancer. 2010;102:1319–26.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Lumbroso J, Guermazi F, Hartmann O, et al. Sensitivity and specificity of meta-iodobenzylguanidine (mIBG) scintigraphy in the evaluation of neuroblastoma: analysis of 115 cases. Bull Cancer. 1988;75:97–106.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Jacobs A, Delree M, Desprechins B, et al. Consolidating the role of ∗I-MIBG-scintigraphy in childhood neuroblastoma: five years of clinical experience. Pediatr Radiol. 1990;20:157–9.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    McHugh K. Renal and adrenal tumours in children. Cancer Imaging. 2007;7:41–51.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Mehta K, Haller JO, Legasto AC. Imaging neuroblastoma in children. Crit Rev Comput Tomogr. 2003;44:47–61.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Brisse H, Edeline V, Michon J, et al. Current strategy for the imaging of neuroblastoma. J Radiol. 2001;82:447–54.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Papaioannou G, McHugh K. Neuroblastoma in childhood: review and radiological findings. Cancer Imaging. 2005;5:116–27.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Cohn SL, Pearson AD, London WB, et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol. 2009;27:289–97.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Moroz V, Machin D, Faldum A, et al. Changes over three decades in outcome and the prognostic influence of age-at-diagnosis in young patients with neuroblastoma: a report from the International Neuroblastoma Risk Group Project. Eur J Cancer. 2011;47:561–71.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Brisse HJ, Blanc T, Schleiermacher G, et al. Radiogenomics of neuroblastomas: relationships between imaging phenotypes, tumor genomic profile and survival. PLoS One. 2017;12:e0185190.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Sauvat F, Brisse H, Magdeleinat P, et al. The transmanubrial approach: a new operative approach to cervicothoracic neuroblastoma in children. Surgery. 2006;139:109–14.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Maris JM, Kyemba SM, Rebbeck TR, et al. Molecular genetic analysis of familial neuroblastoma. Eur J Cancer. 1997;33:1923–8.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Hiyama E, Yokoyama T, Hiyama K, et al. Multifocal neuroblastoma: biologic behavior and surgical aspects. Cancer. 2000;88:1955–63.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Wu YH, Song B, Xu J, et al. Retroperitoneal neoplasms within the perirenal space in infants and children: differentiation of renal and non-renal origin in enhanced CT images. Eur J Radiol. 2010;75:279–86.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Sauvat F, Sarnacki S, Brisse H, et al. Outcome of suprarenal localized masses diagnosed during the perinatal period: a retrospective multicenter study. Cancer. 2002;94:2474–80.PubMedCrossRefGoogle Scholar
  49. 49.
    Granata C, Fagnani AM, Gambini C, et al. Features and outcome of neuroblastoma detected before birth. J Pediatr Surg. 2000;35:88–91.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Nadler EP, Barksdale EM. Adrenal masses in the newborn. Semin Pediatr Surg. 2000;9:156–64.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Curtis MR, Mooney DP, Vaccaro TJ, et al. Prenatal ultrasound characterization of the suprarenal mass: distinction between neuroblastoma and subdiaphragmatic extralobar pulmonary sequestration. J Ultrasound Med. 1997;16:75–83.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Deeg KH, Bettendorf U, Hofmann V. Differential diagnosis of neonatal adrenal haemorrhage and congenital neuroblastoma by colour coded Doppler sonography and power Doppler sonography. Eur J Pediatr. 1998;157:294–7.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Lin JN, Lin GJ, Hung IJ, Hsueh C. Prenatally detected tumor mass in the adrenal gland. J Pediatr Surg. 1999;34:1620–3.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Daneman A, Baunin C, Lobo E, et al. Disappearing suprarenal masses in fetuses and infants. Pediatr Radiol. 1997;27:675–81.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Brunklaus A, Pohl K, Zuberi SM, de Sousa C. Investigating neuroblastoma in childhood opsoclonus-myoclonus syndrome. Arch Dis Child. 2012;97:461–3.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Swart JF, de Kraker J, van der Lely N. Metaiodobenzylguanidine total-body scintigraphy required for revealing occult neuroblastoma in opsoclonus-myoclonus syndrome. Eur J Pediatr. 2002;161:255–8.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Park JR, Bagatell R, Cohn SL, et al. Revisions to the international neuroblastoma response criteria: a consensus statement from the National Cancer Institute Clinical Trials Planning Meeting. J Clin Oncol. 2017;35:2580–7.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Brodeur GM, Seeger RC, Barrett A, et al. International criteria for diagnosis, staging, and response to treatment in patients with neuroblastoma. J Clin Oncol. 1988;6:1874–81.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Brodeur GM, Pritchard J, Berthold F, et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol. 1993;11:1466–77.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Monclair T, Brodeur GM, Ambros PF, et al. The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J Clin Oncol. 2009;27:298–303.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Goo HW, Choi SH, Ghim T, et al. Whole-body MRI of paediatric malignant tumours: comparison with conventional oncological imaging methods. Pediatr Radiol. 2005;35:766–73.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Lau JJ, Trobe JD, Ruiz RE, et al. Metastatic neuroblastoma presenting with binocular blindness from intracranial compression of the optic nerves. J Neuroophthalmol. 2004;24:119–24.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    DuBois SG, Kalika Y, Lukens JN, et al. Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. J Pediatr Hematol Oncol. 1999;21:181–9.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Dubois SG, London WB, Zhang Y, et al. Lung metastases in neuroblastoma at initial diagnosis: a report from the International Neuroblastoma Risk Group (INRG) project. Pediatr Blood Cancer. 2008;51:589–92.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kammen BF, Matthay KK, Pacharn P, et al. Pulmonary metastases at diagnosis of neuroblastoma in pediatric patients: CT findings and prognosis. AJR Am J Roentgenol. 2001;176:755–9.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Matthay KK, Brisse H, Couanet D, et al. Central nervous system metastases in neuroblastoma: radiologic, clinical, and biologic features in 23 patients. Cancer. 2003;98:155–65.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    D’Ambrosio N, Lyo JK, Young RJ, et al. Imaging of Metastatic CNS Neuroblastoma. Am J Roentgenol. 2010;194:1223–9.CrossRefGoogle Scholar
  68. 68.
    Aronson MR, Smoker WR, Oetting GM. Hemorrhagic intracranial parenchymal metastases from primary retroperitoneal neuroblastoma. Pediatr Radiol. 1995;25:284–5.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Kellie SJ, Hayes FA, Bowman L, et al. Primary extracranial neuroblastoma with central nervous system metastases characterization by clinicopathologic findings and neuroimaging. Cancer. 1991;68:1999–2006.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Quackenbush KE, Luna-Fineman S, Magee JF, et al. Neuroblastoma involvement of the falx cerebri. Pediatr Blood Cancer. 2009;53:1337–9.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Vo KT, Matthay KK, Neuhaus J, et al. Clinical, biologic, and prognostic differences on the basis of primary tumor site in neuroblastoma: a report from the international neuroblastoma risk group project. J Clin Oncol. 2014;32:3169–76.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Adams GA, Shochat SJ, Smith EI, et al. Thoracic neuroblastoma: a Pediatric Oncology Group study. J Pediatr Surg. 1993;28:372–7; discussion 377–378.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Morris JA, Shcochat SJ, Smith EI, et al. Biological variables in thoracic neuroblastoma: a Pediatric Oncology Group study. J Pediatr Surg. 1995;30:296–302; discussion 302–293.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Haberle B, Hero B, Berthold F, von Schweinitz D. Characteristics and outcome of thoracic neuroblastoma. Eur J Pediatr Surg. 2002;12:145–50.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Cruccetti A, Kiely EM, Spitz L, et al. Pelvic neuroblastoma: low mortality and high morbidity. J Pediatr Surg. 2000;35:724–8.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Haase GM, O’Leary MC, Stram DO, et al. Pelvic neuroblastoma--implications for a new favorable subgroup: a Children’s Cancer Group experience. Ann Surg Oncol. 1995;2:516–23.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Leclair MD, Hartmann O, Heloury Y, et al. Localized pelvic neuroblastoma: excellent survival and low morbidity with tailored therapy--the 10-year experience of the French Society of Pediatric Oncology. J Clin Oncol. 2004;22:1689–95.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Abramson SJ, Berdon WE, Ruzal-Shapiro C, et al. Cervical neuroblastoma in eleven infants--a tumor with favorable prognosis. Clinical and radiologic (US, CT, MRI) findings. Pediatr Radiol. 1993;23:253–7.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Moukheiber AK, Nicollas R, Roman S, et al. Primary pediatric neuroblastic tumors of the neck. Int J Pediatr Otorhinolaryngol. 2001;60:155–61.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Qureshi SS, Kembhavi S, Ramadwar M, et al. Outcome and morbidity of surgical resection of primary cervical and cervicothoracic neuroblastoma in children: a comparative analysis. Pediatr Surg Int. 2014;30:267–73.PubMedCrossRefGoogle Scholar
  81. 81.
    Yoo SY, Kim JS, Sung KW, et al. The degree of tumor volume reduction during the early phase of induction chemotherapy is an independent prognostic factor in patients with high-risk neuroblastoma. Cancer. 2013;119:656–64.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Ladenstein R, Lambert B, Potschger U, et al. Validation of the mIBG skeletal SIOPEN scoring method in two independent high-risk neuroblastoma populations: the SIOPEN/HR-NBL1 and COG-A3973 trials. Eur J Nucl Med Mol Imaging. 2018;45:292–305.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Yanik GA, Parisi MT, Naranjo A, et al. Validation of post-induction Curie scores in high risk neuroblastoma. A Children’s Oncology Group (COG) and SIOPEN group report on SIOPEN/HR-NBL1. J Nucl Med. 2018;59:502.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–16.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Trout AT, Towbin AJ, Klingbeil L, et al. Single and multidimensional measurements underestimate neuroblastoma response to therapy. Pediatr Blood Cancer. 2017;64:18–24.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Federico SM, Brady SL, Pappo A, et al. The role of chest computed tomography (CT) as a surveillance tool in children with high-risk neuroblastoma. Pediatr Blood Cancer. 2015;62:976–81.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Owens C, Li BK, Thomas KE, Irwin MS. Surveillance imaging and radiation exposure in the detection of relapsed neuroblastoma. Pediatr Blood Cancer. 2016;63:1786–93.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hervé J. Brisse
    • 1
  • Martijn Verhagen
    • 2
  • Kieran McHugh
    • 2
  • Claudio Granata
    • 3
    Email author
  1. 1.Institut CurieParisFrance
  2. 2.Great Ormond Street HospitalLondonUK
  3. 3.IRCCS Istituto Giannina GasliniGenovaItaly

Personalised recommendations