Advertisement

Neuroblastoma pp 237-269 | Cite as

Immunotherapy

  • Francesca del Bufalo
  • Franco LocatelliEmail author
Chapter

Abstract

The interaction between the immune system and neuroblastoma (NBL) cells has been the object of research for a long time and led to the understanding of the extremely relevant role of the immune system in the development and biological behavior of this tumor. The increasing body of knowledge allowed the development of several strategies aimed at overcoming immune tolerance mechanisms developed by the tumor and thus achieving the eradication of the disease by the host immune system. These novel treatment modalities encompass both active immunization approaches, such as vaccination, and passive strategies, such as the infusion of monoclonal antibodies or of adoptive T cells redirected against the tumor. NBL tumor immunology and preclinical and clinical immunotherapy strategies are the object of the present chapter.

References

  1. 1.
    Challis GB, Stam HJ. The spontaneous regression of cancer. A review of cases from 1900 to 1987. Acta Oncol. 1990;29:545–50.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Everson TC. Spontaneous regression of cancer. Ann N Y Acad Sci. 1964;114:721–35.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Papac RJ. Spontaneous regression of cancer: possible mechanisms. In Vivo. 1998;12:571–8.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Yamamoto K, et al. Marginal decrease in mortality and marked increase in incidence as a result of neuroblastoma screening at 6 months of age: cohort study in seven prefectures in Japan. J Clin Oncol. 2002;20:1209–14.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Sawada T, et al. Mass screening for neuroblastoma in Japan. Pediatr Hematol Oncol. 1991;8:93–109.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Erttmann R, et al. 10 years’ neuroblastoma screening in Europe: preliminary results of a clinical and biological review from the Study Group for Evaluation of Neuroblastoma Screening in Europe (SENSE). Eur J Cancer. 1998;34:1391–7.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Woods WG, et al. A population-based study of the usefulness of screening for neuroblastoma. Lancet. 1996;348:1682–7.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Brodeur GM, Bagatell R. Mechanisms of neuroblastoma regression. Nat Rev Clin Oncol. 2014;11:704–13.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Muller CI, Trepel M, Kunzmann R, et al. Hematologic and molecular spontaneous remission following sepsis in acute monoblastic leukemia with translocation (9;11): a case report and review of the literature. Eur J Haematol. 2004;73:62–6.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Køstner AH, Johansen RF, Schmidt H, et al. Regression in cancer following fever and acute infection. Acta Oncol. 2013;52:455–7.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Wiemann B, Starnes CO. Coley’s toxins, tumor necrosis factor and cancer research: a historical perspective. Pharmacol Ther. 1994;64:529–64.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Speeckaert R, van Geel N, Vermaelen KV, et al. Immune reactions in benign and malignant melanocytic lesions: lessons for immunotherapy. Pigment Cell Melanoma Res. 2011;24:334–44.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Redlinger RE, Mailliard RB, Lotze MT, et al. Synergistic interleukin-18 and low-dose interleukin-2 promote regression of established murine neuroblastoma in vivo. J Pediatr Surg. 2003;38:301–7.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Salcedo R, et al. Immunologic and therapeutic synergy of IL-27 and IL-2: enhancement of T cell sensitization, tumor-specific CTL reactivity and complete regression of disseminated neuroblastoma metastases in the liver and bone marrow. J Immunol. 2009;182:4328–38.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Salcedo R, et al. IL-27 mediates complete regression of orthotopic primary and metastatic murine neuroblastoma tumors: role for CD8+ T cells. J Immunol. 2004;173:7170–82.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Asgharzadeh S, et al. Clinical significance of tumor-associated inflammatory cells in metastatic neuroblastoma. J Clin Oncol. 2012;30:3525–32.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Larsson K, Kock A, Idborg H, et al. COX/mPGES-1/PGE2 pathway depicts an inflammatory-dependent high-risk neuroblastoma subset. Proc Natl Acad Sci U S A. 2015;112:8070–5.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Matthay KK, Maris JM, Schleiermacher G, et al. Neuroblastoma. Nat Rev Dis Primers. 2016;2:16708.CrossRefGoogle Scholar
  19. 19.
    Metelitsa LS, Wu HW, Wang H, et al. Natural killer T cells infiltrate neuroblastomas expressing the chemokine CCL2. J Exp Med. 2004;199:1213–21.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Song L, Ara T, Wu H, et al. Oncogene MYCN regulates localization of NKT cells to the site of disease in neuroblastoma. J Clin Invest. 2007;117:2702–12.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Versteeg R, Kruse-Wolters KM, Plomp AC, et al. Suppression of class I human histocompatibility leukocyte antigen by c-myc is locus specific. J Exp Med. 1989;170:621–35.PubMedCrossRefGoogle Scholar
  22. 22.
    Versteeg R, Noordermeer IA, Kruse-Wolters M, et al. C-myc down-regulates class I HLA expression in human melanomas. EMBO J. 1988;7:1023–9.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Raffaghello L, Prigione I, Bocca P, et al. Multiple defects of the antigenprocessing machinery components in human neuroblastoma: immunotherapeutic implications. Oncogene. 2005;24:4634–44.PubMedCrossRefGoogle Scholar
  24. 24.
    Squire R, Fowler CL, Brooks SP, et al. The relationship of class I MHC antigen expression to stage IV-S disease and survival in neuroblastoma. J Pediatr Surg. 1990;25:381–6.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Forloni M, Albini S, Limongi MZ, et al. NF-κB, and not MYCN, regulates MHC class I and endoplasmic reticulum aminopeptidases in human neuroblastoma cells. Cancer Res. 2010;70:916–24.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Prigione I, Corrias MV, Airoldi I, et al. Immunogenicity of human neuroblastoma. Ann N Y Acad Sci. 2004;1028:69–80.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Seliger B, Cabrera T, Garrido F, et al. HLA class Iantigen abnormalities and immune escape by malignant T cells. Semin Cancer Biol. 2002;12:3–13.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Pistoia V, Morandi F, Bianchi G, et al. Immunosuppressive microenvironment in neuroblastoma. Front Oncol. 2013;3:1–8.CrossRefGoogle Scholar
  29. 29.
    Venstrom JM, Zheng J, Noor N, et al. KIR and HLA genotypes are associated with disease progression and survival following autologous hematopoietic stem cell transplantation for high-risk neuroblastoma. Clin Cancer Res. 2009;15:7330–4.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Brandetti E, Veneziani I, Melaiu O, et al. MYCN is an immunosuppressive oncogene dampening the expression of ligands for NK-cell-activating receptors in human high-risk neuroblastoma. Oncoimmunology. 2017;6:e1316439.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Bottino C, Dondero A, Bellora F, et al. Natural killer cells and neuroblastoma: tumor recognition, escape mechanisms, and possible novel immunotherapeutic approaches. Front Immunol. 2014;5:56.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Cooper R, Khakoo Y, Matthay KK. Opsoclonus-myoclonus-ataxia syndrome in neuroblastoma: histopathologic features-a report from the Children’s Cancer Group. Med Pediatr Oncol. 2001;36:623–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Altman AJ, Baehner RL. Favorable prognosis for survival in children with coincident opso-myoclonus and neuroblastoma. Cancer. 1976;37:846–52.PubMedCrossRefGoogle Scholar
  34. 34.
    Rudnick E, Khakoo Y, Antunes NL, et al. Opsoclonus-myoclonus-ataxia syndrome in neuroblastoma: clinical outcome and antineuronal antibodies—a report from the Children’s Cancer Group study. Med Pediatr Oncol. 2001;36:612–22.PubMedCrossRefGoogle Scholar
  35. 35.
    Pranzatelli MR, Travelstead AL, Tate ED, et al. CSF B-cell expansion in opsoclonus-myoclonus syndrome: a biomarker of disease activity. Mov Disord. 2004;19:770–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Connolly AM, Pestronk A, Mehta S, et al. Serum autoantibodies in childhood opsoclonus-myoclonus syndrome: an analysis of antigenic targets in neural tissues. J Pediatr. 1997;130:878–84.PubMedCrossRefGoogle Scholar
  37. 37.
    Blaes F, Fuhlhuber V, Korfei M, et al. Surface-binding autoantibodies to cerebellar neurons in opsoclonus syndrome. Ann Neurol. 2005;58:313–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Kirsten A, Beck S, Fühlhuber V, et al. New autoantibodies in pediatric opsoclonus myoclonus syndrome. Ann N Y Acad Sci. 2007;1110:256–60.PubMedCrossRefGoogle Scholar
  39. 39.
    Candler PM, Dale RC, Griffin S, et al. Post-streptococcal opsoclonus-myoclonus syndrome associated with anti-neuroleukin antibodies. J Neurol Neurosurg Psychiatry. 2006;77:507–12.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Bataller L, Rosenfeld MR, Graus F, et al. Autoantigen diversity in the opsoclonus-myoclonus syndrome. Ann Neurol. 2003;53:347–53.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Korfei M, Fuhlhuber V, Schmidt-Woll T, et al. Functional characterisation of autoantibodies from patients with pediatric opsoclonus-myoclonus syndrome. J Neuroimmunol. 2005;170:150–7.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Morales La Madrid A, Rubin CM, Kohrman M, et al. Opsoclonus-myoclonus and anti-Hu positive limbic encephalitis in a patient with neuroblastoma. Pediatr Blood Cancer. 2012;58:472–4.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Fisher PG, Wechsler DS, Singer HS. Anti-Hu antibody in a neuroblastoma-associated paraneoplastic syndrome. Pediatr Neurol. 1994;10:309–12.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Meyer JJ, Bulteau C, Adamsbaum C, et al. Paraneoplastic encephalomyelitis in a child with neuroblastoma. Pediatr Radiol. 1995;25:S99–S101.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Mitchell WG, Blaes F. Cancer and autoimmunity: paraneoplastic neurological disorders associated with neuroblastic tumors. Semin Pediatr Neurol. 2017;24:180–8.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Facchetti P, Prigione I, Ghiotto F, et al. Functional and molecular characterization of tumor-infiltrating lymphocytes and clones thereof from major-histocompatibility-complex-negative human tumour: neuroblastoma. Cancer Immunol Immunother. 1996;42:170–8.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Gambini C, Conte M, Bernini G, et al. Neuroblastic tumors associated with opsoclonus-myoclonus syndrome: histological, immunohistochemical and molecular features of 15 Italian cases. Virchows Arch. 2003;442:555–62.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Kronenberg M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol. 2005;23:877–900.PubMedCrossRefGoogle Scholar
  49. 49.
    Metelitsa LS, et al. Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells. J Immunol. 2001;167:3114–22.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Song L, Asgharzadeh S, Salo J, et al. Vα24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages. J Clin Invest. 2009;119:1524–36.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Maris JM. Recent advances in neuroblastoma. N Engl J Med. 2010;362:2202–11.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Cohn SL, Pearson AD, London WB, et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol. 2009;27:289–97.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Matthay KK, et al. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a children’s oncology group study. J Clin Oncol. 2009;27:1007–13.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Barrett DM, Bagatell R. The beginning of the end of package deal therapy for patients with high-risk Neuroblastoma? J Clin Oncol. 2016;34:2437–9.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Mittal D, Gubin MM, Schreiber RD, et al. New insights into cancer immunoediting and its three component phase-elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16–25.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Rimoldi D, Romero P, Carrel S. The human melanoma antigen-encoding gene, MAGE-1, is expressed by other tumor cells of neuroectodermal origin such as glioblastomas and neuroblastomas. Int J Cancer. 1993;54:527–8.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Cheung IY, Barber D, Cheung NK. Detection of microscopic neuroblastoma in marrow by histology, immunocytology, and reverse transcription-PCR of multiple molecular markers. Clin Cancer Res. 1998;4:2801–5.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Schulz G, Cheresh DA, Varki NM, et al. Detection of ganglioside GD2 in tumor tissues and sera of neuroblastoma patients. Cancer Res. 1984;44:5914–20.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Gregorio A, Corrias MV, Castriconi R, et al. Small round blue cell tumours: diagnostic and prognostic usefulness of the expression of B7-H3 surface molecule. Histopathology. 2008;53:73–80.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Wu X, Peng M, Huang B, et al. Immune microenvironment profiles of tumor immune equilibrium and immune escape states of mouse sarcoma. Cancer Lett. 2013;340:124–33.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Koebel CM, Vermi W, Swann JB, et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature. 2007;450:903–7.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Mittal D, Gubin MM, Schreiber RD, et al. New insights into cancer immunoediting and its three component phases – elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16–25.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Shurin GV, et al. Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer Res. 2001;61:363–9.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Chen S, Caragine T, Cheung NK, et al. CD59 expressed on a tumor cell surface modulates decay-accelerating factor expression and enhances tumor growth in a rat model of human neuroblastoma. Cancer Res. 2000;60:3013–8.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Morandi F, et al. Bone marrow-infiltrating human neuroblastoma cells express high levels of calprotectin and HLA-G proteins. PLoS One. 2012;7:e29922.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Raffaghello L, et al. Downregulation and/or release of NKG2D ligands as immune evasion strategy of human neuroblastoma. Neoplasia. 2004;6:558–68.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Shurin GV, Gerein V, Lotze MT, et al. Apoptosis induced in T cells by human neuroblastoma cells: role of Fas ligand. Nat Immun. 1998;16:263–74.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Yuan J, Page DB, Ku GY, et al. Correlation of clinical and immunological data in a metastatic melanoma patient with heterogeneous tumor responses to ipilimumab theraoy. Cancer Immunol. 2010;10:1.Google Scholar
  70. 70.
    Gilboa E. The promise of cancer vaccines. Nat Rev Cancer. 2004;4:401–11.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Berzofsky JA, Terabe M, Oh S, et al. Progress on new vaccine strategies for the immunotherapy and prevention of cancer. J Clin Invest. 2004;113:1515–25.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Fest S, Huebener N, Weixler S, et al. Characterization of GD2 peptide mimotope DNA vaccines effective against spontaneous neuroblastoma metastases. Cancer Res. 2006;66:10567–75.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Lode HN, Pertl U, Xiang R, et al. Tyrosine hydroxylase-based DNA-vaccination is effective against murine neuroblastoma. Med Pediatr Oncol. 2000;35:641–6.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Huebener N, Lange B, Lemmel C, et al. Vaccination with minigenes encoding for novel ‘self’ antigens are effective in DNA-vaccination against neuroblastoma. Cancer Lett. 2003;197:211–7.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Fest S, Huebener N, Bleeke M, et al. Survivin minigene DNA vaccination is effective against neuroblastoma. Int J Cancer. 2009;125:104–14.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Bao L, Dunham K, Lucas K. MAGE-A1, MAGE-A3, and NY-ESO-1 can be upregulated on neuroblastoma cells to facilitate cytotoxic T lymphocyte-mediated tumor cell killing. Cancer Immunol Immunother. 2011;60:1299–307.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Sarkar AK, Nuchtern JG. Lysis of MYCN-amplified neuroblastoma cells by MYCN peptide-specific cytotoxic T lymphocytes. Cancer Res. 2000;60:1908–13.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Geiger JD, et al. Vaccination of pediatric solid tumor patients with tumor lysate-pulsed dendritic cells can expand specific T cells and mediate tumor regression. Cancer Res. 2001;61:8513–9.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Bowman L, et al. IL-2 adenovector-transduced autologous tumor cells induce antitumor immune responses in patients with neuroblastoma. Blood. 1998;92:1941–9.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Walker SR, Redlinger RE Jr, Barksdale EM Jr. Neuroblastoma-induced inhibition of dendritic cell IL-12 production via abrogation of CD40 expression. J Pediatr Surg. 2005;40:244–9.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Yan X, Johnson BD, Orentas RJ. Induction of a VLA-2 (CD49b)-expressing effector T cell population by a cell-based neuroblastoma vaccine expressing CD137L. J Immunol. 2008;181:4621–31.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Croce M, et al. Immunotherapy of neuroblastoma by an Interleukin-21-secreting cell vaccine involves survivin as antigen. Cancer Immunol Immunother. 2008;57:1625–34.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Specenier P, Vermorken JB. Cetuximab in the treatment of squamous cell carcinoma of the head and neck. Expert Rev Anticancer Ther. 2011;11:511–24.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Higgins MJ, Baselga J. Targeted therapies for breast cancer. J Clin Invest. 2011;121:3797–803.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Mirick GR, Bradt BM, Denardo SJ, et al. A review of human anti-globulin antibody (HAGA, HAMA, HACA, HAHA) responses to monoclonal antibodies. Not four letter words. Q J Nucl Med Mol Imaging. 2004;48:251–7.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Kramer K, Gerald WL, Kushner BH, et al. Disaloganglioside GD2 loss following monoclonal antibody therapy is rare in neuroblastoma. Med Pediatr Oncol. 2001;36:194–6.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Modak S, Cheung NK. Disialoganglioside directed immunotherapy of neuroblastoma. Cancer Investig. 2007;25:67–77.CrossRefGoogle Scholar
  88. 88.
    Yu AL, Gilman AL, Ozkaynak MF, et al. Anti-GD2 antibody with GM-CSF, interleukin-2 and isotretinoin for neuroblastoma. N Engl J Med. 2010;363:1324–34.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Murray JL, et al. Phase I trial of murine monoclonal antibody 14G2a administered by prolonged intravenous infusion in patients with neuroectodermal tumors. J Clin Oncol. 1994;12:184–93.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Metelitsa LS, et al. Antidisialoganglioside/granulocyte macrophage-colony-stimulating factor fusion protein facilitates neutrophil antibody-dependent cellular cytotoxicity and depends on FcγRII (CD32) and Mac-1 (CD11b/CD18) for enhanced effector cell adhesion and azurophil granule exocytosis. Blood. 2002;99:4166–73.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Matthay KK, George RE, Yu AL. Promising therapeutic targets in neuroblastoma. Clin Cancer Res. 2012;18:2740–53.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Neal ZC, et al. Enhanced activity of hu14.18-IL2 immunocytokine against murine NXS2 neuroblastoma when combined with interleukin 2 therapy. Clin Cancer Res. 2004;10:4839–47.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Becker JC, Varki N, Gillies SD, et al. Long-lived and transferable tumor immunity in mice after targeted interleukin-2 therapy. J Clin Invest. 1996;98:2801–4.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Lode HN, Xiang R, Dreier T, et al. Natural killer cell-mediated eradication of neuroblastoma metastases to bone marrow by targeted interleukin-2 therapy. Blood. 1998;91:1706–15.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Shusterman S, et al. Antitumor activity of hu14.18-IL2 in patients with relapsed/refractory neuroblastoma: a Children’s Oncology Group (COG) phase II study. J Clin Oncol. 2010;28:4969–75.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Wellstein A. ALK receptor activation, ligands and therapeutic targeting in glioblastoma and in other cancers. Front Oncol. 2012;2:192.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Carpenter EL, et al. Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastoma. Oncogene. 2012;31:4859–67.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Novak-Hofer I. The L1 cell adhesion molecule as a target for radioimmunotherapy. Cancer Biother Radiopharm. 2007;22:175–84.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Modak S, Kramer K, Gultekin SH, et al. Monoclonal antibody 8H9 targets a novel cell surface antigen expressed by a wide spectrum of human solid tumors. Cancer Res. 2001;61:4048–54.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Castriconi R, Dondero A, Augugliaro R, et al. Identification of 4Ig-B7-H3 as a neuroblastoma-associated molecule that exerts a protective role from an NK cell-mediated lysis. Proc Natl Acad Sci U S A. 2004;101:12640–5.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Lee Y-H, Martin-Orozco N, Zheng P, et al. Inhibition of the B7-H3 immune checkpoint limits tumor growth by enhancing cyto-toxic lymphocyte function. Cell Res. 2017;27:1034–45.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Bosse KR, Raman P, Zhu Z, et al. Identification of GPC2 as an oncoprotein and candidate immunotherapeutic target in high-risk neuroblastoma. Cancer Cell. 2017;32:295–309.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Offner S, Hofmeister R, Romaniuk A, et al. Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells. Mol Immunol. 2006;43:763–71.PubMedCrossRefGoogle Scholar
  104. 104.
    Topp MS, Kufer P, Gokbuget N, et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol. 2011;29:2493–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Lutterbuese R, Raum T, Kischel R, et al. T cell-engaging BiTE antibodies specific for EGFR potently eliminate KRAS- and BRAF-mutated colorectal cancer cells. Proc Natl Acad Sci U S A. 2010;107:12605–10.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Bourne S, Patel K, Walsh F, et al. A monoclonal antibody (ERIC-1), raised against retinoblastoma, that recognizes the neural cell adhesion molecule (NCAM) expressed on brain and tumours arising from the neuroectoderm. J Neurooncol. 1991;10:111–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Jensen M, Ernestus K, Kemshead J, et al. The bi-specific CD3-NCAM antibody: a model to preactivate T cells prior to tumour cell lysis. Clin Exp Immunol. 2003;134:253–63.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Jensen M, Berthold F. Targeting the neural cell adhesion molecule in cancer. Cancer Lett. 2007;258:9–21.PubMedCrossRefGoogle Scholar
  109. 109.
    Xu H, Cheng M, Guo H, et al. Retargeting T cells to GD2 pentasaccharide on human tumors using bispecific humanized antibody. Cancer Immunol Res. 2015;3:266–77.PubMedCrossRefGoogle Scholar
  110. 110.
    Deol A, Lum L. Role of donor lymphocyte infusions in relapsed hematological malignancies after stem cell transplantation revisited. Cancer Treat Rev. 2010;36:528–38.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    McLaughlin L, Cruz RC, Bollard CM. Adoptive T-cell therapies for refractory/relapsed leukemia and lymphoma: current strategies and recent advances. Ther Adv Hematol. 2015;6:295–307.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Rosenberg SA, Yannelli JR, Yang JC, et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst. 1994;86:1159–66.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Eshhar Z, Waks T, Gross G, et al. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci U S A. 1993;90:720–4.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Pule M, Finney H, Lawson A. Artificial T-cell receptors. Cytotherapy. 2003;5:211–26.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Maher J, Brentjens RJ, Gunset G, et al. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta/CD28 receptor. Nat Biotechnol. 2002;20:70–5.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Imai C, Mihara K, Andreansky M, et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia. 2004;18:676–84.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Robbins PF, Dudley ME, Wunderlich J, et al. Cutting edge: persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J Immunol. 2004;173:7125–30.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Woo SR, Turnis ME, Goldberg MV, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012;72:917–27.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12:492–9.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Long AH, Haso WM, Shern JF, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21(6):581–93.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Loskog A, Giandomenico V, Rossig C, et al. Addition of the CD28 signaling domain to chimeric T-cell receptors enhances chimeric T-cell resistance to T regulatory cells. Leukemia. 2006;20:1819–28.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Savoldo B, Ramos CA, Liu E, et al. Brief report CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest. 2011;121:1822–6.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Gill S, Maus MV, Porter DL. Chimeric antigen receptor T cell therapy: 25 years in the making. Blood Rev. 2015. pii: S0268-960X(15)00080-6.Google Scholar
  124. 124.
    Euer NI, Kaul S, Deissler H, et al. Identification of L1CAM, Jagged2 and Neuromedin U as ovarian cancer-associated antigens. Oncol Rep. 2005;13:375–87.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Gonzalez S, Naranjo A, Serrano LM, et al. Genetic engineering of cytolytic T lymphocytes for adoptive T-cell therapy of neuroblastoma. J Gene Med. 2004;6:704–11.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Pule MA, Savoldo B, Myers GD, et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med. 2008;14:1264–70.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Pule MA, Straathof KC, Dotti G, et al. A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther. 2005;12:933–41.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Caruana I, Savoldo B, Hoyos V, et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat Med. 2015;21:524–9.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Sivori S, Parolini S, Marcenaro E, et al. Involvement of natural cytotoxicity receptors in human natural killer cell-mediated lysis of neuroblastoma and glioblastoma cell lines. J Neuroimmunol. 2000;107:220–5.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Ferlazzo G, et al. Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proc Natl Acad Sci U S A. 2004;101:16606–11.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Castriconi R, Dondero A, Cilli M, et al. Human NK cell infusions prolong survival of metastatic human neuroblastoma-bearing NOD/scid mice. Cancer Immunol Immunother. 2007;56:1733–42.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Liu Y, Wu HW, Sheard MA, et al. Growth and activation of natural killer cells ex vivo from children with neuroblastoma for adoptive cell therapy. Clin Cancer Res. 2013;19:2132–43.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Seidel D, Shibina A, Siebert N, et al. Disialoganglioside-specific human natural killer cells are effective against drug-resistant neuroblastoma. Cancer Immunol Immunother. 2015;64:621–34.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Metelitsa LS, Naidenko OV, Kant A, et al. Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells. J Immunol. 2001;167:3114–22.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Metelitsa LS. Anti-tumor potential of type-I NKT cells against CD1d-positive and CD1d-negative tumors in humans. Clin Immunol. 2011;140:119–29.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Heczey A, Liu D, Tian G, et al. Invariant NKT cells with chimeric antigen receptor provide a novel platform for safe and effective cancer immunotherapy. Blood. 2014;124:2824–33.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Tian G, Courtney AN, Jen B, et al. CD62L+ NKT cells have prolonged persistence and antitumor activity in vivo. J Clin Invest. 2016;126:2341–55.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Geiger JD, Hutchinson RJ, Hohenkirk LF, et al. Vaccination of pediatric solid tumor patients with tumor lysate-pulsed dendritic cells can expand specific T cells and mediate tumor regression. Cancer Res. 2001;61:8513–9.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Bowman L, Grossmann M, Rill D, et al. IL-2 adenovector-transduced autologous tumor cells induce antitumor immune responses in patients with neuroblastoma. Blood. 1998;92:1941–9.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Bowman LC, Grossmann M, Rill D, et al. Interleukin-2 gene-modified allogeneic tumor cells for treatment of relapsed neuroblastoma. Hum Gene Ther. 1998;9:1303–11.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Rousseau RF, Haight AE, Hirschmann-Jax C, et al. Local and systemic effects of an allogeneic tumor cell vaccine combining transgenic human lymphotactin with interleukin-2 in patients with advanced or refractory neuroblastoma. Blood. 2003;101:1718–26.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Kushner BH, Cheung IY, Modak S, et al. Phase I trial of a bivalent gangliosides vaccine in combination with b-glucan for high-risk neuroblastoma in second or later remission. Clin Cancer Res. 2014;20:1375–82.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Caruso DA, Orme LM, Amor GM, et al. Results of a Phase I study utilizing monocyte-derived dendritic cells pulsed with tumor RNA in children with Stage 4 neuroblastoma. Cancer. 2005;103:1280–91.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Cheung NK, Lazarus H, Miraldi FD, et al. Ganglioside GD2 specific monoclonal antibody 3F8: a phase 1 study in patients with neuroblastoma and malignant melanoma. J Clin Oncol. 1987;5:1430–40.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Cheung NK, Kushner BH, Yeh SD, et al. 3F8 monoclonal antibody treatment of patients with stage 4 neuroblastoma: a phase II study. Int J Oncol. 1998;12:1299–306.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Cheung NK, Kushner BH, Cheung IY, et al. Anti-GD2 antibody treatment of minimal residual stage 4 neuroblastoma diagnosed at more than 1 year of age. J Clin Oncol. 1998;16:3053–60.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Cheung NV, Cheung IY, Kushner BH, et al. Murine anti-GD2 monoclonal antibody 3F8 combined with granulocyte-macrophage colony-stimulating factor and 13-cis-retinoic acid in high-risk patients with stage 4 neuroblastoma in first remission. J Clin Oncol. 2012;30:3264–70.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Handgretinger R, Baader P, Dopfer R. A phase 1 study of neuroblastoma with the anti-ganglioside GD2 antibody14.G2a. Cancer Immunol Immunother. 1992;35:199–204.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Frost JD, Hank JA, Reaman GH, et al. A phaseI/IB trial of murine monoclonal anti-GD2 antibody 14.G2a plus interleukin-2 in children with refractory neuroblastoma: a report of the Children’s Cancer Group. Cancer. 1997;80:317–33.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Handgretinger R, Anderson K, et al. A phase I study of human/mouse chimeric antiganglioside GD2 antibody ch14.18 in patients with neuroblastoma. Eur J Cancer. 1995;31:261–7.CrossRefGoogle Scholar
  151. 151.
    Yu AL, Uttenreuther-Fischer MM, Huang CS, et al. Phase 1 trial of a human-mouse chimeric anti-disialoganglioside monoclonal antibody ch14.18 in patients with refractory neuroblastoma and osteosarcoma. J Clin Oncol. 1998;16:2169–80.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Yu AL, Batova A, Alvarado C, et al. Usefulness of a chimeric anti-GD2 (ch14.18) and GM-CSF for refractory neuroblastoma: a POG phase II study. Proc ASCO. 1997;16:1846.Google Scholar
  153. 153.
    Ozkaynak MF, Sondel PM, Kraiolo MD, et al. Phase I study of chimeric human/murine anti-ganglioside GD2 monoclonal antibody with granulocyte-macrophage colony-stimulating factor in children with neuroblastoma immediately after hematopoietic stem-cell transplantation: a Children’s Cancer Group study. J Clin Oncol. 2000;18:4077–85.PubMedCrossRefGoogle Scholar
  154. 154.
    Gilman AL, Ozkaynak MF, Matthay KK, et al. Phase I study of ch14.18 with granulocyte-macrophage colony stimulating factor and interleukin-2 in children with neuroblastoma after autologous bone marrow transplantation or stem-cell rescue: a report from the Children’s Oncology Group. J Clin Oncol. 2009;27:85–91.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Delgado DC, Hank JA, Kolesar J, et al. Genotypes of NK cell KIR receptors, their ligands, and Fcγ receptors in the response of neuroblastoma patients to Hu14.18-IL2 immunotherapy. Cancer Res. 2010;70:9554–61.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Kramer K, Humm JL, Souweidane MM, et al. Phase I study of targeted radio-immunotherapy for leptomeningeal cancers using intra-Ommaya 131-I-3F8. J Clin Oncol. 2007;25:5465–70.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Kramer K, Kushner BH, Modak S, et al. Compartmental intrathecal radioimmunotherapy: results for treatment for metastatic CNS neuroblastoma. J Neurooncol. 2010;97:409–18.PubMedCrossRefGoogle Scholar
  158. 158.
    Christiansen J, Rajasekaran AK. Biological impediments to monoclonal antibody-based cancer immunotherapy. Mol Cancer Ther. 2004;3:1493–501.PubMedPubMedCentralGoogle Scholar
  159. 159.
    Caruana I, Diaconu I, Dotti G. From monoclonal antobodies to chimeric antigen receptors for the treatment of human malignancies. Semin Oncol. 2014;41(5):661–6.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Klinger M, Benjamin J, Kischel R, et al. Harnessing T cells to fight cancer with BITE® antibody constructs – past developments and future directions. Immunol Rev. 2016;270(1):193–208.PubMedCrossRefGoogle Scholar
  161. 161.
    Park JR, DiGiusto DL, Slovak M, et al. Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther. 2007;15:825–33.PubMedCrossRefGoogle Scholar
  162. 162.
    Louis CU, Savoldo B, Dotti G, et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood. 2011;118(23):6050–6.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Muranski P, Boni A, Wrzesinski C, et al. Increased intensity lymphodepletion and adoptive immunotherapy–how far can we go? Nat Clin Pract Oncol. 2006;3:668–81.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Klebanoff CA, Khong HT, Antony PA, et al. Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol. 2005;26:111–7.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Kalos M, Levine BL, Porter DL. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3(95):95ra73.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Davila ML, Riviere I, Wang X, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6(224):224ra25.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–28.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Heczey A, Lous CU, Savoldo B, et al. CAR T cells administered in combination with Lymphodepletion and PD-1 inhibition to patients with neuroblastoma. Mol Ther. 2017;25:2214–24.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Tey SK, Dotti G, Rooney CM, et al. Inducible caspase 9 suicide gene to improve the safety of allodepleted T cells after haploidentical stem cell transplantation. Biol Blood Marrow Transplant. 2007;13:913–24.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Di Stasi A, Tey S-K, Dotti G, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med. 2011;365:1673–83.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Zhou X, Di Stasi A, Tey SK, et al. Long-term outcome after haploidentical stem cell transplant and infusion of T cells expressing the inducible caspase 9 safety transgene. Blood. 2014;123(25):3895–905.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Miller AB, Hoogstraten B, Staquet M, et al. Reporting results of cancer treatment. Cancer. 1981;47:207–14.PubMedCrossRefGoogle Scholar
  174. 174.
    Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst. 2000;92:205–16.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Castel V, García-Miguel P, Cañete A, et al. Prospective evaluation of the International Neuroblastoma Staging System (INSS) and the International Neuroblastoma Response Criteria (INRC) in a multicentre setting. Eur J Cancer. 1999;35(4):606–11.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    van Buren N, Bonnet MC, Dréno B, et al. Tumoral and immunologic response after vaccination of melanoma patients with an ALVAC virus encoding MAGE antigens recognized by T cells. J Clin Oncol. 2005;23:9008–21.CrossRefGoogle Scholar
  177. 177.
    Kruit WHJ, van Ojik HH, Brichard VG, et al. Phase 1/2 study of subcutaneous and intradermal immunization with a recombinant MAGE-3 protein in patients with detectable metastatic melanoma. Int J Cancer. 2005;117:596–604.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Wolchok JD, Hoos A, O’Day S, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15:7412–20.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Hodi FS, Butler M, Oble DA, et al. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc Natl Acad Sci U S A. 2008;105:3005–10.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Hodi FS, Hwu WJ, Kefford R, et al. Evaluation of immune-related response criteria and RECIST v1.1 in patients with advanced melanoma treated with pembrolizumab. J Clin Oncol. 2016;34:1510–20.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Paediatric Haematology, Oncology and Cell and Gene TherapyIRCCS Bambino Gesù Children’s HospitalRomeItaly
  2. 2.Department of Gynecology/Obstetrics and PediatricsSapienza University of RomeRomeItaly

Personalised recommendations