Advertisement

Multiple Analyte Profiling (xMAP) Technology Coupled with Functional Bioinformatics Strategies: Potential Applications in Protein Biomarker Profiling in Autoimmune Inflammatory Diseases

  • Peter Natesan Pushparaj
Chapter

Abstract

Multiple analyte profiling (xMAP) technology is used in the multiplex assays for the simultaneous detection of different analytes (up to 500 analytes) within a small sample volume. xMAP assays adopt a liquid array bioassay technique using light-emitting diodes (LEDs), lasers, photodetectors, and digital signal processors to acquire, process, and analyze data using custom-made patented software. The xMAP assays are quick, precise, flexible, and cost-effective and require very small volume of biological samples compared to conventional immunoassays. Since xMAP technology is an open architecture platform, it is extensively being used in the fields of drug discovery and development, clinical diagnostics, genetic analysis, biodefense, food safety, and biomedical research. Now xMAP technology is the most commonly used bead-based multiplexing platform with over 15,500 instruments installed, 35,000 peer-reviewed publications, and more than 70 Luminex Partners providing xMAP customers over 1300 research kits as well as custom assay solutions. The main aim of this chapter is to discuss the latest findings and applications of xMAP immunoassay technology coupled with functional bioinformatics strategies to unravel protein biomarkers in autoimmune inflammatory diseases such as rheumatoid arthritis.

Keywords

Multiple analyte profiling technology Multiplex detection Immunoassays Biomarkers Functional bioinformatics Autoimmune inflammatory diseases Rheumatoid arthritis 

Abbreviations

CS

Capture Sandwich

DAVID

Database for Annotation, Visualization, and Integrated Discovery

ELISA

Enzyme-Linked Immunosorbent Assays

IPA

Ingenuity Pathway Analysis

ISA

Indirect Serological Assay

KEGG

Kyoto Encyclopedia of Genes and Genomes

MAP

Multi-Analyte Profiling

NBMIs

Microsphere-Based Multiplex Immunoassays

OA

Osteoarthritis

RA

Rheumatoid Arthritis

x

Analyte or Biomarker

Notes

Acknowledgments

This work is funded by the National Plan for Science, Technology, and Innovation (MAARIFAH) – King Abdulaziz City for Science and Technology – the Kingdom of Saudi Arabia-award number 12-BIO2719-03. The authors also acknowledge with thanks the Science and Technology Unit (STU), King Abdulaziz University for their excellent technical support.

References

  1. Alexopoulos LG, Melas IN, Chairakaki AD, Saez-Rodriguez J, Mitsos A (2010) Construction of signaling pathways and identification of drug effects on the liver cancer cell HepG2. Conf Proc IEEE Eng Med Biol Soc 2010:6717–6720PubMedGoogle Scholar
  2. Angeloni S, Cordes R, Dunbar S, Garcia C, Gibson G, Martin C et al (2014) xMAP cookbook: a collection of methods and protocols for developing multiplex assays with xMAP technology, 2nd edn. Luminex, AustinGoogle Scholar
  3. Babady NE, Mead P, Stiles J, Brennan C, Li H, Shuptar S, Stratton CW, Tang YW, Kamboj M (2012) Comparison of the Luminex xTAG RVP fast assay and the Idaho technology FilmArray RP assay for detection of respiratory viruses in pediatric patients at a cancer hospital. J Clin Microbiol 50(7):2282–2288CrossRefGoogle Scholar
  4. Bahlas S, Damiati L, Dandachi N, Sait H, Alsefri M, Pushparaj PN (2019) Rapid immunoprofiling of cytokines, chemokines and growth factors in patients with active rheumatoid arthritis using Luminex multiple Analyte profiling technology for precision medicine. Clin Exp Rheumatol 37(1):112–119PubMedGoogle Scholar
  5. Bjerre M, Hansen TK, Flyvbjerg A, Tønnesen E (2009) Simultaneous detection of porcine cytokines by multiplex analysis: development of magnetic bioplex assay. Vet Immunol Immunopathol 130:53–58CrossRefGoogle Scholar
  6. Bokken GC, Bergwerff AA, van Knapen F (2012) A novel bead-based assay to detect specific antibody responses against toxoplasma gondii and Trichinella spiralis simultaneously in sera of experimentally infected swine. BMC Vet Res 8:36CrossRefGoogle Scholar
  7. Breen EJ (2017) Protein multiplexed immunoassay analysis with R. Methods Mol Biol 1619:495–537CrossRefGoogle Scholar
  8. Darmanis S, Cui T, Drobin K, Li SC, Öberg K, Nilsson P, Schwenk JM, Giandomenico V (2013) Identification of candidate serum proteins for classifying well-differentiated small intestinal neuroendocrine tumors. PLoS One 8(11):e81712CrossRefGoogle Scholar
  9. Dunbar SA, Hoffmeyer MR (2013) Microsphere-based multiplex immunoassays: development and applications using Luminex® xMAP® technology. In: Wild D (ed) The immunoassay handbook. Elsevier Science & Technology, Oxford, UK, pp 157–174CrossRefGoogle Scholar
  10. Dunbar S, Li D (2010) Introduction to Luminex® xMAP® technology and applications for biological analysis in China. Asia Pac Biotech 14:26–30Google Scholar
  11. Firestein GS, McInnes IB (2017) Immunopathogenesis of rheumatoid arthritis. Immunity 46(2):183–196CrossRefGoogle Scholar
  12. Graham H, Chandler DJ, Dunbar SA (2019) The genesis and evolution of bead-based multiplexing. Methods 158:2–11CrossRefGoogle Scholar
  13. Houser B (2012) Bio-Rad’s Bio-Plex (R) suspension array system, xMAP technology overview. Arch Physiol Biochem 118:192–196CrossRefGoogle Scholar
  14. Kalamegam G, Sait KHW, Anfinan N, Kadam R, Ahmed F, Rasool M, Naseer MI, Pushparaj PN, Al-Qahtani M (2019) Cytokines secreted by human Wharton’s jelly stem cells inhibit the proliferation of ovarian cancer (OVCAR3) cells in vitro. Oncol Lett 17(5):4521–4531PubMedPubMedCentralGoogle Scholar
  15. Kellar KL, Iannone MA (2002) Multiplexed microsphere-based flow cytometric assays. Exp Hematol 30(11):1227–1237CrossRefGoogle Scholar
  16. Kellar KL, Mahmutovic AJ, Bandyopadhyay K (2006) Multiplexed microsphere-based flow cytometric immunoassays. Curr Protoc Cytom; Chapter 13:Unit13.1.Google Scholar
  17. Lin A, Salvador A, Carter JM (2015) Multiplexed microsphere suspension array-based immunoassays. Methods Mol Biol 1318:107–118CrossRefGoogle Scholar
  18. Manglani M, Rua R, Hendricksen A, Braunschweig D, Gao Q, Tan W, Houser B, McGavern DB, Oh K (2019) Method to quantify cytokines and chemokines in mouse brain tissue using Bio-Plex multiplex immunoassays. Methods 158:22–26CrossRefGoogle Scholar
  19. McInnes IB, Schett G (2017) Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet 389(10086):2328–2337CrossRefGoogle Scholar
  20. McInnes IB, Buckley CD, Isaacs JD (2016) Cytokines in rheumatoid arthritis – shaping the immunological landscape. Nat Rev Rheumatol 12(1):63–68CrossRefGoogle Scholar
  21. Pushparaj PN (2019) Introduction to functional bioinformatics. In: Shaik NA, Hakeem KR, Banaganapalli B, Elango R (eds) Essentials of bioinformatics volume I. understanding bioinformatics: genes to proteins. Springer International Publishing, Switzerland, pp 235–254CrossRefGoogle Scholar
  22. Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32(Suppl):496–501CrossRefGoogle Scholar
  23. Reslova N, Michna V, Kasny M, Mikel P, Kralik P (2017) xMAP technology: applications in detection of pathogens. Front Microbiol 8:55CrossRefGoogle Scholar
  24. Siebert S, Tsoukas A, Robertson J, McInnes I (2015) Cytokines as therapeutic targets in rheumatoid arthritis and other inflammatory diseases. Pharmacol Rev 67(2):280–309CrossRefGoogle Scholar
  25. Smolen JS, Aletaha D, McInnes IB (2016) Rheumatoid arthritis. Lancet 388(10055):2023–2038CrossRefGoogle Scholar
  26. Tang Y, Stratton C (2006) Advanced techniques in diagnostic microbiology. Springer, BerlinGoogle Scholar
  27. Wang J, Zuo Y, Man YG, Avital I, Stojadinovic A, Liu M, Yang X, Varghese RS, Tadesse MG, Ressom HW (2015) Pathway and network approaches for identification of cancer signature markers from omics data. J Cancer 6(1):54–65CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Peter Natesan Pushparaj
    • 1
    • 2
  1. 1.Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Department of Medical Laboratory TechnologyFaculty of Applied Medical Sciences, King Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations