Fungi Present in Soils of Antarctica

  • Eldon Carlos Queres Gomes
  • Hebert Morais Figueredo
  • Fábio Soares de Oliveira
  • Carlos Ernesto Gonçalves Reynaud Schaefer
  • Roberto Ferreira Michel
  • Carlos Augusto Rosa
  • Luiz Henrique Rosa


Fungi are cosmopolitan organisms capable of colonising different types of soils in different ecosystems of the planet. Soils represent the main source of isolation of fungi studied in Antarctica, in which different species ranging from endemic to cosmopolitan species adapted to the cold are found. Despite the extreme conditions, different types of soils occur in Antarctica, such as those present in the Antarctic Peninsula, as well as those characterised as ultraligotrophic in continental Antarctica. These soils vary in their physicochemical characteristics such as the presence of organic matter with varying concentrations of carbon, nitrogen, and minerals. In recent years, some fungal communities have been characterised in the soils of different regions of Antarctica, such as morainic, sulphur-rich, thermal, ornithogenic, oligotrophic, and ultraoligotrophic soils. Owing to their high genetic, biochemical, and physiological plasticity, fungi are able to survive, colonise, and disperse in different types of Antarctic soils and act in different ways in the region. Their main ecological functions are decomposition and nutrient cycling in extreme environments such as those in Antarctica. This chapter aims to present the current picture of the diversity of fungi present in the different types of Antarctic soils, their possible functions and ecological relations, as well as their potential in possible biotechnological applications.


Antarctica Soil Fungi Diversity 


  1. Abneuf MA, Krishnan A, Aravena MG, Pang K, Convey P, Mohamad-Fauzi N, Rizman-Idid M, Alias SA (2016) Antimicrobial activity of microfungi from maritime Antarctic soil. Czech Polar Rep 6:141–154CrossRefGoogle Scholar
  2. Adams BJ, Bardgettb RD, Ayres E, Wall DH, Aislabie J, Bamforth S, Bargagli R, Cary C, Cavacini P, Connell L, Convey P, Fell JW, Frati F, Hogg ID, Newsham KK, O’Donnell A, Russell N, Seppelt RD, Stevens MI (2006) Diversity and distribution of Victoria Land biota. Soil Biol Biochem 38:3003–3018CrossRefGoogle Scholar
  3. Alias SA, Smykla J, Ming CY, Rizman-Idid M, Convey P (2013) Diversity of microfungi in Ornithogenic soils from Beaufort Island, continental Antarctic. Czech Polar Rep 3:144–156CrossRefGoogle Scholar
  4. Arenz BE, Blanchette RA (2009) Investigations of fungal diversity in wooden structures and soils at historic sites on the Antarctic Peninsula. Can J Microbiol 55:46–56PubMedCrossRefGoogle Scholar
  5. Arenz BE, Blanchette RA (2011) Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea Region and McMurdo Dry Valleys. Soil Biol Biochem 43:308–315CrossRefGoogle Scholar
  6. Arenz BE, Blanchette RA, Farrell RL (2014) Fungal diversity in Antarctic soils. In: Cowan DA (ed) Antarctic terrestrial microbiology. Springer, Berlin, Heidelberg, pp 35–53CrossRefGoogle Scholar
  7. Arenz BE, Held BW, Jurgens JA, Farrell RL, Blanchette RA (2006) Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biol Biochem 38:3057–3064CrossRefGoogle Scholar
  8. Bailey AD, Wynn-Williams DD (1982) Soil microbiological studies at Signy island, South Orkney islands. Br Antarct Surv Bull 51:167–191Google Scholar
  9. Baublis JA, Wharton RA, Volz PA (1991) Diversity of micro-fungi in an Antarctic dry valley. J Basic Microbiol 31:3–12CrossRefGoogle Scholar
  10. Bensch K, Groenewald JZ, Dijksterhuis J, Starink-Willemse M, Andersen B, Summerell BA, Shin HD, Dugan FM, Schroers J, Braun U, Crous PW (2010) Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Stud Mycol 67:1–94PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bockheim JG (1990) Soil development rates in the Transantarctic Mountains. Geoderma 47:5977CrossRefGoogle Scholar
  12. Bockheim JG (2015) Soil-forming factors in Antarctica. In: Bockheim JG (ed) The soils of Antarctica. Springer, Heidelberg, New York, pp 1–20Google Scholar
  13. Bockheim JG, Ugolini FC (1990) A review of pedogenic zonation in well-drained soils of the southern circumpolar region. Quatern Res 34:47–66CrossRefGoogle Scholar
  14. Bockheim JG, Ugolini FC (2008) Antarctic soils and soil formation in a changing environment: a review. Geoderma 144:1–8CrossRefGoogle Scholar
  15. Boyd WL, Staley JT, Boyd JW (1966) Ecology of soil microorganisms of Antarctica. Antarctic soils and a soil forming processes. Antarct Res 8:125–129Google Scholar
  16. Bradner JR, Sidhu RK, Gillings M, Nevalainen KMH (1999) Hemicellulase activity of antarctic microfungi. J Appl Microbiol 87:366–370PubMedCrossRefGoogle Scholar
  17. Bridge PD, Newsham KK (2009) Soil fungal community composition at Mars Oasis, a southern maritime Antarctic site, assessed by PCR amplification and cloning. Fungal Ecol 2:66–74CrossRefGoogle Scholar
  18. Bridge PD, Spooner BM (2012) Non-lichenized Antarctic fungi: transient visitors or members of a cryptic ecosystem? Fungal Ecol 5:381–394CrossRefGoogle Scholar
  19. Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N (2005) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244:229–234PubMedCrossRefGoogle Scholar
  20. Cameron KA, Hodson AJ, Osborn A (2012) Carbon and nitrogen biogeochemical cycling potentials of supraglacial cryoconite communities. Polar Biol 35:1375–1393CrossRefGoogle Scholar
  21. Campbell B, Claridge CG (1987) Antarctica: soil, weathering processes and environment. Elsevier, New YorkGoogle Scholar
  22. Connell L, Redman R, Craig S, Rodriguez R (2006) Distribution and abundance of fungi in the soils of Taylor Valley, Antarctica. Soil Biol Biochem 38:3083–3094CrossRefGoogle Scholar
  23. Connell L, Redman R, Craig S, Scorzetti G, Iszard M, Rodriguez R (2008) Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microb Ecol 56:448–459PubMedCrossRefGoogle Scholar
  24. Connell L, Staudigel H (2013) Fungal diversity in a dark oligotrophic volcanic ecosystem (DOVE) on Mount Erebus, Antarctica. Biology 2:798–809PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cowan DA, Makhalanyane TP, Dennis PG, Hopkins DW (2014) Microbial ecology and biogeochemistry of continental Antarctic soils. Front Microbiol 5:154PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cowan DA, Sohm JA, Makhalanyane TP, Capone DG, Green TG, Cary SC, Tuffin IM (2011) Hypolithic communities: important nitrogen sources in Antarctic desert soils. Environ Microbiol Rep 3:581–586PubMedCrossRefGoogle Scholar
  27. de Garcia V, Brizzio S, van Broock MR (2012) Yeasts from glacial ice of Patagonian Andes, Argentina. FEMS Microbiol Ecol 82:540–550PubMedCrossRefGoogle Scholar
  28. de Hoog GS, Gottlich E, Platas G, Genilloud O, Leotta G, van Brummelen J (2005) Evolution, taxonomy and ecology of the genus Thelebolus in Antarctica. Stud Mycol 51:33–76Google Scholar
  29. de Menezes GCA, Godinho VM, Porto BA, Gonçalves VN, Rosa LH (2017) Antarctomyces pellizariae sp. nov., a new, endemic, blue, snow resident psychrophilic ascomycete fungus from Antarctica. Extremophiles 21:259–269CrossRefGoogle Scholar
  30. Delpupo C, Schaefer CEGR, Roque MB, de Faria ALL, da Rosa KK, Thomazini A, de Paula MD (2017) Soil and landform interplay in the dry valley of Edson Hills, Ellsworth Mountains, continental Antarctica. Geomorphology 295:134–146CrossRefGoogle Scholar
  31. Duddington DL, Wyborn CHE, Smith RIL (1973) Predacious fungi from the Antarctic. Antarct Sci 35:87–90Google Scholar
  32. Fell JW, Scorzetti G, Connell L, Craig S (2006) Biodiversity of micro-eukaryotes in Antarctic dry valley soils with <5% soil moisture. Soil Biol Biochem 38:3107–3119CrossRefGoogle Scholar
  33. Fletcher LD, Kerry EJ, Weste GM (1985) Microfungi of Mac. Robertson and Enderby Lands, Antarctica. Polar Biol 4:81–88CrossRefGoogle Scholar
  34. Francelino MR, Schaefer CEGR, Simas FNB, Filho EIF, de Souza JJLL, da Costa LM (2011) Geomorphology and soils distribution under paraglacial conditions in an ice-free area of Admiralty Bay, King George Island, Antarctica. Catena 85:194–204CrossRefGoogle Scholar
  35. Frate GD, Carreta G (1990) Fungi isolated from Antarctic material. Polar Biol 11:1–7CrossRefGoogle Scholar
  36. French HM (2007) The periglacial environment, 3rd edn. John Wiley and Sons, West SussexCrossRefGoogle Scholar
  37. Godinho VM, Gonçalves VN, Santiago IF, Figueredo HM, Vitoreli GA, Schaefer CE, Barbosa EC, Oliveira JG, Alves TM, Zani CL, Junior PA, Murta SM, Romanha AJ, Kroon EG, Cantrell CL, Wedge DE, Duke SO, Ali A, Rosa CA, Rosa LH (2015) Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica. Extremophiles 19:585–596CrossRefGoogle Scholar
  38. Gomes ECQ, Godinho VM, Oliveira FS, Silva DAS, de Paula MTR, Vitoreli GA, Zani CL, Alves TM, Junior PAV, Murta SMF, Barbosa EC, Oliveira JG, Rosa CA, Rosa LH (2018) Cultivable fungi present in Antarctic soils: taxonomy, phylogeny, diversity, and bioprospecting of antiparasitic and herbicidal metabolites. Extremophiles 22:381–393CrossRefGoogle Scholar
  39. Gonçalves VN, Carvalho CR, Johann S, Mendes G, Alves TMA, Zani CL, Junior PAS, Murta SMF, Romanha AJ, Cantrell CL, Rosa CA, Rosa LH (2015) Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica. Polar Biol 38:1143–1152CrossRefGoogle Scholar
  40. Green TGA, Schroeter B, Sancho LG (1999) Plant life in Antarctica. In: Pugnaire FI, Valladares F (eds) Handbook of functional plant ecology. Dekker, New YorkGoogle Scholar
  41. Greenfield L (1981) Soil microbiological studies. In: Greenfield L, Wilson G (eds) University of Canterbury Antarctic Expedition, N° 19. University of Canterbury, Christchurch, pp 4–22Google Scholar
  42. Hallet B, Sletten R, Whilden K (2011) Microrelief development in polygonal patterned ground in the Dry Valleys of Antarctica. Quatern Res 75:347–355CrossRefGoogle Scholar
  43. Harper CJ, Bomfleur B, Decombeix AL, Taylor EL, Taylor TN, Krings M (2012) Tylosis formation and fungal interactions in an early Jurassic conifer from northern Victoria Land, Antarctica. Rev Palaeobot Palynol 175:25–31CrossRefGoogle Scholar
  44. Heal OW, Bailey AD, Latter PM (1967) Bacteria, fungi and protozoa in Signy Island soils compared with those from a temperate moorland. Philos Trans R Soc Lond B Biol Sci 252:191–197CrossRefGoogle Scholar
  45. Hopkins DW, Sparrow A, Elberling B, Gregorich EG, Novis PM, Greenfield LG, Tilstona EL (2006) Carbon, nitrogen and temperature controls on microbial activity in soils from an Antarctic dry valley. Soil Biol Biochem 38:3130–3140CrossRefGoogle Scholar
  46. Houbraken J, Frisvad JC, Seifert KA, Overy DP, Tuthill DM, Valdez JG, Samson RA (2012) New penicillin-producing Penicillium species and an overview of section Chrysogena. Persoonia 29:78–100PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hughes KA, Bridge P, Clark MS (2007) Tolerance of Antarctic soil fungi to hydrocarbons. Sci Total Environ 372:539–548PubMedCrossRefGoogle Scholar
  48. Kerry E (1990) Effects of temperature on growth rates of fungi from subantarctic Macquarie Island and Casey, Antarctica. Polar Biol 10:293–299Google Scholar
  49. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi. CAB International, WallingfordGoogle Scholar
  50. Kochkina GA, Ivanushkina NE, Lupachev AV, Starodumova IP, Vasilenko OV, Ozerskaya SM (2019) Diversity of mycelial fungi in natural and human-affected Antarctic soils. Polar Biol 42:1–18CrossRefGoogle Scholar
  51. Kostadinova N, Krumova E, Tosi S, Pashova, Angelova M (2009) Isolation and identification of filamentous fungi from island Livingston, Antarctica. Biotechnol Biotechnol Equip 23(Sup1):267–270CrossRefGoogle Scholar
  52. Krauskopf KB (1979) Introduction to geochemistry, 2th edn. McGraw-Hill, New YorkGoogle Scholar
  53. Krishnan A, Alias SA, Wong CMVL, Pang K, Convey P (2011) Extracellular hydrolase enzyme production by soil fungi from King George Island, Antarctica. Polar Biol 34:1535–1542CrossRefGoogle Scholar
  54. Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts: a taxonomic study, 5th edn. Elsevier, AmsterdamGoogle Scholar
  55. Lawley B, Ripley S, Bridge P, Convey P (2004) Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. Appl Environ Microbiol 70:5963–5972PubMedPubMedCentralCrossRefGoogle Scholar
  56. Libkind D, Brizzio S, Ruffini A, Gadanho M, van Broock M, Sampaio JP (2003) Molecular characterization of carotenogenic yeasts from aquatic environments in Patagonia, Argentina. Antonie Van Leeuwenhoek 84:313–322PubMedCrossRefGoogle Scholar
  57. Lindo Z, Gonzalez A (2010) The bryosphere: an integral and influential component of the earth’s biosphere. Ecosystems 13:612–627CrossRefGoogle Scholar
  58. Litova K, Gerginova M, Peneva N, Manasiev J, Alexieva Z (2014) Growth of Antarctic fungal strains on phenol at low temperatures. J BioSci Biotechnol, Special Edition:43–46Google Scholar
  59. Liu XZ, Wang QM, Göker M, Groenewald M, Kachalkin AV, Lumbsch HT, Millanes AM, Wedin M, Yurkov AM, Boekhout T, Bai FY (2006) Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147CrossRefGoogle Scholar
  60. Mackay JR (1979) An equilibrium model for hummocks (non-sorted circles), Garry Island, Northwest Territories. Geol Surv Can 79-1A:165–167Google Scholar
  61. Malosso E, Waite IS, English L, Hopkins DW, O’Donnell AG (2006) Fungal diversity in maritime Antarctic soils determined using a combination of culture isolation, molecular fingerprinting and cloning techniques. Polar Biol 29:552–561CrossRefGoogle Scholar
  62. Marfenina OE, Nikitin DA, Ivanova AE (2016) The structure of fungal biomass and diversity of cultivated micromycetes in Antarctic soils (Progress and Russkaya stations). Eurasian Soil Sci 49:934–941CrossRefGoogle Scholar
  63. Margesin R, Fonteyne PA, Schinner F, Sampaio JP (2007) Rhodotorula psychrophila sp. nov., Rhodotorula psychrophenolica sp. nov. and Rhodotorula glacialis sp. nov., novel psychrophilic basidiomycetous yeast species isolated from alpine environments. Int J Syst Evol Microbiol 57:2179–2184PubMedCrossRefGoogle Scholar
  64. Marshall WA (1998) Aerial transport of keratinaceous substrate and distribution of the fungus Geomyces pannorum in Antarctic soils. Microb Ecol 36:212–219PubMedCrossRefGoogle Scholar
  65. McRae CF, Seppelt RD (1999) Filamentous fungi of the Windmill Islands, continental Antarctica: effect of water content in moss turves on fungal diversity. Polar Biol 22:389–394CrossRefGoogle Scholar
  66. Melo IS, Santos SN, Rosa LH, Parma MM, Silva LJ, Queiroz SC, Pellizari VH (2014) Isolation and biological activities of an endophytic Mortierella alpina strain from the Antarctic moss Schistidium antarctici. Extremophiles 18:15–23CrossRefGoogle Scholar
  67. Mercantini R, Marsellan R, Cervellati C (1989) Keratinophilic fungi isolated from Antarctic soil. Mycopathologia 106:47–52CrossRefGoogle Scholar
  68. Meyer GH, Morrow MB, Wyss O (1967) Bacteria, fungi and other biota in the vicinity of Mirny Observatory. Antarct J US 2:248–251Google Scholar
  69. Michel RFM, Schaefer CEGR, Dias L (2006) Ornithogenic gelisols (cryosols) from maritime Antarctica: pedogenesis, vegetation and carbon studies. Soil Sci Soc Am J 70:1370–1376CrossRefGoogle Scholar
  70. Moura PA, Francelino MR, Schaefer CEGR, Simas FNB, de Mendonça BAF (2012) Distribution and characterization of soils and landform relationships in Byers Peninsula, Livingston Island, Maritime Antarctica. Geomorphology 155–156:45–54CrossRefGoogle Scholar
  71. Muller SW (1943) Permafrost or permanently frozen ground and related engineering problems. Ann Arbor and J.W. Edward, Michan, USAGoogle Scholar
  72. Myrcha A, Pietr SJ, Tatur A (1985) The role of Pygoscelid penguin rockeries in nutrient cycles at Admiralty Bay, King George Island. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer-Verlag, Berlin, pp 156–163CrossRefGoogle Scholar
  73. Myrcha A, Tatur A (1991) Ecological role of the current and abandoned penguin rookeries in the land environment of the maritime Antartic. Pol Polar Res 12:3–24Google Scholar
  74. Nagahama T, Hamamoto M, Nakase T, TakamiKoki H, Horikoshi K (2001) Distribution and identification of red yeasts in deep-sea environments around the northwest Pacific Ocean. Antonie Van Leeuwenhoek 80:101–110PubMedCrossRefGoogle Scholar
  75. Newsham KK, Garnett MH, Robinson CH, Cox F (2018) Discrete taxa of saprotrophic fungi respire different ages of carbon from Antarctic soils. Sci Rep 8:7866PubMedPubMedCentralCrossRefGoogle Scholar
  76. Newsham KK, Hopkins DW, Carvalhais LC, Fretwell PT, Rushton SP, O’Donnell AG, Dennis PG (2015) Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nat Clim Chang 6:182–186CrossRefGoogle Scholar
  77. Onofri S, Fenice M, Cicalini AR, Tosi S, Magrino A, Pagano S, Selbmann L, Zucconi L, Vishniac HS, Ocampo-Friedmann R, Friedmann EI (2000) Ecology and biology of microfungi from antarctic rocks and soils. Ital J Zool 67:163–167CrossRefGoogle Scholar
  78. Onofri S, Selbmann L, Zucconi L, Pagano S (2004) Antarctic microfungi as models for exobiology. Planet Space Sci 52:229–237CrossRefGoogle Scholar
  79. Onofri S, Tosi S (1989) Il contributo della micologia alla IV spedizione italiana in Antartide. Micol Veget Mediterr 4:57–62Google Scholar
  80. Onofri S, Tosi S (1992) Arthrobotrys ferox sp. nov. a springtail-capturing hyphomycete from continental Antarctica. Mycotaxon 44:445–451Google Scholar
  81. Pannewitz S, Schlensog M, Green TG, Sancho LG, Schroeter B (2003) Are lichens active under snow in continental Antarctica? Oecologia 135:30–38PubMedCrossRefGoogle Scholar
  82. Pavlova K, Grigorova D, Hristozova T, Angelov A (2001) Yeast strains from Livingston Island, Antarctica. Folia Microbiol 46:397–401CrossRefGoogle Scholar
  83. Pereira TTC, Schaefer CEGR, Ker JC, Almeida CC, Almeida ICC (2013) Micromorphological and microchemical indicators of pedogenesis in ornithogenic cryosols (gelisols) of Hope Bay, Antartic Peninsula. Geoderma 193–194:311–322CrossRefGoogle Scholar
  84. Pudasaini S, Wilson J, Ji M, van Dorst J, Snape I, Palmer AS, Burns BP, Ferrari BC (2017) Microbial diversity of Browning Peninsula, Eastern Antarctica revealed using molecular and cultivation methods. Front Microbiol 8:591PubMedPubMedCentralCrossRefGoogle Scholar
  85. Rao S, Chan Y, Lacap DC, Hyde KD, Pointing SB, Farrell RL (2012) Low-diversity fungal assemblage in an Antarctic Dry Valleys soil. Polar Biol 35:567–574CrossRefGoogle Scholar
  86. Ray MK, Shivaji S, Rao NS, Bhargava PM (1989) Yeast strains from the Schirmacher Oasis, Antarctica. Polar Biol 9:305–309CrossRefGoogle Scholar
  87. Rovati JI, Pajot HF, Ruberto L, Cormack WM, Li F (2013) Polyphenolic substrates and dyes degradation by yeasts from 25 de Mayo/King George Island (Antarctica). Yeast 30:459–470PubMedCrossRefGoogle Scholar
  88. Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6:127–141CrossRefGoogle Scholar
  89. Sampaio JP (2011) Rhodotorula Harrison (1928). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, New York, pp 1873–1927CrossRefGoogle Scholar
  90. Santiago IF, Alves TM, Rabello A, Junior PAS, Romanha AJ, Zani CL, Rosa CA, Rosa LH (2012) Leishmanicidal and antitumoral activities of endophytic fungi associated with the Antarctic angiosperms Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. Extremophiles 16:95–103CrossRefGoogle Scholar
  91. Schaefer CEGR, Simas FNB, Albuquerque-Filho MR, Michel RFM, Viana J, Tatur HM (2004) Fosfatização: processo de formação de solos na Baía do Almirantado e implicações ambientais. In: Schaefer CEGR, Francelino R, Simas FNB, Albuquerque-Filho R (eds) Ecossistemas costeiros e monitoramento ambiental da Antártica Marítima, Baía do Almirantado, Ilha Rei George. NEPUT e Departamento de Solos, Viçosa, Brazil, pp 47–59Google Scholar
  92. Shivaji S, Prasad GS (2009) Antarctic yeasts: biodiversity and potential applications. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer, New Delhi, India, pp 3–18 CrossRefGoogle Scholar
  93. Simas FNB, Schaefer CEGR, Filho MRA, Francelino MR, Filho EIF, da Costa LM (2008) Genesis, properties and classification of Cryosols from Admiralty Bay, maritime Antarctica. Geoderma 144:116–122CrossRefGoogle Scholar
  94. Simas FNB, Schaefer CEGR, Filho MRA, Michelen RFM, Pereira VV, Gomes MRM, da Costa LM (2007) Ornithogenic cryosols from Maritime Antarctica: phosphatization as a soil forming process. Geoderma 138:191–203CrossRefGoogle Scholar
  95. Simas FNB, Schaefer CEGR, Melo VF, Guerra MBB, Saunders M, Gilkes RJ (2006) Clay-sized minerals in permafrost-affected soils (Cryosols) from King George Island, Antarctica. Clays Clay Miner 54:721–736CrossRefGoogle Scholar
  96. Singh SM, Puja G, Bhat DJ (2006) Psychrophilic fungi from Schirmacher Oasis, East Antarctica. Curr Sci 90:1388–1392Google Scholar
  97. Sousa JRP, Gonçalves VN, Holanda RA, Santos DA, Bueloni CFLG, Costa AO, Petry MV, Rosa CA, Rosa LH (2017) Pathogenic potential of environmental resident fungi from ornithogenic soils of Antarctica. Fungal Biol 121:991–1000PubMedCrossRefGoogle Scholar
  98. Stchigel AM, Cano J, MacCormack CW (2001) Antarctomyces psychrotrophicus gen. et sp. nov., a new ascomycete from Antarctica. Mycol Res 105:377–382CrossRefGoogle Scholar
  99. Stubblefield SP, Taylor TN (1983) Studies of Paleozoic fungi. I. The structure and organization of Traquairia (Ascomycota). Am J Bot 70:387–399CrossRefGoogle Scholar
  100. Sugiyama J (1970) World’s last frontier III: polar mycology in Antarctica. Polar News 6:17–24Google Scholar
  101. Sugiyama J, Sugiyama Y, Iizuka H (1967) Report of the Japanese summer parties in dry valleys, Victoria Land 1963–1965. IV. Mycological studies of the Antarctic fungi. Part 2. Mycoflora of Lake Vanda, an ice-free lake. Antarct Rec 28:23–32Google Scholar
  102. Sun SH, Huppert M, Cameron RE (1978) Identification of some fungi from soil and air of Antarctica. Antarc Res Ser 30:1–26CrossRefGoogle Scholar
  103. Swift MJ, Heal OW, Anderson JM (1979) The decomposer organisms. In: Swift MJ, Heal OW, Anderson JM (eds) Decomposition in terrestrial ecosystems. University of California Press, Berkeley, pp 66–117Google Scholar
  104. Tatur A, Barczuk A (1985) Ornithogenic phosphates on King George Island, Maritime Antarctic. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin, pp 163–169CrossRefGoogle Scholar
  105. Tatur A, Myrcha A (1984) Ornithogenic soils on King George Island (Maritime Antarctic zone). Pol Polar Res 5:31–60Google Scholar
  106. Tatur A (1989) Ornithogenic soils of the Maritime Antarctic. Pol Polar Res 4:481–532Google Scholar
  107. Taylor TN, Osborne JM (1996) The importance of fungi in shaping the paleoecosystem. Rev Paleobot Palynol 90:249–262CrossRefGoogle Scholar
  108. Taylor TN, White JF (1989) Fossil fungi (Endogonaceae) from the Triassic of Antarctica. Am J Bot 76:389–396CrossRefGoogle Scholar
  109. Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith AE, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson KH, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo L, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, de Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Fungal biogeography. Global diversity and geography of soil fungi. Science 346:1256688PubMedCrossRefGoogle Scholar
  110. Tosi S, Casado B, Gerdol R, Caretta G (2002) Fungi isolated from Antarctic mosses. Polar Biol 25:262–268Google Scholar
  111. Tsuji M (2016) Cold-stress responses in the Antarctic basidiomycetous yeast Mrakia blollopis. R Soc Open Sci 3:160106PubMedPubMedCentralCrossRefGoogle Scholar
  112. Tubaki K, Asano I (1965) Additional species of fungi isolated from the Antarctic materials. JARE 1956–1962 Sci Rep, Ser E, 27. Polar Section, National Science Museum, Tokyo, pp 1–16Google Scholar
  113. Upson R, Newsham KK, Bridge PD, Pearce DA, Read DJ (2009) Taxonomic affinities of dark septate root endophytes of Colobanthus quitensis and Deschampsia antarctica, the two native Antarctic vascular plant species. Fungal Ecol 2:184–196CrossRefGoogle Scholar
  114. Van Everdingen RO (1998) Multi-language glossary of permafrost and related ground- ice terms. International Permafrost Association, Terminology Working Group, CalgaryGoogle Scholar
  115. Vaz ABM, Rosa LH, Vieira ML, de Garcia V, Brandão LR, Teixeira LCRS, Moliné M, Libkind D, van Broock M, Rosa CA (2011) The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz J Microbiol 43:1–2Google Scholar
  116. Visagie CM, Renaud JB, Burgess KMN, Malloch DW, Clark D, Ketch L, Urb M, Louis-Seize G, Assabgui R, Sumarah MW, Seifert KA (2016) Fifteen new species of Penicillium. Persoonia 36:247–280PubMedPubMedCentralCrossRefGoogle Scholar
  117. Vishniac HS (1996) Biodiversity of yeasts and filamentous microfungi in terrestrial Antarctic ecosystems. Biodivers Conserv 5:1365–1378CrossRefGoogle Scholar
  118. Vishniac HS, Kurtzman CP (1992) Cryptococcus antarcticus sp. nov. and Cryptococcus albidosimilis sp. nov., basidioblastomycetes from Antarctic soils. Int J Syst Bacteriol 42:547–553CrossRefGoogle Scholar
  119. Wentzel LCP, Inforsato FJ, Montoya QV, Rossin BG, Nascimento NR, Rodrigues A, Sette LD (2018) Fungi from Admiralty Bay (King George Island, Antarctica) soils and marine sediments. Microb Ecol 77:12–24PubMedCrossRefGoogle Scholar
  120. Wicklow DT (1968) Aspergillus fumigatus fresenius isolated from ornithogenic soil collected at Hallett station, Antarctica. Can J Microbiol 14:717–719PubMedCrossRefGoogle Scholar
  121. Xin M, Zhou P (2007) Mrakia psychrophila sp. nov., a new species isolated from Antarctic soil. J Zhejiang Univ Sci B 8:260–265PubMedPubMedCentralCrossRefGoogle Scholar
  122. Yergeau E, Bokhorst S, Huiskes AHL, Boschker HT, Aerts R, Kowalchuk GA (2007) Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiol Ecol 59:436–451PubMedPubMedCentralCrossRefGoogle Scholar
  123. Zucconi L, Pagano S, Fenice M, Selbmann L, Tosi S, Onofri S (1996) Growth temperature preferences of fungal strains from Victoria Land, Antarctica. Polar Biol 16:53–61CrossRefGoogle Scholar
  124. Zucconi L, Selbmann L, Buzzini P, Turchetti B, Guglielmin M, Frisvad JC, Onofri S (2012) Searching for eukaryotic life preserved in Antarctic permafrost. Polar Biol 35:749–757CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Eldon Carlos Queres Gomes
    • 1
  • Hebert Morais Figueredo
    • 1
  • Fábio Soares de Oliveira
    • 2
  • Carlos Ernesto Gonçalves Reynaud Schaefer
    • 3
  • Roberto Ferreira Michel
    • 4
  • Carlos Augusto Rosa
    • 1
  • Luiz Henrique Rosa
    • 1
  1. 1.Departamento de MicrobiologiaInstituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Departamento de GeografiaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  3. 3.Departamento de SolosUniversidade Federal de ViçosaViçosaBrazil
  4. 4.Departamento de Ciências Agrárias e AmbientaisUniversidade Estadual de Santa CruzIlhéusBrazil

Personalised recommendations