Skip to main content

Antarctic Yeasts as a Source of Enzymes for Biotechnological Applications

  • Chapter
  • First Online:
Book cover Fungi of Antarctica

Abstract

Psychrophilic and psychrotrophic yeasts able to live in extremely cold environments like Antarctica produce cold-active enzymes as part of their metabolic adaptation mechanisms. Some of these enzymes could be used for industrial and biotechnological applications requiring high activity at mild/cold temperatures or fast inactivation by heat. In this chapter, the basic principles for the screening of cold-active enzymes and their potential industrial applications (textiles, food and dairy products, brewing and wine industry, and laundry, among others) are presented. When it comes to the search of yeasts exhibiting cold-enzyme production, Antarctica is one of the most promising environments to work in. Cold-active hydrolytic enzymes from Antarctic yeasts such as lipases, proteases, cellulases, and amylases are mentioned in this chapter. In addition, pectinolytic, lignocellulolytic, and oil-related (lipase and esterase) enzymes produced by these microorganisms are presented, focusing on yeast isolation, screening for enzyme producers, and purification and characterization of specific cold-active enzymes. The near future should find us discussing the regulation of the use of Antarctic yeast as a source of cold enzymes, and once this point is clarified and approved by the international forums on Antarctic activities regulation, the development and scaling up of these biological products may be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adapa V, Ramya LN, Pulicherla KK et al (2014) Cold active pectinases: advancing the food industry to the next generation. Appl Biochem Biotechnol 172:2324–2337

    Article  CAS  Google Scholar 

  • Aislabie J, Fraser R, Duncan S et al (2001) Effects of oil spills on microbial heterotrophs in Antarctic soils. Polar Biol 24:308–313

    Article  Google Scholar 

  • Antarctic Treaty System (1959). https://www.ats.aq/documents/ats/treaty_original.pdf

  • Bradner JR, Gillings M, Nevalainen KMH (1999) Qualitative assessment of hydrolytic activities in antarctic microfungi grown at different temperatures on solid media. World J Microbiol Biotechnol 15:131–132

    Article  Google Scholar 

  • Budsberg E, Crawford JT, Morgan H et al (2016) Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment. Biotechnol Biofuels 9:170

    Article  Google Scholar 

  • Buzzini P, Branda E, Goretti M et al (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241

    Article  CAS  Google Scholar 

  • Carrasco M, Rozas JM, Barahona S et al (2012) Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region. BMC Microbiol 12:1

    Article  Google Scholar 

  • Cavicchioli R, Charlton T, Ertan H et al (2011) Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4:449–460

    Article  CAS  Google Scholar 

  • De Maayer P, Anderson D, Cary C et al (2014) Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep 15:508–517

    Article  Google Scholar 

  • De Mot R, Verachtert H (1987) Purification and characterization of extracellular α-amylase and glucoamylase from the yeast Candida antarctica CBS 6678. Eur J Biochem 164:643–654

    Article  Google Scholar 

  • Duarte AWF, Dayo-Owoyemi I, Nobre FS et al (2013) Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Extremophiles 17:1023–1035

    Article  CAS  Google Scholar 

  • Duarte AWF, dos Santos JA, Vianna MV et al (2018) Cold-adapted enzymes produced by fungi from terrestrial and marine Antarctic environments. Crit Rev Biotechnol 38:600–619

    Article  CAS  Google Scholar 

  • Duncan SM, Minaki R, Farrell RL et al (2008) Screening fungi isolated from historic Discovery Hut on Ross Island, Antarctica for cellulose degradation. Antarct Sci 20:463–470

    Article  Google Scholar 

  • Erich S, Kuschel B, Schwarz T et al (2015) Novel High-performance metagenome β-galactosidases for lactose hydrolysis in the dairy industry. J Biotechnol 210:27–37

    Article  CAS  Google Scholar 

  • Feller G (2018) Protein folding at extreme temperatures: current issues. Semin Cell Dev Biol 84:129–137

    Article  CAS  Google Scholar 

  • Fenice M, Selbmann L, Zucconi L et al (1997) Production of extracellular enzymes by Antarctic fungal strains. Polar Biol 17:275–280

    Article  Google Scholar 

  • Fernández PM, Martorell MM, Blaser MG et al (2017) Phenol degradation and heavy metal tolerance of Antarctic yeasts. Extremophiles 21:445–457

    Article  Google Scholar 

  • Filler DM, Snape I, Barnes DL (2008) Bioremediation of petroleum hydrocarbons in cold regions. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gerday C, Aittaleb M, Bentahir M et al (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18:103–107

    Article  CAS  Google Scholar 

  • Gomes J, Gomes I, Steiner W (2000) Thermolabile xylanase of the Antarctic yeast Cryptococcus adeliae: production and properties. Extremophiles 4:227–235

    Article  CAS  Google Scholar 

  • Hashim NHF, Mahadi NM, Illias RM et al (2018) Biochemical and structural characterization of a novel cold-active esterase-like protein from the psychrophilic yeast Glaciozyma antarctica. Extremophiles 22:607–616

    Article  CAS  Google Scholar 

  • Jaeger K, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397

    Article  CAS  Google Scholar 

  • Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470

    Article  CAS  Google Scholar 

  • Javed A, Qazi JI (2016) Psychrophilic microbial enzymes implications in coming biotechnological processes. Am Sci Res J Eng Technol Sci 23:103–120

    Google Scholar 

  • Joshi S, Satyanarayana T (2013) Biotechnology of cold-active proteases. Biology 2:755–783

    Article  CAS  Google Scholar 

  • Karan R, Capes MD, DasSarma P et al (2013) Cloning, overexpression, purification, and characterization of a polyextremophilic β-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi. BMC Biotechnol 13:3. https://doi.org/10.1186/1472-6750-13-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan A, Alias SA, Wong CM et al (2011) Extracellular hydrolase enzyme production by soil fungi from King George Island, Antarctica. Polar Biol 34:1535–1542

    Article  Google Scholar 

  • Kuddus M (2018) Cold-active enzymes in food biotechnology: an updated mini review. J Appl Biol Biotechnol 6:58–63

    Article  CAS  Google Scholar 

  • Kuddus M, Arif JM, Ramteke PW (2012) Structural adaptation and biocatalytic prospective of microbial cold-active-amylase. Afr J Microbiol Res 6:206–213

    CAS  Google Scholar 

  • Kuddus M, Roohi AJ, Ramteke PW (2011) An overview of cold-active microbial α-amylase: adaptation strategies and biotechnological potentials. Biotechnology 10:246–258

    Article  CAS  Google Scholar 

  • Lario LD, Chaud L, das Graças Almeida M et al (2015) Production, purification, and characterization of an extracellular acid protease from the marine Antarctic yeast Rhodotorula mucilaginosa L7. Fungal Biol 119:1129–1136

    Article  CAS  Google Scholar 

  • Margesin R (2000) Potential of cold-adapted microorganisms for bioremediation of oil-polluted Alpine soils. Int Biodeterior Biodegrad 46:3–10

    Article  CAS  Google Scholar 

  • Margesin R, Dieplinger H, Hofmann J et al (2005) A cold-active extracellular metalloprotease from Pedobacter cryoconitis-production and properties. Res Microbiol 156:499–505

    Article  CAS  Google Scholar 

  • Margesin R, Gander S, Zacke G et al (2003) Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles 7:451–458

    Article  CAS  Google Scholar 

  • Martorell MM, Ruberto LAM, Fernández PM et al (2017) Bioprospection of cold-adapted yeasts with biotechnological potential from Antarctica. J Basic Microbiol 57:504–516

    Article  CAS  Google Scholar 

  • Martorell MM, Ruberto LAM, Fernández PM, De Figueroa LIC, Mac Cormack WP (2019) Biodiversity and enzymes bioprospection of Antarctic filamentous fungi. Antarct Sci 31(1):3–12

    Article  Google Scholar 

  • Merín MG, Mendoza LM, Farías ME et al (2011) Isolation and selection of yeasts from wine grape ecosystem secreting cold-active pectinolytic activity. Int J Food Microbiol 147:144–148

    Article  Google Scholar 

  • Panda T, Gowrishankar BS (2005) Production and applications of esterases. Appl Microbiol Biotechnol 67:160–169

    Article  CAS  Google Scholar 

  • Ramli ANM, Azhar MA, Shamsir MS et al (2013) Sequence and structural investigation of a novel psychrophilic α-amylase from Glaciozyma antarctica PI12 for cold-adaptation analysis. J Mol Model 19:3369–3383

    Article  CAS  Google Scholar 

  • Ray MK, Devi KU, Kumar GS et al (1992) Extracellular protease from the Antarctic yeast Candida humicola. Appl Environ Microbiol 58:1918–1923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rovati JI, Pajot HF, Ruberto L et al (2013) Polyphenolic substrates and dyes degradation by yeasts from 25 de Mayo/King George Island (Antarctica). Yeast 30:459–470

    Article  CAS  Google Scholar 

  • Ruisi S, Barreca D, Selbmann L et al (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6:127–141

    Article  Google Scholar 

  • Saini A, Aggarwal NK, Sharma A et al (2015) Actinomycetes: a source of lignocellulolytic enzymes. Enzym Res 2015. https://doi.org/10.1155/2015/279381

    Article  Google Scholar 

  • Santiago M, Ramírez-Sarmiento CA, Zamora RA et al (2016) Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Front Microbiol 7:1408

    PubMed  PubMed Central  Google Scholar 

  • Sarmiento F, Peralta R, Blamey JM (2015) Cold and hot extremozymes: industrial relevance and current trends. Front Bioeng Biotechnol 3:148

    Article  Google Scholar 

  • Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433

    Article  CAS  Google Scholar 

  • Szczęsna-Antczak M, Kamińska J, Florczak T et al (2014) Cold-active yeast lipases: recent issues and future prospects. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts. Springer, Berlin, Heidelberg, pp 353–375

    Chapter  Google Scholar 

  • Troncoso E, Barahona S, Carrasco M et al (2017) Identification and characterization of yeasts isolated from the South Shetland Islands and the Antarctic Peninsula. Polar Biol 40:649–658

    Article  Google Scholar 

  • Turkiewicz M, Pazgier M, Kalinowska H et al (2003) A cold-adapted extracellular serine proteinase of the yeast Leucosporidium antarcticum. Extremophiles 7:435–442

    Article  CAS  Google Scholar 

  • Vaca I, Faúndez C, Maza F et al (2013) Cultivable psychrotolerant yeasts associated with Antarctic marine sponges. World J Microbiol Biotechnol 29:183–189

    Article  CAS  Google Scholar 

  • Vaz ABM, Rosa LH, Vieira ML et al (2011) The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz J Microbiol 43:937–947

    Article  Google Scholar 

  • Villamizar-Lamus F (2015) Bioprospección antártica: hacia una institucionalidad jurídica sui géneris? Vniversitas 64(130):309–346

    Article  Google Scholar 

  • Welander U (2005) Microbial degradation of organic pollutants in soil in a cold climate. Soil Sediment Contam 14:281–291

    Article  CAS  Google Scholar 

  • Yang JK, Liu LJ, Dai JH et al (2013) De novo design and synthesis of Candida antarctica lipase B gene and a-factor leads to high-level expression in Pichia pastoris. PLoS One 8:e53939

    Article  CAS  Google Scholar 

  • Yarzábal LA (2016) Antarctic psychrophilic microorganisms and biotechnology: history, current trends, applications, and challenges. In: Castro-Sowinski S (ed) Microbial models: from environmental to industrial sustainability. Springer, Singapore, pp 83–118

    Chapter  Google Scholar 

  • Yergeau E, Kowalchuk GA (2008) Responses of Antarctic soil microbial communities and associated functions to temperature and freeze–thaw cycle frequency. Environ Microbiol 10:2223–2235

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martorell, M.M., Ruberto, L.A.M., de Figueroa, L.I.C., Mac Cormack, W.P. (2019). Antarctic Yeasts as a Source of Enzymes for Biotechnological Applications. In: Rosa, L. (eds) Fungi of Antarctica. Springer, Cham. https://doi.org/10.1007/978-3-030-18367-7_13

Download citation

Publish with us

Policies and ethics