Antarctic Yeasts as a Source of Enzymes for Biotechnological Applications

  • Maria Martha Martorell
  • Lucas Adolfo Mauro Ruberto
  • Lucía Inés Castellanos de Figueroa
  • Walter Patricio Mac Cormack


Psychrophilic and psychrotrophic yeasts able to live in extremely cold environments like Antarctica produce cold-active enzymes as part of their metabolic adaptation mechanisms. Some of these enzymes could be used for industrial and biotechnological applications requiring high activity at mild/cold temperatures or fast inactivation by heat. In this chapter, the basic principles for the screening of cold-active enzymes and their potential industrial applications (textiles, food and dairy products, brewing and wine industry, and laundry, among others) are presented. When it comes to the search of yeasts exhibiting cold-enzyme production, Antarctica is one of the most promising environments to work in. Cold-active hydrolytic enzymes from Antarctic yeasts such as lipases, proteases, cellulases, and amylases are mentioned in this chapter. In addition, pectinolytic, lignocellulolytic, and oil-related (lipase and esterase) enzymes produced by these microorganisms are presented, focusing on yeast isolation, screening for enzyme producers, and purification and characterization of specific cold-active enzymes. The near future should find us discussing the regulation of the use of Antarctic yeast as a source of cold enzymes, and once this point is clarified and approved by the international forums on Antarctic activities regulation, the development and scaling up of these biological products may be addressed.


Cold enzymes Yeasts Antarctica Psychrophilic Psychrotrophic 


  1. Adapa V, Ramya LN, Pulicherla KK et al (2014) Cold active pectinases: advancing the food industry to the next generation. Appl Biochem Biotechnol 172:2324–2337CrossRefGoogle Scholar
  2. Aislabie J, Fraser R, Duncan S et al (2001) Effects of oil spills on microbial heterotrophs in Antarctic soils. Polar Biol 24:308–313CrossRefGoogle Scholar
  3. Bradner JR, Gillings M, Nevalainen KMH (1999) Qualitative assessment of hydrolytic activities in antarctic microfungi grown at different temperatures on solid media. World J Microbiol Biotechnol 15:131–132CrossRefGoogle Scholar
  4. Budsberg E, Crawford JT, Morgan H et al (2016) Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment. Biotechnol Biofuels 9:170CrossRefGoogle Scholar
  5. Buzzini P, Branda E, Goretti M et al (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241CrossRefGoogle Scholar
  6. Carrasco M, Rozas JM, Barahona S et al (2012) Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region. BMC Microbiol 12:1CrossRefGoogle Scholar
  7. Cavicchioli R, Charlton T, Ertan H et al (2011) Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4:449–460CrossRefGoogle Scholar
  8. De Maayer P, Anderson D, Cary C et al (2014) Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep 15:508–517CrossRefGoogle Scholar
  9. De Mot R, Verachtert H (1987) Purification and characterization of extracellular α-amylase and glucoamylase from the yeast Candida antarctica CBS 6678. Eur J Biochem 164:643–654CrossRefGoogle Scholar
  10. Duarte AWF, Dayo-Owoyemi I, Nobre FS et al (2013) Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Extremophiles 17:1023–1035CrossRefGoogle Scholar
  11. Duarte AWF, dos Santos JA, Vianna MV et al (2018) Cold-adapted enzymes produced by fungi from terrestrial and marine Antarctic environments. Crit Rev Biotechnol 38:600–619CrossRefGoogle Scholar
  12. Duncan SM, Minaki R, Farrell RL et al (2008) Screening fungi isolated from historic Discovery Hut on Ross Island, Antarctica for cellulose degradation. Antarct Sci 20:463–470CrossRefGoogle Scholar
  13. Erich S, Kuschel B, Schwarz T et al (2015) Novel High-performance metagenome β-galactosidases for lactose hydrolysis in the dairy industry. J Biotechnol 210:27–37CrossRefGoogle Scholar
  14. Feller G (2018) Protein folding at extreme temperatures: current issues. Semin Cell Dev Biol 84:129–137CrossRefGoogle Scholar
  15. Fenice M, Selbmann L, Zucconi L et al (1997) Production of extracellular enzymes by Antarctic fungal strains. Polar Biol 17:275–280CrossRefGoogle Scholar
  16. Fernández PM, Martorell MM, Blaser MG et al (2017) Phenol degradation and heavy metal tolerance of Antarctic yeasts. Extremophiles 21:445–457CrossRefGoogle Scholar
  17. Filler DM, Snape I, Barnes DL (2008) Bioremediation of petroleum hydrocarbons in cold regions. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  18. Gerday C, Aittaleb M, Bentahir M et al (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18:103–107CrossRefGoogle Scholar
  19. Gomes J, Gomes I, Steiner W (2000) Thermolabile xylanase of the Antarctic yeast Cryptococcus adeliae: production and properties. Extremophiles 4:227–235CrossRefGoogle Scholar
  20. Hashim NHF, Mahadi NM, Illias RM et al (2018) Biochemical and structural characterization of a novel cold-active esterase-like protein from the psychrophilic yeast Glaciozyma antarctica. Extremophiles 22:607–616CrossRefGoogle Scholar
  21. Jaeger K, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397CrossRefGoogle Scholar
  22. Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470CrossRefGoogle Scholar
  23. Javed A, Qazi JI (2016) Psychrophilic microbial enzymes implications in coming biotechnological processes. Am Sci Res J Eng Technol Sci 23:103–120Google Scholar
  24. Joshi S, Satyanarayana T (2013) Biotechnology of cold-active proteases. Biology 2:755–783CrossRefGoogle Scholar
  25. Karan R, Capes MD, DasSarma P et al (2013) Cloning, overexpression, purification, and characterization of a polyextremophilic β-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi. BMC Biotechnol 13:3. Scholar
  26. Krishnan A, Alias SA, Wong CM et al (2011) Extracellular hydrolase enzyme production by soil fungi from King George Island, Antarctica. Polar Biol 34:1535–1542CrossRefGoogle Scholar
  27. Kuddus M (2018) Cold-active enzymes in food biotechnology: an updated mini review. J Appl Biol Biotechnol 6:58–63CrossRefGoogle Scholar
  28. Kuddus M, Arif JM, Ramteke PW (2012) Structural adaptation and biocatalytic prospective of microbial cold-active-amylase. Afr J Microbiol Res 6:206–213Google Scholar
  29. Kuddus M, Roohi AJ, Ramteke PW (2011) An overview of cold-active microbial α-amylase: adaptation strategies and biotechnological potentials. Biotechnology 10:246–258CrossRefGoogle Scholar
  30. Lario LD, Chaud L, das Graças Almeida M et al (2015) Production, purification, and characterization of an extracellular acid protease from the marine Antarctic yeast Rhodotorula mucilaginosa L7. Fungal Biol 119:1129–1136CrossRefGoogle Scholar
  31. Margesin R (2000) Potential of cold-adapted microorganisms for bioremediation of oil-polluted Alpine soils. Int Biodeterior Biodegrad 46:3–10CrossRefGoogle Scholar
  32. Margesin R, Dieplinger H, Hofmann J et al (2005) A cold-active extracellular metalloprotease from Pedobacter cryoconitis-production and properties. Res Microbiol 156:499–505CrossRefGoogle Scholar
  33. Margesin R, Gander S, Zacke G et al (2003) Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles 7:451–458CrossRefGoogle Scholar
  34. Martorell MM, Ruberto LAM, Fernández PM et al (2017) Bioprospection of cold-adapted yeasts with biotechnological potential from Antarctica. J Basic Microbiol 57:504–516CrossRefGoogle Scholar
  35. Martorell MM, Ruberto LAM, Fernández PM, De Figueroa LIC, Mac Cormack WP (2019) Biodiversity and enzymes bioprospection of Antarctic filamentous fungi. Antarct Sci 31(1):3–12CrossRefGoogle Scholar
  36. Merín MG, Mendoza LM, Farías ME et al (2011) Isolation and selection of yeasts from wine grape ecosystem secreting cold-active pectinolytic activity. Int J Food Microbiol 147:144–148CrossRefGoogle Scholar
  37. Panda T, Gowrishankar BS (2005) Production and applications of esterases. Appl Microbiol Biotechnol 67:160–169CrossRefGoogle Scholar
  38. Ramli ANM, Azhar MA, Shamsir MS et al (2013) Sequence and structural investigation of a novel psychrophilic α-amylase from Glaciozyma antarctica PI12 for cold-adaptation analysis. J Mol Model 19:3369–3383CrossRefGoogle Scholar
  39. Ray MK, Devi KU, Kumar GS et al (1992) Extracellular protease from the Antarctic yeast Candida humicola. Appl Environ Microbiol 58:1918–1923PubMedPubMedCentralGoogle Scholar
  40. Rovati JI, Pajot HF, Ruberto L et al (2013) Polyphenolic substrates and dyes degradation by yeasts from 25 de Mayo/King George Island (Antarctica). Yeast 30:459–470CrossRefGoogle Scholar
  41. Ruisi S, Barreca D, Selbmann L et al (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6:127–141CrossRefGoogle Scholar
  42. Saini A, Aggarwal NK, Sharma A et al (2015) Actinomycetes: a source of lignocellulolytic enzymes. Enzym Res 2015. Scholar
  43. Santiago M, Ramírez-Sarmiento CA, Zamora RA et al (2016) Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Front Microbiol 7:1408PubMedPubMedCentralGoogle Scholar
  44. Sarmiento F, Peralta R, Blamey JM (2015) Cold and hot extremozymes: industrial relevance and current trends. Front Bioeng Biotechnol 3:148CrossRefGoogle Scholar
  45. Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433CrossRefGoogle Scholar
  46. Szczęsna-Antczak M, Kamińska J, Florczak T et al (2014) Cold-active yeast lipases: recent issues and future prospects. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts. Springer, Berlin, Heidelberg, pp 353–375CrossRefGoogle Scholar
  47. Troncoso E, Barahona S, Carrasco M et al (2017) Identification and characterization of yeasts isolated from the South Shetland Islands and the Antarctic Peninsula. Polar Biol 40:649–658CrossRefGoogle Scholar
  48. Turkiewicz M, Pazgier M, Kalinowska H et al (2003) A cold-adapted extracellular serine proteinase of the yeast Leucosporidium antarcticum. Extremophiles 7:435–442CrossRefGoogle Scholar
  49. Vaca I, Faúndez C, Maza F et al (2013) Cultivable psychrotolerant yeasts associated with Antarctic marine sponges. World J Microbiol Biotechnol 29:183–189CrossRefGoogle Scholar
  50. Vaz ABM, Rosa LH, Vieira ML et al (2011) The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz J Microbiol 43:937–947CrossRefGoogle Scholar
  51. Villamizar-Lamus F (2015) Bioprospección antártica: hacia una institucionalidad jurídica sui géneris? Vniversitas 64(130):309–346CrossRefGoogle Scholar
  52. Welander U (2005) Microbial degradation of organic pollutants in soil in a cold climate. Soil Sediment Contam 14:281–291CrossRefGoogle Scholar
  53. Yang JK, Liu LJ, Dai JH et al (2013) De novo design and synthesis of Candida antarctica lipase B gene and a-factor leads to high-level expression in Pichia pastoris. PLoS One 8:e53939CrossRefGoogle Scholar
  54. Yarzábal LA (2016) Antarctic psychrophilic microorganisms and biotechnology: history, current trends, applications, and challenges. In: Castro-Sowinski S (ed) Microbial models: from environmental to industrial sustainability. Springer, Singapore, pp 83–118CrossRefGoogle Scholar
  55. Yergeau E, Kowalchuk GA (2008) Responses of Antarctic soil microbial communities and associated functions to temperature and freeze–thaw cycle frequency. Environ Microbiol 10:2223–2235CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Maria Martha Martorell
    • 1
    • 2
  • Lucas Adolfo Mauro Ruberto
    • 1
    • 2
    • 3
  • Lucía Inés Castellanos de Figueroa
    • 4
    • 5
  • Walter Patricio Mac Cormack
    • 1
    • 2
  1. 1.Instituto Antártico Argentino (IAA)Buenos AiresArgentina
  2. 2.Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
  3. 3.Instituto de Nanobiotecnología (NANOBIOTEC-UBA-CONICET)Ciudad Autónoma de Buenos AiresArgentina
  4. 4.Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET)San Miguel de TucumánArgentina
  5. 5.Universidad Nacional de Tucumán (UNT)San Miguel de TucumánArgentina

Personalised recommendations