Advertisement

Agrotechnology as Key Factor in Effective Use of Water on Arable Land

  • J. BernasEmail author
  • P. Konvalina
  • J. Brom
  • J. Moudrý
  • T. Veselá
  • D. Bucur
  • M. Dirja
  • S. Shim
Chapter
Part of the Springer Water book series (SPWA)

Abstract

It is indisputable that water is necessary for the food production. Demand for good-quality food puts pressure on the agricultural production. On the other hand, a lack of fresh water has become a serious problem. Southern Europe faces this problem in particular nowadays. One-third of water is consumed in the agricultural sector in Europe (plant production in particular). Agriculture influences the amount of water available, and the quality of water is tightly connected with the intensity of farming and use of crop protection agents and fertilizers. Such a bad fresh water situation in the agriculture will improve or stabilize, if water is used more efficiently (e.g. irrigation) or it is retained in the agricultural land. Suitable agricultural interventions must be made. Climate change has also provoked worse availability and accessibility of water. Water development scenarios, distribution and frequency of precipitation predict the amount of fresh water to be reduced in Europe, and they also predict changes in freshwater distribution from the place and time points of view. If suitable agrotechnological techniques are adopted, and socio-political solutions are supported, water situation will improve significantly, and it will be used more efficiently in the agriculture. More water will be available for the agricultural production, and more water will be kept for the whole agroecosystem.

Keywords

Agriculture Water Soil Conservation tillage Retention Central Europe 

Notes

Acknowledgement

Proposed text was supported by project of Technological Agency of the Czech Republic, Programe Epsilon TH02030133 “Agriculture management system integrating efficient nutrients utilization by crops and water conservation against non-point source pollution” and by the University of South Bohemia in Ceske Budejovice research project GAJU 059/2019/Z.

References

  1. 1.
    McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds) (2001) Climate change 2001: impacts, adaptation, and vulnerability: contribution of Working Group II to the third assessment report of the intergovernmental panel on climate change, vol 2. Cambridge University PressGoogle Scholar
  2. 2.
    Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Dubash NK (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, p 151Google Scholar
  3. 3.
    Stocker T (ed) (2014) Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University PressGoogle Scholar
  4. 4.
    Cílek V, Just T, Sůvová Z et al (2017) Voda a krajina: kniha o životě s vodou a návratu k přirozené krajině. Ilustroval Marie KOHOUTOVÁ. Praha: Dokořán, ISBN 978-80-7363-837-5Google Scholar
  5. 5.
    Bindi M, Olesen JE (2011) The responses of agriculture in Europe to climate change. Reg Environ Change 11(1):151–158CrossRefGoogle Scholar
  6. 6.
    Falloon P, Betts R (2010) Climate impacts on European agriculture and water management in the context of adaptation and mitigation—the importance of an integrated approach. Sci Total Environ 408(23):5667–5687CrossRefGoogle Scholar
  7. 7.
    Alcamo J, Flörke M, Märker M (2007) Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrol Sci J 52(2):247–275CrossRefGoogle Scholar
  8. 8.
    Change C, Core Writing Team, Pachauri, RK, Reisinger (2007) A. IPCC, Gene Switzerland, p 104Google Scholar
  9. 9.
    Nakicenovic N, Alcamo J, Grubler A, Riahi K, Roehrl RA, Rogner HH, Victor N (2000) Special report on emissions scenarios (SRES), a special report of Working Group III of the intergovernmental panel on climate change. Cambridge University PressGoogle Scholar
  10. 10.
    Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held R, Jones R, Kolli RK, Kwon WK, Laprise R, Magana Rueda V, Mearns L, Menendez CG, Räisänen J, Rinke A, Sarr A, Whetton P, Arritt R, Benestad R, Beniston M, Bromwich D, Caya D, Comiso J, De Elia R, Dethloff K (2007) Regional climate projections, climate change, 2007: the physical science basis. Contribution of Working group I to the fourth assessment report of the intergovernmental panel on climate change. University Press, Cambridge, ISBN: 978-0-521-88009-1Google Scholar
  11. 11.
    Audsley E, Trnka M, Sabaté S, Maspons J, Sanchez A, Sandars D, Pearn K (2015) Interactively modelling land profitability to estimate European agricultural and forest land use under future scenarios of climate, socio-economics and adaptation. Clim Change 128(3–4):215–227CrossRefGoogle Scholar
  12. 12.
    Pereira LS (2017) Water, agriculture and food: challenges and issues. Water Resour Manage 31(10):2985–2999CrossRefGoogle Scholar
  13. 13.
    Schröter D, Cramer W, Leemans R, Prentice CI, Araújo MB, Arnell NW, Anne C (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333.  https://doi.org/10.1126/science.1115233CrossRefGoogle Scholar
  14. 14.
    Wille H, Lernoud J (2016) The world of organic agriculture. Statistics and emerging trends 2016. Research Institute of Organic Agriculture FiBL and IFOAM Organics International, pp 1–336Google Scholar
  15. 15.
    Baumann RA, Hooijboer AEJ, Vrijhoef A, Fraters B, Kotte M, Daatselaar CHG, Bosma JN (2012) Agricultural practice and water quality in the Netherlands in the period 1992–2010Google Scholar
  16. 16.
    Herzog F, Steiner B, Bailey D, Baudry J, Billeter R, Bukácek R, De Filippi R (2006) Assessing the intensity of temperate European agriculture at the landscape scale. Eur J Agron 24(2):165–181CrossRefGoogle Scholar
  17. 17.
    Tockner K, Uehlinger U, Robinson CT (2009) Rivers of Europe. Academic Press, 699 p. ISBN: 13:987-0-12-369449-2Google Scholar
  18. 18.
    Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision, vol 12, no 3. ESA Working paper, FAO, RomeGoogle Scholar
  19. 19.
    EEA (2012) Water for agriculture. European Environment Agency, Copenhagen, Denmark, 6 pGoogle Scholar
  20. 20.
    Iglesias A, Garrote L (2015) Adaptation strategies for agricultural water management under climate change in Europe. Agric Water Manag 155:113–124CrossRefGoogle Scholar
  21. 21.
    Beranová M, Kubačák A (2010) Dějiny zemědělství v Čechách a na Moravě. Nakl. Libri. ISBN 978-80-7277-113-4Google Scholar
  22. 22.
    Barker G (2009) The agricultural revolution in prehistory: why did foragers become farmers? Oxford University Press on Demand, 598 p. ISBN 0-19-928109-2Google Scholar
  23. 23.
    Šarapatka B, Niggli U, Čížková S, Dytrtová K, Fišer B, Hluchý M, Just T, Kučera P, Kuras T, Lyth P, Potočiarová E, Salaš P et al (2008) Zemědělství a krajina—cesty k vzájemnému souladu. Univerzita Palackého v Olomouci, Olomouc, p 271Google Scholar
  24. 24.
    Foley JA, Monfreda C, Ramankutty N, Zaks D (2007) Our share of the planetary pie. Proc Natl Acad Sci 104(31):12585–12586CrossRefGoogle Scholar
  25. 25.
    Lutz C, Sanderson WC, Scherbov S (2013) The end of world population growth in 21st century. Routledge, New York, USA, p 335Google Scholar
  26. 26.
    Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM (2011) Solutions for a cultivated planet. Nature 478:337–342CrossRefGoogle Scholar
  27. 27.
    Jílková J (2003) Daně, dotace a obchodovatelná povolení-nástroje ochrany ovzduší a klimatu. IREAS, Praha, p 156Google Scholar
  28. 28.
    Reid VW, Mooney HA, Cropper A, Capistrano D, Carpenter SR, Chopra K, Dasgupta P, Dietz T, Duraiappah KA, Hassan R, Kasperson R, Leemans R, May RM, Mcmichael T(Aj), Pingali P, Samper C, Scholes R, Watson RT, Zakri AH, Shidong Z, Ash NJ, Bennett E, Kumar P, Lee MJ, Raudsepp-Hearne C, Simons H, Thonell J, Zurek MB (2005) Ekosystémy a lidský blahobyt, Syntéza, Zpráva hodnocení ekosystémů k miléniu, Přeloženo z publikace. Millennium ecosystem assessment ecosystems and human well-being: synthesis, Praha, ISBN: 80-239-6300-7Google Scholar
  29. 29.
    Liess M, Schulz R, Berenzen N, Nanko-Drees J, Wogram J (2001) Pflanzenschutzmittel-Belastung und Lebensgemeinschaften in Fließgewässern mit landwirtschaftlich genutztem Umland. Texte, 65, 2001. Technische Universität Braunschweig, Berlin, Germany, 226 pGoogle Scholar
  30. 30.
    Moravcová J, Koupilová M, Váchal J, Váchalová R, Pártlová P, Krejča M, Straková J (2008) Vliv zemědělského využití území na jakost vody v důsledku extrémních srážko-odtokových jevů. Littera Scripta 1(2):147–160Google Scholar
  31. 31.
    Kvítek T, Tippl M (2003) Ochrana povrchových vod před dusičnany z vodní eroze a hlavní zásady protierozní ochrany v krajině. Ústav zemědělských a potravinářských informací, Praha, p 47Google Scholar
  32. 32.
    Šimek M (2003) Základy nauky o půdě 3. Biologické procesy a cykly prvků. Jihočeská univerzita v Českých Budějovicích, České Budějovice, 151 pGoogle Scholar
  33. 33.
    Moudrý jr, J, Moudrý J (2014) Environmental aspects of organic farming. in organic agriculture towards sustainability. InTech.  https://doi.org/10.5772/58298Google Scholar
  34. 34.
    Moudrý J, Bernas J, Konvalina P, Ujj A, Manolov I, Stoeva A, Rembiałkowska E, Stalenga J, Toncea I, Fitiu A, Bucur D, Lacko-Bartošová M, Macák M (2018) Agroecology development in Eastern Europe—Cases in Czech Republic, Bulgaria, Hungary, Poland, Romania, and Slovakia. Sustainability (2071-1050) 10(5)CrossRefGoogle Scholar
  35. 35.
    Šarapatka B, Abrahamova M, Cizkova S, Dotlacil L, Hluchy M, Kren J, Pokorny J (2010) Agroekologie: východiska pro udržitelné zemědělské hospodaření. Bioinstitut. Olomouc, Czech Republic, p 440. ISBN: 978-80-87371-10-7Google Scholar
  36. 36.
    Gliessman SR (2014) Agroecology: the ecology of sustainable food systems, 3rd edn. CRC press, Florida, USA, p 405, ISBN 9781439895610CrossRefGoogle Scholar
  37. 37.
    Altieri MA (2018) Agroecology: the science of sustainable agriculture. CRC PressGoogle Scholar
  38. 38.
    Migliorini P, Galioto F, Chiorri M, Vazzana C (2018) An integrated sustainability score based on agro-ecological and socioeconomic indicators. A case study of stockless organic farming in Italy. Agroecology Sustain Food Syst 1–26Google Scholar
  39. 39.
    Moudry J, Konvalina P, Kalinova J (2007) Základní principy ekologického zemědělství. Jihočeská univerzita v Českých Budějovicích, Zemědělská fakulta, 40 pGoogle Scholar
  40. 40.
    Brady NC, Weil RR (2002) The nature and properties of soils, 13th edn. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  41. 41.
    Pielke RA Sr (2001) Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev Geophy 39(2):151–177. ISSN 8755-1209. Dostupné z:  https://doi.org/10.1029/1999rg000072CrossRefGoogle Scholar
  42. 42.
    Ripl W (2003) Water: the bloodstream of the biosphere. Philos Trans R Soc B Biol Sci [online] 358(1440):1921–1934. ISSN 0962-8436. Dostupné z:  https://doi.org/10.1098/rstb.2003.1378CrossRefGoogle Scholar
  43. 43.
    Ripl W (1995) Management of water cycle and energy flow for ecosystem control: the energy-transport-reaction (ETR) model. Ecol Model [online] 78(1–2):61–76. ISSN 03043800. Dostupné z:  https://doi.org/10.1016/0304-3800(94)00118-2CrossRefGoogle Scholar
  44. 44.
    Kedziora A, Olejnik J (2002) Water balance in agricultural landscape and options for its management by change in plant cover structure of landscape. In: Ryszkowski L (ed) Landscape ecology in agroecosystems management. CRC Press, Boca Raton, London, pp 57–110Google Scholar
  45. 45.
    Makarieva AM, Gorshkov VG (2006) Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrol Earth Syst Sci Dis 3(4):2621–2673CrossRefGoogle Scholar
  46. 46.
    Makarieva AM, Gorshkov VG (2010) The biotic pump: condensation, atmospheric dynamics and climate. Int J Water [online] 5(4):365. ISSN 1465-6620. Dostupné z:  https://doi.org/10.1504/ijw.2010.038729CrossRefGoogle Scholar
  47. 47.
    Makarieva AM, Gorshkov VG, Li BL (2006) Conservation of water cycle on land via restoration of natural closed-canopy forests: implications for regional landscape planning. Ecol Res 21(6):897–906. ISSN 0912-3814. Dostupné z:  https://doi.org/10.1007/s11284-006-0036-6CrossRefGoogle Scholar
  48. 48.
    Avissar R, Weaver CP, Werth D, Pielke RA, Rabin, R, Pitman AJ, Dias MAS (2004) The regional climate. In: Vegetation, water, humans and the climate. Springer, Berlin, Heidelberg, pp 21–32CrossRefGoogle Scholar
  49. 49.
    Jackson RB, Randerson JT, Canadell JG, Anderson RG, Avissar R, Baldocchi DD, Bonan GB, Noah KC, Diffenbaugh S, Field ChB, Hungate BA, Jobbágy EG, Kueppers LM, Nosetto MD, Diane A, Pataki E (2008) Protecting climate with forests. Environ Res Lett [online] 3(4):044006. ISSN 1748-9326. Dostupné z:  https://doi.org/10.1088/1748-9326/3/4/044006CrossRefGoogle Scholar
  50. 50.
    Pielke RA, Pitman A, Niyogi D, Mahmood R, Mcalpine C, Hossain F, Goldewijk KK, Nair U, Betts R, Fall S, Reichstein M, Kabat P, De Noblet AN (2011) Land use/land cover changes and climate: modeling analysis and observational evidence. Wiley Interdisc Rev Clim Change [online] 2(6):828–850. ISSN 17577780. Dostupné z:  https://doi.org/10.1002/wcc.144Google Scholar
  51. 51.
    Pielke RA Sr, Adegoke J, BeltraáN-Przekurat A, Hiemstra CA, Lin J, Nair US, Nobis TE (2007) An overview of regional land-use and land-cover impacts on rainfall. Tellus B Chem Phys Meteorol 59(3):587–601. ISSN 0280-6509. Dostupné z:  https://doi.org/10.1111/j.1600-0889.2007.00251.xCrossRefGoogle Scholar
  52. 52.
    Pokorny J, Brom J, Cermak J, Hesslerova P, Huryna H, Nadezhdina N, Rejskova A (2010) Solar energy dissipation and temperature control by water and plants. Int J Water 5(4):311–336. ISSN 1465–6620. Dostupné z:  https://doi.org/10.1504/ijw.2010.038726CrossRefGoogle Scholar
  53. 53.
    Pokorný J, Rejšková A (2008) Water cycle management. Ecol Eng 5:3729–3737Google Scholar
  54. 54.
    Tuller MD Or (2005) Water retention and soil water characteristics curve. In: Encyclopedia of soils in the environment, pp 278–284CrossRefGoogle Scholar
  55. 55.
    Kirkham MB (2005) Principles of soil and plant water relations. Elsevier Academic Press, Amsterdam; New York. ISBN 978-0-12-409751-3Google Scholar
  56. 56.
    Kutílek M, Nielsen DR (1994) Soil hydrology: textbook for students of soil science, agriculture, forestry, geoecology, hydrology, geomorphology or other related disciplines. Cremlingen-Destedt: Catena-Verl. GeoEcology textbook. ISBN 978-3-923381-26-5Google Scholar
  57. 57.
    Jiao J, Su D, Han L, Wang Y (2016) A rainfall interception model for alfalfa canopy under simulated sprinkler irrigation. Water 8(12):585. ISSN 2073-4441. Dostupné z:  https://doi.org/10.3390/w8120585CrossRefGoogle Scholar
  58. 58.
    Lamm FR, Manges HL (2000) Partitioning of sprinkler irrigation water by a corn canopy. Trans ASAE 43(4):909CrossRefGoogle Scholar
  59. 59.
    Roth BE, Slatton KC, Cohen MJ (2007) On the potential for high—resolution lidar to improve rainfall interception estimates in forest ecosystems. Front Ecol Environ 5(8):421–428. ISSN 1540-9295. Dostupné z:  https://doi.org/10.1890/060119.1CrossRefGoogle Scholar
  60. 60.
    Carlyle-Moses DE, Gash JHC (2011) Rainfall interception loss by forest canopies. In: Levia DF, Carlyle-Moses D, Tanaka T (eds) Forest hydrology and biogeochemistry [online]. Springer Netherlands, Dordrecht, pp 407–423 [vid. 2018-07-11]. ISBN 978-94-007-1362-8. Dostupné z:  https://doi.org/10.1007/978-94-007-1363-5_20CrossRefGoogle Scholar
  61. 61.
    Kvítek T, Šefrna L, KB, Březina Brom J, Duffková R (2017) Infiltrační oblasti a jejich vliv na vodní režim malých povodí. In: Kvítek T (ed) Retence a jakost vody v povodí vodárenské nádrže Švihov na Želivce. Význam retence vody na zemědělském půdním fondu pro jakost vody a současně i průvodce vodním režimem krystalinika. Praha: Povodí Vltavy, státní podnik, pp 119–130. ISBN 978-80-270-2488-9Google Scholar
  62. 62.
    Kvítek T, Bílková A, Duffková R, Fučík P, Lexa M, Novák P, Voldřichová AJ (2004) Zásady managementu využívání zón diferencované ochrany trvalými travními porosty v povodí vodárenských nádrží. VÚMOP, v.v.i, Praha. ISBN 978-80-239-3136-5Google Scholar
  63. 63.
    Duffková R, Brom J, Žížala D, Zemek F, Procházka J, Nováková E, Zajíček A, Kvítek T (2012) Určení infiltračních oblastí pomocí vodního stresu vegetace na základě dálkového průzkumu Země a pozemních měření. Certifikovaná metodika. Praha: VÚMOP, v.v.i. ISBN 978-80-87361-15-3Google Scholar
  64. 64.
    Franzluebbers AJ (2002) Water infiltration and soil structure related to organic matter and its stratification with depth. Soil Tillage Res [online] 66(2):97–205. ISSN 01671987. Dostupné z:  https://doi.org/10.1016/s0167-1987(02)00027-2CrossRefGoogle Scholar
  65. 65.
    Rawls WJ, Pachepsky YA, Ritchie JC, Sobecki TM, Bloodworth H (2003) Effect of soil organic carbon on soil water retention. Geoderma 116(1–2):61–76. ISSN 00167061. Dostupné z:  https://doi.org/10.1016/s0016-7061(03)00094-6CrossRefGoogle Scholar
  66. 66.
    Dunne T, Zhang W, Aubry BF (1991) Effects of rainfall, vegetation, and microtopography on infiltration and runoff. Water Resour Res [online] 27(9):2271–2285. ISSN 00431397. Dostupné z:  https://doi.org/10.1029/91wr01585CrossRefGoogle Scholar
  67. 67.
    Römkens MJM, Helming K, Prasad ASN (2002) Soil erosion under different rainfall intensities, surface roughness, and soil water regimes. CATENA [online] 46(2–3):103–123. ISSN 03418162. Dostupné z:  https://doi.org/10.1016/s0341-8162(01)00161-8CrossRefGoogle Scholar
  68. 68.
    Strudley MW, Green TR, Ascough II JC (2008) Tillage effects on soil hydraulic properties in space and time: state of the science. Soil Tillage Res 99(1):4–48. ISSN 01671987. Dostupné z:  https://doi.org/10.1016/j.still.2008.01.007CrossRefGoogle Scholar
  69. 69.
    Edmeades DC (2003) The long-term effects of manures and fertilisers on soil productivity and quality: a review. Nutr Cycl Agroecosyst 66(2):165–180CrossRefGoogle Scholar
  70. 70.
    Blouin M, Hodson ME, Delgado EA, Baker G, Brussaard L, Butt KR, Cluzeau D (2013) A review of earthworm impact on soil function and ecosystem services. Eur J Soil Sci 64(2):161–182. ISSN 13510754. Dostupné z:  https://doi.org/10.1111/ejss.12025CrossRefGoogle Scholar
  71. 71.
    Hammel JE, Papendick RI, Campbell GS (1981) Fallow tillage effects on evaporation and seedzone water content in a dry summer climate. Soil Sci Soc Am J 45(6):1016–1022. ISSN 0361-5995. Dostupné z:  https://doi.org/10.2136/sssaj1981.03615995004500060003xCrossRefGoogle Scholar
  72. 72.
    Schwartz RC, Baumhardt RL, Evett SR (2010) Tillage effects on soil water redistribution and bare soil evaporation throughout a season. Soil Tillage Res 110(2):221–229. ISSN 01671987. Dostupné z:  https://doi.org/10.1016/j.still.2010.07.015CrossRefGoogle Scholar
  73. 73.
    Balesdent J, Mariotti A, Boisgontier D (1990) Effect of tillage on soil organic carbon mineralization estimated from 13C abundance in maize fields. J Soil Sci 41(4):587–596CrossRefGoogle Scholar
  74. 74.
    Bot A, Benites J (2005) The importance of soil organic matter: key to drought-resistant soil and sustained food production (No. 80). Food and Agriculture Organization of the United Nations. FAO soils bulletin, 80. ISBN 978-92-5-105366-9Google Scholar
  75. 75.
    Gyssels G, Poesen J, Bochet E, Li Y (2005) Impact of plant roots on the resistance of soils to erosion by water: a review. Prog Phys Geogr 29(2):189–217. ISSN 0309-1333, 1477-0296. Dostupné z:  https://doi.org/10.1191/0309133305pp443raCrossRefGoogle Scholar
  76. 76.
    Zuazo VHD, Pleguezuelo CRR (2009) Soil-erosion and runoff prevention by plant covers: a review. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C (eds) Sustainable agriculture [online]. Springer Netherlands, Dordrecht, pp 785–811 [vid. 2018-07-31]. ISBN 978-90-481-2665-1. Dostupné z:  https://doi.org/10.1007/978-90-481-2666-8_48CrossRefGoogle Scholar
  77. 77.
    Nadezhdina N, Steppe K, De Pauw DJ, Bequet R, Čermak J, Ceulemans R (2009) Stem‐mediated hydraulic redistribution in large roots on opposing sides of a Douglas‐fir tree following localized irrigation. New Phytol 184(4):932–943. ISSN 0028646X. Dostupné z:  https://doi.org/10.1111/j.1469-8137.2009.03024.xCrossRefGoogle Scholar
  78. 78.
    ČUZK (2013) Souhrnné přehledy o půdním fondu z údajů Katastru nemovitostí České republiky. Český úřad zeměměřičský a katastrální, PrahaGoogle Scholar
  79. 79.
    Havel P (2011) Nevhodná struktura plodin se prohlubuje—co s tím? Asociace soukromého zemědělství ČR [online] [vid. 2013-05-21]. Dostupné z: http://www.asz.cz/cs/aktualne-z-asz/nevhodna-struktura-plodin-se-prohlubuje-co-s-tim.html
  80. 80.
    Škoda V (2001) Význam osevních postupů v současné době. Úroda [online] [vid. 2013-05-21]. Dostupné z: http://www.uroda.cz/@AGRO/informacni-servis/Vyznam-osevnich-postupu-v-soucasne-dobe__s457x10585.html
  81. 81.
    Le Bissonnais YL (1996) Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur J Soil Sci 47(4):425–437. ISSN 13510754. Dostupné z:  https://doi.org/10.1111/j.1365-2389.1996.tb01843.xCrossRefGoogle Scholar
  82. 82.
    Bünemann EK, Schwenke GD, Van Zwieten L (2006) Impact of agricultural inputs on soil organisms—a review. Soil Res 44(4):379–406. ISSN 0004-9573. Dostupné z:  https://doi.org/10.1071/sr05125
  83. 83.
    ČSÚ (2013) Zemědělství - časové řady. Český statistický úřad, Praha. Český statistický úřad, Praha [online] [vid. 2013-05-21]. Dostupné z: http://www.czso.cz/csu/redakce.nsf/i/zem_cr
  84. 84.
    ČUZK (2012) Souhrnné přehledy o půdním fondu z údajů Katastru nemovitostí České republiky. Český úřad zeměměřičský a katastrální, PrahaGoogle Scholar
  85. 85.
    ČUZK (2011) Souhrnné přehledy o půdním fondu z údajů Katastru nemovitostí České republiky. Český úřad zeměměřičský a katastrální, PrahaGoogle Scholar
  86. 86.
    ČUZK (2010) Souhrnné přehledy o půdním fondu z údajů Katastru nemovitostí České republiky. Český úřad zeměměřičský a katastrální, PrahaGoogle Scholar
  87. 87.
    Stibinger J, Kulhavý AZ (2010) Úpravy vodního režimu půd odvodněním. Monografie, uživatelský výstup projektu 2B06022. Praha: Česká zemědělská univerzita v Praze, Výzkumný ústav meliorací a ochrany půdy, v.v.i. ISBN 978-80-213-2132-8Google Scholar
  88. 88.
    Vašků Z (2011) Zlo zvané meliorace. Vesmír 90(7–8):440–444Google Scholar
  89. 89.
    Tlapák V, Šálek J, Legát V (1992) Voda v zemědělské krajině. Brázda, Ministerstvo životního prostředí České republiky, Praha. ISBN 80-209-0232-5Google Scholar
  90. 90.
    Chloupek O, Hrstková P, Schweigert P (2004) Yield and its stability, crop diversity, adaptability and response to climate change, weather and fertilisation over 75 years in the Czech Republic in comparison to some European countries. Field Crops Res 85(2–3):167–190CrossRefGoogle Scholar
  91. 91.
    Brovkina O, Zemek F, Novotný J, Heřman M, Štěpánek P (2017) Analysing changes in land cover in relation to environmental factors in the districts of Znojmo and Třebíč (Czech Republic). Eur J Environ Sci 7(2):108–118CrossRefGoogle Scholar
  92. 92.
    Střeštík J (2013) Character of precipitation during the last 200 years in Prague Klementinum and their impact on water management in the landscape. In: Rožnovský J, Litschmann T, Středová H, Středa T (eds) Voda, půda a rostliny. Křtiny, 29. 30.5. 2013, ISBN 978-80-87577-17-2Google Scholar
  93. 93.
    Trnka M, Brazdil R, Balek J, Semerádová D, Hlavinka P et al (2015) Drivers of the soil moisture trends in the Czech Republic between 1961 and 2012. In: Trnka M, Hayes MT (eds) Evaluation of drought impacts through interdisciplinary methods. Global Change Research Centre AS CRGoogle Scholar
  94. 94.
    Štolbová M et al (2008) Eligibility criteria for less-favoured areas payments in the EU countries and the position of the czech republic. ZEMEDELSKA EKONOMIKA-PRAHA 54(4):166Google Scholar
  95. 95.
    Eitzinger J, Trnka M, Semerádová D, Thaler S, Svobodová E, Hlavinka P, Dubrovský M (2013) Regional climate change impacts on agricultural crop production in Central and Eastern Europe–hotspots, regional differences and common trends. J Agric Sci 151(6):787–812CrossRefGoogle Scholar
  96. 96.
    Übelhör A, Gruber S, Claupein W (2014) Influence of tillage intensity and nitrogen placement on nitrogen uptake and yield in strip-tilled white cabbage (Brassica oleracea convar. capitata var. alba). Soil Tillage Res 144:156–163CrossRefGoogle Scholar
  97. 97.
    Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55(407):2447–2460CrossRefGoogle Scholar
  98. 98.
    Rosenthal WD, Kanemasu ET, Raney RJ, Stone LR (1977) Evaluation of an evapotranspiration model for corn 1. Agron J 69(3):461–464CrossRefGoogle Scholar
  99. 99.
    Zhang X, Chen S, Liu M, Pei D, Sun H (2005) Improved water use efficiency associated with cultivars and agronomic management in the North China Plain. Agron J 97(3):783–790CrossRefGoogle Scholar
  100. 100.
    Katerji N, Mastrorilli M, Rana G (2008) Water use efficiency of crops cultivated in the Mediterranean region: review and analysis. Eur J Agron 28(4):493–507CrossRefGoogle Scholar
  101. 101.
    Vadez V, Kholová J, Medina S, Kakkera A, Anderberg H (2014) Transpiration efficiency: new insights into an old story. J Exp Bot 65(21):6141–6153CrossRefGoogle Scholar
  102. 102.
    Kang S, Hu X, Du T, Zhang J, Jerie P (2003) Transpiration coefficient and ratio of transpiration to evapotranspiration of pear tree (Pyrus communis L.) under alternative partial root-zone drying conditions. Hydrol Process 17(6):1165–1176CrossRefGoogle Scholar
  103. 103.
    Martin B, Ruiz-Torres NA (1992) Effects of water-deficit stress on photosynthesis, its components and component limitations, and on water use efficiency in wheat (Triticum aestivum L.). Plant Physiol 100(2):733–739CrossRefGoogle Scholar
  104. 104.
    Davies WJ, Wilkinson S, Loveys B (2002) Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture. New Phytol 153(3):449–460CrossRefGoogle Scholar
  105. 105.
    Hamdy A, Ragab R, Scarascia-Mugnozza E (2003) Coping with water scarcity: water saving and increasing water productivity. Irrig Drainage 52(1):3–20CrossRefGoogle Scholar
  106. 106.
    Comstock JP, McCouch SR, Martin BC, Tauer CG, Vision TJ, Xu Y, Pausch RC (2005) The effects of resource availability and environmental conditions on genetic rankings for carbon isotope discrimination during growth in tomato and rice. Funct Plant Biol 32(12):1089–1105CrossRefGoogle Scholar
  107. 107.
    Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, vol 300, no 9. Fao, Rome, p D05109Google Scholar
  108. 108.
    Araus JL, Villegas D, Aparicio N, Del Moral LF, El Hani S, Rharrabti Y, Ferrio JP, Royo C (2003) Environmental factors determining carbon isotope discrimination and yield in durum wheat under Mediterranean conditions. Crop Sci 43(1):170–180CrossRefGoogle Scholar
  109. 109.
    Siddique KHM, Regan KL, Tennant D, Thomson BD (2001) Water use and water use efficiency of cool season grain legumes in low rainfall Mediterranean-type environments. Eur J Agron 15(4):267–280CrossRefGoogle Scholar
  110. 110.
    Pierce FJ, Fortin MC, Staton MJ (1992) Immediate and residual effects of zone-tillage in rotation with no-tillage on soil physical properties and corn performance. Soil Tillage Res 24(2):149–165CrossRefGoogle Scholar
  111. 111.
    Wang LF, Shangguan ZP (2015) Water–use efficiency of dryland wheat in response to mulching and tillage practices on the Loess Plateau. Sci Rep 5:12225CrossRefGoogle Scholar
  112. 112.
    Pala M, Ryan J, Zhang H, Singh M, Harris HC (2007) Water-use efficiency of wheat-based rotation systems in a Mediterranean environment. Agric Water Manage 93(3):136–144CrossRefGoogle Scholar
  113. 113.
    Doorenbos J, Pruitt WO (1977) Crop water requirement: food and agriculture organization of the United Nations. FAO Irrigation and Drainage Paper 24, revised 1977, RomeGoogle Scholar
  114. 114.
    Boland AM, Mitchell PD, Jerie PH, Goodwin I (1993) The effect of regulated deficit irrigation on tree water use and growth of peach. J Hortic Sci 68(2):261–274CrossRefGoogle Scholar
  115. 115.
    Hůla J, Procházková B (2008) Minimalizace zpracování půdy. Profi Press, p 248. ISBN: 978-80-86726-28-1Google Scholar
  116. 116.
    Altieri MA (2002) Agroecology: the science of natural resource management for poor farmers in marginal environments. Agr Ecosyst Environ 93(1–3):1–24CrossRefGoogle Scholar
  117. 117.
    Wezel A, Goette J, Lagneaux E, Passuello G, Reisman E, Rodier C, Turpin G (2018) Agroecology in Europe: Research, education, collective action networks, and alternative food systems. Sustainability 10(4):1214CrossRefGoogle Scholar
  118. 118.
    Kvítek T (2005) Uplatnění systému alternativního managementu ochrany půdy a vody v krajině. VÚMOP, Praha, 90 p. ISBN: 80-239-5350-8Google Scholar
  119. 119.
    Gordon AM, Newman SM, Coleman B (eds) (2018) Temperate agroforestry systems. CABI, Wallingford, U. KGoogle Scholar
  120. 120.
    Hill RL, Horton R, Cruse RM (1985) Tillage effects on soil water retention and pore size distribution of two mollisols 1. Soil Sci Soc Am J 49(5):1264–1270CrossRefGoogle Scholar
  121. 121.
    Lipiec J, Kuś J, Słowińska-Jurkiewicz A, Nosalewicz A (2006) Soil porosity and water infiltration as influenced by tillage methods. Soil Tillage Res 89(2):210–220CrossRefGoogle Scholar
  122. 122.
    Lal R (2017) Soil erosion by wind and water: problems and prospects. In: Soil erosion research methods. Routledge, pp 1–10Google Scholar
  123. 123.
    Holland JM (2004) The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric Ecosyst Environ 103(1):1–25CrossRefGoogle Scholar
  124. 124.
    Kern JS, Johnson MG (1993) Conservation tillage impacts on national soil and atmospheric carbon levels. Soil Sci Soc Am J 57(1):200–210CrossRefGoogle Scholar
  125. 125.
    Bescansa P, Imaz MJ, Virto I, Enrique A, Hoogmoed WB (2006) Soil water retention as affected by tillage and residue management in semiarid Spain. Soil Tillage Res 87(1):19–27CrossRefGoogle Scholar
  126. 126.
    Bertrand M, Barot S, Blouin M, Whalen J, De Oliveira T, Roger-Estrade J (2015) Earthworm services for cropping systems. A review. Agron Sustain Dev 35(2):553–567CrossRefGoogle Scholar
  127. 127.
    Briones MJI, Schmidt O (2017) Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global meta-analysis. Glob Change Biol 23(10):4396–4419CrossRefGoogle Scholar
  128. 128.
    Ashworth AJ, Allen FL, Wight JP, Saxton A, Tyler DD, Sams CE (2014) Soil organic carbon sequestration rates under crop sequence diversity, bio-covers, and no-tillage. Soil Sci Soc Am J 78(5):1726–1733CrossRefGoogle Scholar
  129. 129.
    Popa A, Stoian G, Popa G, Ouatu O (1984) Soil erosion control on arable land (in Romanian). Ceres, Bucharest, RomaniaGoogle Scholar
  130. 130.
    Savu P, Tomita O (1986) Contributions to the study of surface runoffs on sloping land in nordul Moldavia Plain (in Romanian). Cercetari Agronomice Moldova 25(2):121–126Google Scholar
  131. 131.
    Ionescu V, (1987) Soil erosion control (in Romanian), Tehnica Publishing house, Bucharest; Moraru PI, Rusu T (2010) Soil tillage conservation and its effect on soil organic matter, water management and carbon sequestration. J Food Agric Environ 8(3&4):309–312Google Scholar
  132. 132.
    Ioniță I, Niacșu L, Petrovici G, Blebea-Apostu AM (2015) Gully development in eastern Romania: a case study from Falciu Hills. Nat Hazards 79(1):113–138. http://link.springer.com/article/10.1007/s11069-015-1732-8CrossRefGoogle Scholar
  133. 133.
    Niacșu L (2012) Pereschiv Basin (Tutova Hills). Study of geomorphology and pedogeography with special regard to land use (in Romanian), “Alexandru Ioan Cuza” University Publishing House, Iasi, 308 pp, ISBN 978-973-703-753-4Google Scholar
  134. 134.
    Ionita I (2008) Land degradation and soil conservation on the Moldavian Plateau, Romania. In: Efe R, Cravins G, Öztürk M, Atalay I (eds) Natural environment and culture in the Mediterranean Region. Cambridge Scholars Publishing, pp 149–160, ISBN (13):9781847186584, Newcastle, UKGoogle Scholar
  135. 135.
    Savu P, Bucur D (2002) Organizing and arranging agricultural land with land improvement works (in Romanian). Ion Ionescu de la BradPublishing house, Iasi, 502 p, ISBN 973-8014-62-XGoogle Scholar
  136. 136.
    Motoc M, Mircea S (2005) Some problems regarding the formation of floods and erosion in small watershed (in Romanian). Cartea Universitara Publishing House, BucharestGoogle Scholar
  137. 137.
    Moraru PI, Rusu T, Gus P, Bogdan I, Pop AI (2015) The role of minimum tillage in protecting environmental resources of the Transylvanian plain, Romania. Romanian Agric Res 32:127–135Google Scholar
  138. 138.
    Cablík J, Jůva K (1963) Protierozní ochrana půdy. Druhé přepracované a rozšířené vydání. Praha, Státní zemědělské nakladatelství, Rostlinná výrobaGoogle Scholar
  139. 139.
    Mazín VA (2017) Klimatické změny a my: šumavské ozvěny na pozadí novelizace zákona o ochraně přírody a krajiny 2016. Praha, Fortuna. ISBN 978-80-7373-134-2Google Scholar
  140. 140.
    Budoi G (2000) Agrochemistry. In: Soil and plant (in Romanian). Didactic and Pedagogical Publishing house, BucharestGoogle Scholar
  141. 141.
    Schiettecatte W, Gabriels D, Cornelis WM, Hofman G (2008) Enrichment of organic carbon in sediment transport by interrill and rill erosion processes. Soil Sci Soc Am J 72(1):50–55.  https://doi.org/10.2136/sssaj2007.0201CrossRefGoogle Scholar
  142. 142.
    Dautrebande S, Sohier C (2006) L’érosion hydrique et les pertes en sols agricoles en Région wallonne. Rapport analytique 2006 sur l’état de l’environnement wallon. FUSAGx-UHAGx. Gembloux, 121 pGoogle Scholar
  143. 143.
    Lahmar R (2010) Adoption of conservation agriculture in Europe: lessons of the KASSA project. Land Use Policy 27(1):4–10CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • J. Bernas
    • 1
    • 5
    Email author
  • P. Konvalina
    • 1
  • J. Brom
    • 1
  • J. Moudrý
    • 1
  • T. Veselá
    • 1
  • D. Bucur
    • 2
  • M. Dirja
    • 3
  • S. Shim
    • 4
  1. 1.Faculty of AgricultureUniversity of South BohemiaCeske BudejoviceCzech Republic
  2. 2.Faculty of AgricultureUniversity of Agricultural Sciences and Veterinary Medicine IasiIasiRomania
  3. 3.University of Agricultural Sciences and Veterinary Medicine in Cluj NapocaCluj-NapocaRomania
  4. 4.Department of Agricultural Plant ScienceCollege of Agricultural and Life Science, Gyeongsang National UniversityJinjuKorea
  5. 5.Department of Agroecosystems, Faculty of AgricultureUniversity of South BohemiaČeské BudějoviceCzech Republic

Personalised recommendations