Advertisement

Biological Psychiatry and Psychopharmacology

  • Kostas N. Fountoulakis
  • Ioannis Nimatoudis
  • Stephen M. Stahl
Chapter

Abstract

Biological psychiatry is the part of psychiatry which investigates and considers mental disorders in a neurobiological perspective by reducing them to neurochemical phenomena. Psychopharmacology complements biological psychiatry by providing pharmaceutical agents for the treatment of mental disorders. The chapter describes the basic biological models of mental disorders as well as the basic principles of psychopharmacology and the basic classes of medications.

Keywords

Biological models Lithium Antipsychotics Antidepressants Mood stabilizers Psychopharmacology 

References

  1. Aalto S, Hirvonen J, Kajander J, Scheinin H, Nagren K, Vilkman H, Gustafsson L, Syvalahti E, Hietala J (2002) Ketamine does not decrease striatal dopamine D2 receptor binding in man. Psychopharmacology (Berl) 164(4):401–406.  https://doi.org/10.1007/s00213-002-1236-6 CrossRefGoogle Scholar
  2. Abbott FV, Etienne P, Franklin KB, Morgan MJ, Sewitch MJ, Young SN (1992) Acute tryptophan depletion blocks morphine analgesia in the cold-pressor test in humans. Psychopharmacology (Berl) 108(1-2):60–66.  https://doi.org/10.1007/bf02245286 CrossRefGoogle Scholar
  3. Abi-Dargham A, van de Giessen E, Slifstein M, Kegeles LS, Laruelle M (2009) Baseline and amphetamine-stimulated dopamine activity are related in drug-naive schizophrenic subjects. Biol Psychiatry 65(12):1091–1093.  https://doi.org/10.1016/j.biopsych.2008.12.007 CrossRefPubMedGoogle Scholar
  4. Abi-Dargham A, Xu X, Thompson JL, Gil R, Kegeles LS, Urban N, Narendran R, Hwang DR, Laruelle M, Slifstein M (2012) Increased prefrontal cortical D(1) receptors in drug naive patients with schizophrenia: a PET study with [(1)(1)C]NNC112. J Psychopharmacol 26(6):794–805.  https://doi.org/10.1177/0269881111409265 CrossRefPubMedGoogle Scholar
  5. Abrams R, Taylor MA (1987) Cognitive dysfunction in melancholia. Psychol Med 17(2):359–362.  https://doi.org/10.1017/s0033291700024909 CrossRefPubMedGoogle Scholar
  6. Adityanjee (1987) The syndrome of irreversible lithium effectuated neurotoxicity. J Neurol Neurosurg Psychiatry 50(9):1246–1247PubMedPubMedCentralCrossRefGoogle Scholar
  7. Adityanjee (1989) The syndrome of irreversible lithium-effectuated neurotoxicity (SILENT). Pharmacopsychiatry 22(2):81–83.  https://doi.org/10.1055/s-2007-1014583 CrossRefPubMedGoogle Scholar
  8. Adityanjee, Munshi KR, Thampy A (2005) The syndrome of irreversible lithium-effectuated neurotoxicity. Clin Neuropharmacol 28(1):38–49PubMedCrossRefGoogle Scholar
  9. Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE, Jones EG (1995) Gene-expression for glutamic-acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 52(4):258–266.  https://doi.org/10.1001/archpsyc.1995.03950160008002 CrossRefPubMedGoogle Scholar
  10. Akiyama H, Kawamata T, Dedhar S, McGeer PL (1991) Immunohistochemical localization of vitronectin, its receptor and beta-3 integrin in Alzheimer brain tissue. J Neuroimmunol 32(1):19–28PubMedCrossRefGoogle Scholar
  11. Aletrino MA, Vogels OJ, Van Domburg PH, Ten Donkelaar HJ (1992) Cell loss in the nucleus raphes dorsalis in Alzheimer’s disease. Neurobiol Aging 13(4):461–468PubMedCrossRefGoogle Scholar
  12. Altshuler LL, Casanova MF, Goldberg TE, Kleinman JE (1990) The hippocampus and parahippocampus in schizophrenic, suicide, and control brains. Arch Gen Psychiatry 47(11):1029–1034.  https://doi.org/10.1001/archpsyc.1990.01810230045008 CrossRefPubMedGoogle Scholar
  13. Altshuler LL, Bookheimer SY, Townsend J, Proenza MA, Eisenberger N, Sabb F, Mintz J, Cohen MS (2005) Blunted activation in orbitofrontal cortex during mania: a functional magnetic resonance imaging study. Biol Psychiatry 58(10):763–769.  https://doi.org/10.1016/j.biopsych.2005.09.012 CrossRefPubMedGoogle Scholar
  14. Amdisen A (1977) Serum level monitoring and clinical pharmacokinetics of lithium. Clin Pharmacokinet 2(2):73–92PubMedCrossRefGoogle Scholar
  15. Ament SA, Szelinger S, Glusman G, Ashworth J, Hou L, Akula N, Shekhtman T, Badner JA, Brunkow ME, Mauldin DE, Stittrich AB, Rouleau K, Detera-Wadleigh SD, Nurnberger JI Jr, Edenberg HJ, Gershon ES, Schork N, Bipolar Genome S, Price ND, Gelinas R, Hood L, Craig D, McMahon FJ, Kelsoe JR, Roach JC (2015) Rare variants in neuronal excitability genes influence risk for bipolar disorder. Proc Natl Acad Sci U S A 112(11):3576–3581.  https://doi.org/10.1073/pnas.1424958112 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Anand A, Barkay G, Dzemidzic M, Albrecht D, Karne H, Zheng QH, Hutchins GD, Normandin MD, Yoder KK (2011) Striatal dopamine transporter availability in unmedicated bipolar disorder. Bipolar Disord 13(4):406–413.  https://doi.org/10.1111/j.1399-5618.2011.00936.x CrossRefPubMedGoogle Scholar
  17. Anderson GD (1998) A mechanistic approach to antiepileptic drug interactions. Ann Pharmacother 32(5):554–563.  https://doi.org/10.1345/aph.17332 CrossRefPubMedGoogle Scholar
  18. Andreasen N, Nasrallah HA, Dunn V, Olson SC, Grove WM, Ehrhardt JC, Coffman JA, Crossett JH (1986) Structural abnormalities in the frontal system in schizophrenia. A magnetic resonance imaging study. Arch Gen Psychiatry 43(2):136–144.  https://doi.org/10.1001/archpsyc.1986.01800020042006 CrossRefPubMedGoogle Scholar
  19. Andreasen NC, Swayze VW 2nd, Flaum M, Yates WR, Arndt S, McChesney C (1990) Ventricular enlargement in schizophrenia evaluated with computed tomographic scanning. Effects of gender, age, and stage of illness. Arch Gen Psychiatry 47(11):1008–1015.  https://doi.org/10.1001/archpsyc.1990.01810230024005 CrossRefPubMedGoogle Scholar
  20. Andreassen OA, Thompson WK, Schork AJ, Ripke S, Mattingsdal M, Kelsoe JR, Kendler KS, O’Donovan MC, Rujescu D, Werge T, Sklar P, Psychiatric Genomics C, Bipolar D, Schizophrenia Working G, Roddey JC, Chen CH, McEvoy L, Desikan RS, Djurovic S, Dale AM (2013) Improved detection of common variants associated with schizophrenia and bipolar disorder using pleiotropy-informed conditional false discovery rate. PLoS Genet 9(4):e1003455.  https://doi.org/10.1371/journal.pgen.1003455 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Angst J, Grof P, Schou M (1969) Lithium. Lancet 1(7605):1097PubMedCrossRefGoogle Scholar
  22. Angst J, Weis P, Grof P, Baastrup PC, Schou M (1970) Lithium prophylaxis in recurrent affective disorders. Br J Psychiatry 116(535):604–614.  https://doi.org/10.1192/bjp.116.535.604 CrossRefPubMedGoogle Scholar
  23. Arai H, Kosaka K, Iizuka R (1984) Changes of biogenic amines and their metabolites in postmortem brains from patients with Alzheimer-type dementia. J Neurochem 43(2):388–393PubMedCrossRefGoogle Scholar
  24. Arango C, Rapado-Castro M, Reig S, Castro-Fornieles J, Gonzalez-Pinto A, Otero S, Baeza I, Moreno C, Graell M, Janssen J, Parellada M, Moreno D, Bargallo N, Desco M (2012) Progressive brain changes in children and adolescents with first-episode psychosis. Arch Gen Psychiatry 69(1):16–26.  https://doi.org/10.1001/archgenpsychiatry.2011.150 CrossRefPubMedGoogle Scholar
  25. Araujo DM (1992) Contrasting effects of specific lymphokines on the survival of hippocampal neurons in culture. Adv Behav Biol.  https://doi.org/10.1007/978-1-4615-3432-7_9 Google Scholar
  26. Araujo DM, Cotman CW (1992) Beta-amyloid stimulates glial cells in vitro to produce growth factors that accumulate in senile plaques in Alzheimer’s disease. Brain Res 569(1):141–145PubMedCrossRefGoogle Scholar
  27. Arnold SE (2006) Cellular and molecular neuropathology of the parahippocampal region in schizophrenia. Ann N Y Acad Sci 911(1):275–292.  https://doi.org/10.1111/j.1749-6632.2000.tb06732.x CrossRefGoogle Scholar
  28. Ashall F, Goate AM (1994) Role of the beta-amyloid precursor protein in Alzheimer’s disease. Trends Biochem Sci 19(1):42–46PubMedCrossRefGoogle Scholar
  29. Ashford JW, Shih WJ, Coupal J, Shetty R, Schneider A, Cool C, Aleem A, Kiefer VH, Mendiondo MS, Schmitt FA (2000) Single SPECT measures of cerebral cortical perfusion reflect time-index estimation of dementia severity in Alzheimer’s disease. J Nucl Med 41(1):57–64PubMedGoogle Scholar
  30. Askland K, Read C, Moore J (2009) Pathways-based analyses of whole-genome association study data in bipolar disorder reveal genes mediating ion channel activity and synaptic neurotransmission. Hum Genet 125(1):63–79.  https://doi.org/10.1007/s00439-008-0600-y CrossRefPubMedGoogle Scholar
  31. Atmaca M, Ozdemir H, Cetinkaya S, Parmaksiz S, Belli H, Poyraz AK, Tezcan E, Ogur E (2007) Cingulate gyrus volumetry in drug free bipolar patients and patients treated with valproate or valproate and quetiapine. J Psychiatr Res 41(10):821–827.  https://doi.org/10.1016/j.jpsychires.2006.07.006 CrossRefPubMedGoogle Scholar
  32. Attems J, Quass M, Jellinger KA (2007) Tau and alpha-synuclein brainstem pathology in Alzheimer disease: relation with extrapyramidal signs. Acta Neuropathol 113(1):53–62.  https://doi.org/10.1007/s00401-006-0146-9 CrossRefPubMedGoogle Scholar
  33. Auer DP, Putz B, Kraft E, Lipinski B, Schill J, Holsboer F (2000) Reduced glutamate in the anterior cingulate cortex in depression: an in vivo proton magnetic resonance spectroscopy study. Biol Psychiatry 47(4):305–313PubMedCrossRefGoogle Scholar
  34. Austin MP, Ross M, Murray C, O’Carroll RE, Ebmeier KP, Goodwin GM (1992) Cognitive function in major depression. J Affect Disord 25(1):21–29.  https://doi.org/10.1016/0165-0327(92)90089-o CrossRefPubMedGoogle Scholar
  35. Avramopoulos D, Lasseter VK, Fallin MD, Wolyniec PS, McGrath JA, Nestadt G, Valle D, Pulver AE (2007) Stage II follow-up on a linkage scan for bipolar disorder in the Ashkenazim provides suggestive evidence for chromosome 12p and the GRIN2B gene. Genet Med 9(11):745–751.  https://doi.org/10.1097/GIM.0b013e318159a37c CrossRefPubMedGoogle Scholar
  36. Baastrup PC (1964) The use of lithium in manic-depressive psychosis. Compr Psychiatry 5(6):396–408PubMedCrossRefGoogle Scholar
  37. Baastrup PC, Schou M (1967) Lithium as a prophylactic agents. Its effect against recurrent depressions and manic-depressive psychosis. Arch Gen Psychiatry 16(2):162–172PubMedCrossRefGoogle Scholar
  38. Baastrup PC, Poulsen JC, Schou M, Thomsen K, Amdisen A (1970) Prophylactic lithium: double blind discontinuation in manic-depressive and recurrent-depressive disorders. Lancet 2(7668):326–330PubMedCrossRefGoogle Scholar
  39. Bailey CP, Manley SJ, Watson WP, Wonnacott S, Molleman A, Little HJ (1998) Chronic ethanol administration alters activity in ventral tegmental area neurons after cessation of withdrawal hyperexcitability. Brain Res 803(1-2):144–152.  https://doi.org/10.1016/s0006-8993(98)00654-4 CrossRefPubMedGoogle Scholar
  40. Balanza-Martinez V, Tabares-Seisdedos R, Selva-Vera G, Martinez-Aran A, Torrent C, Salazar-Fraile J, Leal-Cercos C, Vieta E, Gomez-Beneyto M (2005) Persistent cognitive dysfunctions in bipolar I disorder and schizophrenic patients: a 3-year follow-up study. Psychother Psychosom 74(2):113–119.  https://doi.org/10.1159/000083170 CrossRefPubMedGoogle Scholar
  41. Bartenstein P, Minoshima S, Hirsch C, Buch K, Willoch F, Mosch D, Schad D, Schwaiger M, Kurz A (1997) Quantitative assessment of cerebral blood flow in patients with Alzheimer’s disease by SPECT. J Nucl Med 38(7):1095–1101PubMedGoogle Scholar
  42. Basso MR, Bornstein RA (1999) Neuropsychological deficits in psychotic versus nonpsychotic unipolar depression. Neuropsychology 13(1):69–75.  https://doi.org/10.1037//0894-4105.13.1.69 CrossRefPubMedGoogle Scholar
  43. Baxter LR Jr, Schwartz JM, Phelps ME, Mazziotta JC, Guze BH, Selin CE, Gerner RH, Sumida RM (1989) Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry 46(3):243–250.  https://doi.org/10.1001/archpsyc.1989.01810030049007 CrossRefPubMedGoogle Scholar
  44. Bearden CE, Thompson PM, Dalwani M, Hayashi KM, Lee AD, Nicoletti M, Trakhtenbroit M, Glahn DC, Brambilla P, Sassi RB, Mallinger AG, Frank E, Kupfer DJ, Soares JC (2007) Greater cortical gray matter density in lithium-treated patients with bipolar disorder. Biol Psychiatry 62(1):7–16.  https://doi.org/10.1016/j.biopsych.2006.10.027 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Beats BC, Sahakian BJ, Levy R (1996) Cognitive performance in tests sensitive to frontal lobe dysfunction in the elderly depressed. Psychol Med 26(3):591–603.  https://doi.org/10.1017/s0033291700035662 CrossRefPubMedGoogle Scholar
  46. Bech P (2006) The full story of lithium. A tribute to Mogens Schou (1918–2005). Psychother Psychosom 75(5):265–269.  https://doi.org/10.1159/000093947 CrossRefPubMedGoogle Scholar
  47. Bech P, Vendsborg PB, Rafaelsen OJ (1976) Lithium maintenance treatment of manic-melancholic patients: its role in the daily routine. Acta Psychiatr Scand 53(1):70–81PubMedCrossRefGoogle Scholar
  48. Belmaker RH, Agam G (2008) Major depressive disorder. N Engl J Med 358(1):55–68.  https://doi.org/10.1056/NEJMra073096 CrossRefPubMedGoogle Scholar
  49. Benabarre A, Vieta E, Martinez-Aran A, Garcia-Garcia M, Martin F, Lomena F, Torrent C, Sanchez-Moreno J, Colom F, Reinares M, Brugue E, Valdes M (2005) Neuropsychological disturbances and cerebral blood flow in bipolar disorder. Aust N Z J Psychiatry 39(4):227–234.  https://doi.org/10.1080/j.1440-1614.2004.01558.x CrossRefPubMedGoogle Scholar
  50. Benca RM, Obermeyer WH, Thisted RA, Gillin JC (1992) Sleep and psychiatric disorders. A meta-analysis. Arch Gen Psychiatry 49(8):651–668.; discussion 669–670.  https://doi.org/10.1001/archpsyc.1992.01820080059010 CrossRefPubMedGoogle Scholar
  51. Benes FM, Todtenkopf MS, Logiotatos P, Williams M (2000) Glutamate decarboxylase(65)-immunoreactive terminals in cingulate and prefrontal cortices of schizophrenic and bipolar brain. J Chem Neuroanat 20(3-4):259–269PubMedCrossRefGoogle Scholar
  52. Benes FM, Vincent SL, Todtenkopf M (2001) The density of pyramidal and nonpyramidal neurons in anterior cingulate cortex of schizophrenic and bipolar subjects. Biol Psychiatry 50(6):395–406PubMedCrossRefGoogle Scholar
  53. Beneyto M, Kristiansen LV, Oni-Orisan A, McCullumsmith RE, Meador-Woodruff JH (2007) Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders. Neuropsychopharmacology 32(9):1888–1902.  https://doi.org/10.1038/sj.npp.1301312 CrossRefPubMedGoogle Scholar
  54. Bennett AE (1953) Biological psychiatry. Am J Psychiatry 110(4):244–252.  https://doi.org/10.1176/ajp.110.4.244 CrossRefPubMedGoogle Scholar
  55. Benwell ME, Balfour DJ, Lucchi HM (1993) Influence of tetrodotoxin and calcium on changes in extracellular dopamine levels evoked by systemic nicotine. Psychopharmacology (Berl) 112(4):467–474.  https://doi.org/10.1007/bf02244896 CrossRefGoogle Scholar
  56. Berk M, Hallam K, Malhi GS, Henry L, Hasty M, Macneil C, Yucel M, Pantelis C, Murphy B, Vieta E, Dodd S, McGorry PD (2010) Evidence and implications for early intervention in bipolar disorder. J Ment Health 19(2):113–126.  https://doi.org/10.3109/09638230903469111 CrossRefPubMedGoogle Scholar
  57. Berke JD, Hyman SE (2000) Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25(3):515–532.  https://doi.org/10.1016/s0896-6273(00)81056-9 CrossRefPubMedGoogle Scholar
  58. Bernstein HG, Krell D, Baumann B, Danos P, Falkai P, Diekmann S, Henning H, Bogerts B (1998) Morphometric studies of the entorhinal cortex in neuropsychiatric patients and controls: clusters of heterotopically displaced lamina II neurons are not indicative of schizophrenia. Schizophr Res 33(3):125–132.  https://doi.org/10.1016/S0920-9964(98)00071-1 CrossRefPubMedGoogle Scholar
  59. Bernstein HG, Steiner J, Guest PC, Dobrowolny H, Bogerts B (2015) Glial cells as key players in schizophrenia pathology: recent insights and concepts of therapy. Schizophr Res 161(1):4–18.  https://doi.org/10.1016/j.schres.2014.03.035 CrossRefPubMedGoogle Scholar
  60. Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev 28(3):309–369.  https://doi.org/10.1016/S0165-0173(98)00019-8 CrossRefPubMedGoogle Scholar
  61. Bielau H, Steiner J, Mawrin C, Trubner K, Brisch R, Meyer-Lotz G, Brodhun M, Dobrowolny H, Baumann B, Gos T, Bernstein HG, Bogerts B (2007) Dysregulation of GABAergic neurotransmission in mood disorders: a postmortem study. Ann N Y Acad Sci 1096:157–169.  https://doi.org/10.1196/annals.1397.081 CrossRefPubMedGoogle Scholar
  62. Bierut LJ, Dinwiddie SH, Begleiter H, Crowe RR, Hesselbrock V, Nurnberger JI Jr, Porjesz B, Schuckit MA, Reich T (1998) Familial transmission of substance dependence: alcohol, marijuana, cocaine, and habitual smoking: a report from the collaborative study on the genetics of alcoholism. Arch Gen Psychiatry 55(11):982–988.  https://doi.org/10.1001/archpsyc.55.11.982 CrossRefPubMedGoogle Scholar
  63. Bigdeli TB, Ripke S, Bacanu SA, Lee SH, Wray NR, Gejman PV, Rietschel M, Cichon S, St Clair D, Corvin A, Kirov G, McQuillin A, Gurling H, Rujescu D, Andreassen OA, Werge T, Blackwood DH, Pato CN, Pato MT, Malhotra AK, O’Donovan MC, Kendler KS, Fanous AH, Schizophrenia Working Group of the Psychiatric Genomics C (2016) Genome-wide association study reveals greater polygenic loading for schizophrenia in cases with a family history of illness. Am J Med Genet B Neuropsychiatr Genet 171B(2):276–289.  https://doi.org/10.1002/ajmg.b.32402 CrossRefPubMedGoogle Scholar
  64. Bitanihirwe BK, Lim MP, Woo TU (2010) N-methyl-D-aspartate receptor expression in parvalbumin-containing inhibitory neurons in the prefrontal cortex in bipolar disorder. Bipolar Disord 12(1):95–101.  https://doi.org/10.1111/j.1399-5618.2009.00785.x CrossRefPubMedPubMedCentralGoogle Scholar
  65. Biver F, Goldman S, Delvenne V, Luxen A, De Maertelaer V, Hubain P, Mendlewicz J, Lotstra F (1994) Frontal and parietal metabolic disturbances in unipolar depression. Biol Psychiatry 36(6):381–388PubMedCrossRefGoogle Scholar
  66. Blanchard BJ, Konopka G, Russell M, Ingram VM (1997) Mechanism and prevention of neurotoxicity caused by beta-amyloid peptides: relation to Alzheimer’s disease. Brain Res 776(1-2):40–50PubMedCrossRefGoogle Scholar
  67. Blass JP, Gibson GE (1991) The role of oxidative abnormalities in the pathophysiology of Alzheimer’s disease. Rev Neurol 147(6–7):513–525PubMedGoogle Scholar
  68. Blumberg HP, Stern E, Martinez D, Ricketts S, de Asis J, White T, Epstein J, McBride PA, Eidelberg D, Kocsis JH, Silbersweig DA (2000) Increased anterior cingulate and caudate activity in bipolar mania. Biol Psychiatry 48(11):1045–1052PubMedCrossRefGoogle Scholar
  69. Blumberg HP, Leung HC, Skudlarski P, Lacadie CM, Fredericks CA, Harris BC, Charney DS, Gore JC, Krystal JH, Peterson BS (2003) A functional magnetic resonance imaging study of bipolar disorder: state- and trait-related dysfunction in ventral prefrontal cortices. Arch Gen Psychiatry 60(6):601–609.  https://doi.org/10.1001/archpsyc.60.6.601 CrossRefPubMedGoogle Scholar
  70. Blumberg HP, Krystal JH, Bansal R, Martin A, Dziura J, Durkin K, Martin L, Gerard E, Charney DS, Peterson BS (2006) Age, rapid-cycling, and pharmacotherapy effects on ventral prefrontal cortex in bipolar disorder: a cross-sectional study. Biol Psychiatry 59(7):611–618.  https://doi.org/10.1016/j.biopsych.2005.08.031 CrossRefPubMedGoogle Scholar
  71. Boissiere F, Hunot S, Faucheux B, Hersh LB, Agid Y, Hirsch EC (1997) Trk neurotrophin receptors in cholinergic neurons of patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 8(1):1–8.  https://doi.org/10.1159/000106594 CrossRefPubMedGoogle Scholar
  72. Bolos AM, Dean M, Lucasderse S, Ramsburg M, Brown GL, Goldman D (1990) Population and pedigree studies reveal a lack of association between the dopamine-D2 receptor gene and alcoholism. JAMA J Am Med Assoc 264(24):3156–3160.  https://doi.org/10.1001/jama.264.24.3156 CrossRefGoogle Scholar
  73. Boomsma DI, Koopmans JR, Vandoornen LJP, Orlebeke JF (1994) Genetic and social influences on starting to smoke – a study of Dutch adolescent twins and their parents. Addiction 89(2):219–226.  https://doi.org/10.1111/j.1360-0443.1994.tb00881.x CrossRefPubMedGoogle Scholar
  74. Bora E, Fornito A, Yucel M, Pantelis C (2010) Voxelwise meta-analysis of gray matter abnormalities in bipolar disorder. Biol Psychiatry 67(11):1097–1105.  https://doi.org/10.1016/j.biopsych.2010.01.020 CrossRefPubMedGoogle Scholar
  75. Boter H, Peuskens J, Libiger J, Fleischhacker WW, Davidson M, Galderisi S, Kahn RS, Group ES (2009) Effectiveness of antipsychotics in first-episode schizophrenia and schizophreniform disorder on response and remission: an open randomized clinical trial (EUFEST). Schizophr Res 115(2-3):97–103.  https://doi.org/10.1016/j.schres.2009.09.019 CrossRefPubMedGoogle Scholar
  76. Botteron KN, Figiel GS (1997) The neuromorphometry of affective disorders. In: Krishnan KRR, Doraiswamy PM (eds) Brain imaging in clinical psychiatry. Marcel Dekker, New York, NY, pp 145–184Google Scholar
  77. Bouras C, Kovari E, Hof PR, Riederer BM, Giannakopoulos P (2001) Anterior cingulate cortex pathology in schizophrenia and bipolar disorder. Acta Neuropathol 102(4):373–379PubMedGoogle Scholar
  78. Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva AJ (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79(1):59–68.  https://doi.org/10.1016/0092-8674(94)90400-6 CrossRefPubMedGoogle Scholar
  79. Bowen DM, Allen SJ, Benton JS, Goodhardt MJ, Haan EA, Palmer AM, Sims NR, Smith CC, Spillane JA, Esiri MM, Neary D, Snowdon JS, Wilcock GK, Davison AN (1983) Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer’s disease. J Neurochem 41(1):266–272PubMedCrossRefGoogle Scholar
  80. Bozarth MA, Wise RA (1981) Intracranial self-administration of morphine into the ventral tegmental area in rats. Life Sci 28(5):551–555.  https://doi.org/10.1016/0024-3205(81)90148-x CrossRefPubMedGoogle Scholar
  81. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259PubMedCrossRefGoogle Scholar
  82. Brakeman PR, Lanahan AA, O’Brien R, Roche K, Barnes CA, Huganir RL, Worley PF (1997) Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 386(6622):284–288.  https://doi.org/10.1038/386284a0 CrossRefPubMedGoogle Scholar
  83. Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, Charney DS (2000) Hippocampal volume reduction in major depression. Am J Psychiatry 157(1):115–118.  https://doi.org/10.1176/ajp.157.1.115 CrossRefPubMedGoogle Scholar
  84. Brodie MS, Shefner SA, Dunwiddie TV (1990) Ethanol increases the firing rate of dopamine neurons of the rat ventral tegmental area in vitro. Brain Res 508(1):65–69.  https://doi.org/10.1016/0006-8993(90)91118-z CrossRefPubMedGoogle Scholar
  85. Brodie MS, Pesold C, Appel SB (1999) Ethanol directly excites dopaminergic ventral tegmental area reward neurons. Alcohol Clin Exp Res 23(11):1848–1852.  https://doi.org/10.1097/00000374-199911000-00019 CrossRefPubMedGoogle Scholar
  86. Brody AL, Saxena S, Mandelkern MA, Fairbanks LA, Ho ML, Baxter LR (2001) Brain metabolic changes associated with symptom factor improvement in major depressive disorder. Biol Psychiatry 50(3):171–178PubMedCrossRefGoogle Scholar
  87. Brown EE, Fibiger HC (1993) Differential effects of excitotoxic lesions of the amygdala on cocaine-induced conditioned locomotion and conditioned place preference. Psychopharmacology (Berl) 113(1):123–130.  https://doi.org/10.1007/bf02244344 CrossRefGoogle Scholar
  88. Brunello N, Armitage R, Feinberg I, Holsboer-Trachsler E, Leger D, Linkowski P, Mendelson WB, Racagni G, Saletu B, Sharpley AL, Turek F, Van Cauter E, Mendlewicz J (2000) Depression and sleep disorders: clinical relevance, economic burden and pharmacological treatment. Neuropsychobiology 42(3):107–119.  https://doi.org/10.1159/000026680 CrossRefPubMedGoogle Scholar
  89. Bruno SD, Barker GJ, Cercignani M, Symms M, Ron MA (2004) A study of bipolar disorder using magnetization transfer imaging and voxel-based morphometry. Brain 127(Pt 11):2433–2440.  https://doi.org/10.1093/brain/awh274 CrossRefPubMedGoogle Scholar
  90. Bruno SD, Papadopoulou K, Cercignani M, Cipolotti L, Ron MA (2006) Structural brain correlates of IQ changes in bipolar disorder. Psychol Med 36(5):609–618.  https://doi.org/10.1017/S0033291706007112 CrossRefPubMedGoogle Scholar
  91. Bunney WE Jr, Davis JM (1965) Norepinephrine in depressive reactions. A review. Arch Gen Psychiatry 13(6):483–494.  https://doi.org/10.1001/archpsyc.1965.01730060001001 CrossRefPubMedGoogle Scholar
  92. Burt DB, Zembar MJ, Niederehe G (1995) Depression and memory impairment: a meta-analysis of the association, its pattern, and specificity. Psychol Bull 117(2):285–305.  https://doi.org/10.1037//0033-2909.117.2.285 CrossRefPubMedGoogle Scholar
  93. Buttner N, Bhattacharyya S, Walsh J, Benes FM (2007) DNA fragmentation is increased in non-GABAergic neurons in bipolar disorder but not in schizophrenia. Schizophr Res 93(1-3):33–41.  https://doi.org/10.1016/j.schres.2007.01.030 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Cabib S, Puglisi-Allegra S (1996) Different effects of repeated stressful experiences on mesocortical and mesolimbic dopamine metabolism. Neuroscience 73(2):375–380.  https://doi.org/10.1016/0306-4522(96)00750-6 CrossRefPubMedGoogle Scholar
  95. Cade JF (1949) Lithium salts in the treatment of psychotic excitement. Med J Aust 2(10):349–352PubMedGoogle Scholar
  96. Cade JF (2000) Lithium salts in the treatment of psychotic excitement. 1949. Bull World Health Organ 78(4):518–520PubMedPubMedCentralGoogle Scholar
  97. Cadoret RJ, Troughton E, O’Gorman TW, Heywood E (1986) An adoption study of genetic and environmental factors in drug abuse. Arch Gen Psychiatry 43(12):1131–1136.  https://doi.org/10.1001/archpsyc.1986.01800120017004 CrossRefPubMedGoogle Scholar
  98. Cadoret RJ, Yates WR, Troughton E, Woodworth G, Stewart MA (1995) Adoption study demonstrating two genetic pathways to drug abuse. Arch Gen Psychiatry 52(1):42–52.  https://doi.org/10.1001/archpsyc.1995.03950130042005 CrossRefPubMedGoogle Scholar
  99. Cadoret RJ, Yates WR, Troughton E, Woodworth G, Stewart MA (1996) An adoption study of drug abuse/dependency in females. Compr Psychiatry 37(2):88–94.  https://doi.org/10.1016/s0010-440x(96)90567-2 CrossRefPubMedGoogle Scholar
  100. Cannon DM, Carson RE, Nugent AC, Eckelman WC, Kiesewetter DO, Williams J, Rollis D, Drevets M, Gandhi S, Solorio G, Drevets WC (2006a) Reduced muscarinic type 2 receptor binding in subjects with bipolar disorder. Arch Gen Psychiatry 63(7):741–747.  https://doi.org/10.1001/archpsyc.63.7.741 CrossRefPubMedGoogle Scholar
  101. Cannon DM, Ichise M, Fromm SJ, Nugent AC, Rollis D, Gandhi SK, Klaver JM, Charney DS, Manji HK, Drevets WC (2006b) Serotonin transporter binding in bipolar disorder assessed using [11C]DASB and positron emission tomography. Biol Psychiatry 60(3):207–217.  https://doi.org/10.1016/j.biopsych.2006.05.005 CrossRefPubMedGoogle Scholar
  102. Cardno AG, Gottesman II (2000) Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. Am J Med Genet 97(1):12–17.  https://doi.org/10.1002/(sici)1096-8628(200021)97:1<12::aid-ajmg3>3.3.co;2-l CrossRefPubMedGoogle Scholar
  103. Cardno AG, Rijsdijk FV, West RM, Gottesman II, Craddock N, Murray RM, McGuffin P (2012) A twin study of schizoaffective-mania, schizoaffective-depression, and other psychotic syndromes. Am J Med Genet B Neuropsychiatr Genet 159B(2):172–182.  https://doi.org/10.1002/ajmg.b.32011 CrossRefPubMedGoogle Scholar
  104. Carlezon WA Jr, Wise RA, Carlezon WA Jr (1996) Microinjections of phencyclidine (PCP) and related drugs into nucleus accumbens shell potentiate medial forebrain bundle brain stimulation reward. Psychopharmacology (Berl) 128(4):413–420.  https://doi.org/10.1007/s002130050151 CrossRefGoogle Scholar
  105. Carlsson M, Carlsson A (1990a) Interactions between glutamatergic and monoaminergic systems within the basal ganglia-implications for schizophrenia and Parkinson's disease. Trends Neurosci 13(7):272–276.  https://doi.org/10.1016/0166-2236(90)90108-m CrossRefPubMedGoogle Scholar
  106. Carlsson M, Carlsson A (1990b) Schizophrenia: a subcortical neurotransmitter imbalance syndrome? Schizophr Bull 16(3):425–432.  https://doi.org/10.1093/schbul/16.3.425 CrossRefPubMedGoogle Scholar
  107. Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML (2001) Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 41(1):237–260.  https://doi.org/10.1146/annurev.pharmtox.41.1.237 CrossRefPubMedGoogle Scholar
  108. Carr GD, White NM (1983) Conditioned place preference from intra-accumbens but not intra-caudate amphetamine injections. Life Sci 33(25):2551–2557.  https://doi.org/10.1016/0024-3205(83)90165-0 CrossRefPubMedGoogle Scholar
  109. Castellanos-Ryan N, Rubia K, Conrod PJ (2011) Response inhibition and reward response bias mediate the predictive relationships between impulsivity and sensation seeking and common and unique variance in conduct disorder and substance misuse. Alcohol Clin Exp Res 35(1):140–155.  https://doi.org/10.1111/j.1530-0277.2010.01331.x CrossRefPubMedGoogle Scholar
  110. Catts VS, Fung SJ, Long LE, Joshi D, Vercammen A, Allen KM, Fillman SG, Rothmond DA, Sinclair D, Tiwari Y, Tsai SY, Weickert TW, Shannon Weickert C (2013) Rethinking schizophrenia in the context of normal neurodevelopment. Front Cell Neurosci 7:60.  https://doi.org/10.3389/fncel.2013.00060 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Cepeda-Benito A, Tiffany ST, Cox LS (1999) Context-specific morphine tolerance on the paw-pressure and tail-shock vocalization tests: evidence of associative tolerance without conditioned compensatory responding. Psychopharmacology 145(4):426–432.  https://doi.org/10.1007/s002130051077 CrossRefPubMedGoogle Scholar
  112. Chana G, Landau S, Beasley C, Everall IP, Cotter D (2003) Two-dimensional assessment of cytoarchitecture in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia: evidence for decreased neuronal somal size and increased neuronal density. Biol Psychiatry 53(12):1086–1098PubMedCrossRefGoogle Scholar
  113. Chang K, Adleman NE, Dienes K, Simeonova DI, Menon V, Reiss A (2004) Anomalous prefrontal-subcortical activation in familial pediatric bipolar disorder: a functional magnetic resonance imaging investigation. Arch Gen Psychiatry 61(8):781–792.  https://doi.org/10.1001/archpsyc.61.8.781 CrossRefPubMedGoogle Scholar
  114. Channon S, Green PS (1999) Executive function in depression: the role of performance strategies in aiding depressed and non-depressed participants. J Neurol Neurosurg Psychiatry 66(2):162–171.  https://doi.org/10.1136/jnnp.66.2.162 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Chaudieu I, Vignon J, Chicheportiche M, Kamenka JM, Trouiller G, Chicheportiche R (1989) Role of the aromatic group in the inhibition of phencyclidine binding and dopamine uptake by PCP analogs. Pharmacol Biochem Behav 32(3):699–705.  https://doi.org/10.1016/0091-3057(89)90020-8 CrossRefPubMedGoogle Scholar
  116. Chen J, Paredes W, Li J, Smith D, Lowinson J, Gardner EL (1990) Δ9-Tetrahydrocannabinol produces naloxone-blockable enhancement of presynaptic basal dopamine efflux in nucleus accumbens of conscious, freely-moving rats as measured by intracerebral microdialysis. Psychopharmacology (Berl) 102(2):156–162.  https://doi.org/10.1007/bf02245916 CrossRefGoogle Scholar
  117. Chen J, Marmur R, Pulles A, Paredes W, Gardner EL (1993) Ventral tegmental microinjection of Δ9-tetrahydrocannabinol enhances ventral tegmental somatodendritic dopamine levels but not forebrain dopamine levels: evidence for local neural action by marijuana's psychoactive ingredient. Brain Res 621(1):65–70.  https://doi.org/10.1016/0006-8993(93)90298-2 CrossRefPubMedGoogle Scholar
  118. Chen CP, Eastwood SL, Hope T, McDonald B, Francis PT, Esiri MM (2000) Immunocytochemical study of the dorsal and median raphe nuclei in patients with Alzheimer’s disease prospectively assessed for behavioural changes. Neuropathol Appl Neurobiol 26(4):347–355PubMedCrossRefGoogle Scholar
  119. Chen KP, Shen WW, Lu ML (2004) Implication of serum concentration monitoring in patients with lithium intoxication. Psychiatry Clin Neurosci 58(1):25–29PubMedCrossRefGoogle Scholar
  120. Chen KC, Yang YK, Howes O, Lee IH, Landau S, Yeh TL, Chiu NT, Chen PS, Lu RB, David AS, Bramon E (2013) Striatal dopamine transporter availability in drug-naive patients with schizophrenia: a case-control SPECT study with [(99m)Tc]-TRODAT-1 and a meta-analysis. Schizophr Bull 39(2):378–386.  https://doi.org/10.1093/schbul/sbr163 CrossRefPubMedGoogle Scholar
  121. Chéramy A, Nieoullon A, Glowinski J (1978) Gabaergic processes involved in the control of dopamine release from nigrostriatal dopaminergic neurons in the cat. Eur J Pharmacol 48(3):281–295.  https://doi.org/10.1016/0014-2999(78)90087-0 CrossRefPubMedGoogle Scholar
  122. Childress AR, Mozley PD, McElgin W, Fitzgerald J, Reivich M, O’Brien CP (1999) Limbic activation during cue-induced cocaine craving. Am J Psychiatry 156(1):11–18.  https://doi.org/10.1176/ajp.156.1.11 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1(8):623–634PubMedCrossRefGoogle Scholar
  124. Choi DW, Yokoyama M, Koh J (1988) Zinc neurotoxicity in cortical cell culture. Neuroscience 24(1):67–79.  https://doi.org/10.1016/0306-4522(88)90312-0 CrossRefPubMedGoogle Scholar
  125. Chua SE, McKenna PJ (1995) Schizophrenia—a brain disease? A critical review of structural and functional cerebral abnormality in the disorder. Br J Psychiatry 166(5):563–582.  https://doi.org/10.1192/bjp.166.5.563 CrossRefPubMedGoogle Scholar
  126. Citron M, Westaway D, Xia W, Carlson G, Diehl T, Levesque G, Johnson-wood K, Lee M, Seubert P, Davis A, Kholodenko D, Motter R, Sherrington R, Perry B, Yao H, Strome R, Lieberburg I, Rommens J, Kim S, Schenk D, Fraser P, St George Hyslop P, Selkoe DJ (1997) Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice. Nat Med 3(1):67–72.  https://doi.org/10.1038/nm0197-67 CrossRefPubMedGoogle Scholar
  127. Clarke PB, Pert A (1985) Autoradiographic evidence for nicotine receptors on nigrostriatal and mesolimbic dopaminergic neurons. Brain Res 348(2):355–358.  https://doi.org/10.1016/0006-8993(85)90456-1 CrossRefPubMedGoogle Scholar
  128. Clinton SM, Meador-Woodruff JH (2004) Abnormalities of the NMDA receptor and associated intracellular molecules in the thalamus in schizophrenia and bipolar disorder. Neuropsychopharmacology 29(7):1353–1362.  https://doi.org/10.1038/sj.npp.1300451 CrossRefPubMedGoogle Scholar
  129. Cole AJ, Saffen DW, Baraban JM, Worley PF (1989) Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340(6233):474–476.  https://doi.org/10.1038/340474a0 CrossRefPubMedGoogle Scholar
  130. Cole AJ, Bhat RV, Patt C, Worley PF, Baraban JM (1992) D1Dopamine receptor activation of multiple transcription factor genes in rat striatum. J Neurochem 58(4):1420–1426.  https://doi.org/10.1111/j.1471-4159.1992.tb11358.x CrossRefPubMedGoogle Scholar
  131. Collier DA, Eastwood BJ, Malki K, Mokrab Y (2016) Advances in the genetics of schizophrenia: toward a network and pathway view for drug discovery. Ann N Y Acad Sci 1366(1):61–75.  https://doi.org/10.1111/nyas.13066 CrossRefPubMedGoogle Scholar
  132. Coplan JD, Fathy HM, Jackowski AP, Tang CY, Perera TD, Mathew SJ, Martinez J, Abdallah CG, Dwork AJ, Pantol G, Carpenter D, Gorman JM, Nemeroff CB, Owens MJ, Kaffman A, Kaufman J (2014) Early life stress and macaque amygdala hypertrophy: preliminary evidence for a role for the serotonin transporter gene. Front Behav Neurosci 8:342.  https://doi.org/10.3389/fnbeh.2014.00342 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Coppen A (1967) The biochemistry of affective disorders. Br J Psychiatry 113(504):1237–1264.  https://doi.org/10.1192/bjp.113.504.1237 CrossRefPubMedGoogle Scholar
  134. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261(5123):921–923.  https://doi.org/10.1126/science.8346443 CrossRefPubMedGoogle Scholar
  135. Cornblatt BA, Lenzenweger MF, Erlenmeyer-Kimling L (1989) The continuous performance test, identical pairs version: II. Contrasting attentional profiles in schizophrenic and depressed patients. Psychiatry Res 29(1):65–85.  https://doi.org/10.1016/0165-1781(89)90188-1 CrossRefPubMedGoogle Scholar
  136. Cotter D, Mackay D, Landau S, Kerwin R, Everall I (2001) Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry 58(6):545–553PubMedCrossRefGoogle Scholar
  137. Cotter D, Landau S, Beasley C, Stevenson R, Chana G, MacMillan L, Everall I (2002) The density and spatial distribution of GABAergic neurons, labelled using calcium binding proteins, in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia. Biol Psychiatry 51(5):377–386PubMedCrossRefGoogle Scholar
  138. Court JA, Perry EK (1991) Dementia: the neurochemical basis of putative transmitter orientated therapy. Pharmacol Ther 52(3):423–443PubMedCrossRefGoogle Scholar
  139. Cowburn RF, Hardy JA, Roberts PJ (1990) Glutamatergic neurotransmission in Alzheimer’s disease. Biochem Soc Trans 18(3):390–392PubMedCrossRefGoogle Scholar
  140. Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262(5134):689–695.  https://doi.org/10.1126/science.7901908 CrossRefPubMedGoogle Scholar
  141. Cross AJ, Crow TJ, Ferrier IN, Johnson JA, Bloom SR, Corsellis JA (1984) Serotonin receptor changes in dementia of the Alzheimer type. J Neurochem 43(6):1574–1581PubMedCrossRefGoogle Scholar
  142. Cross-Disorder Group of the Psychiatric Genomics C, Lee SH, Ripke S, Neale BM, Faraone SV, Purcell SM, Perlis RH, Mowry BJ, Thapar A, Goddard ME, Witte JS, Absher D, Agartz I, Akil H, Amin F, Andreassen OA, Anjorin A, Anney R, Anttila V, Arking DE, Asherson P, Azevedo MH, Backlund L, Badner JA, Bailey AJ, Banaschewski T, Barchas JD, Barnes MR, Barrett TB, Bass N, Battaglia A, Bauer M, Bayes M, Bellivier F, Bergen SE, Berrettini W, Betancur C, Bettecken T, Biederman J, Binder EB, Black DW, Blackwood DH, Bloss CS, Boehnke M, Boomsma DI, Breen G, Breuer R, Bruggeman R, Cormican P, Buccola NG, Buitelaar JK, Bunney WE, Buxbaum JD, Byerley WF, Byrne EM, Caesar S, Cahn W, Cantor RM, Casas M, Chakravarti A, Chambert K, Choudhury K, Cichon S, Cloninger CR, Collier DA, Cook EH, Coon H, Cormand B, Corvin A, Coryell WH, Craig DW, Craig IW, Crosbie J, Cuccaro ML, Curtis D, Czamara D, Datta S, Dawson G, Day R, De Geus EJ, Degenhardt F, Djurovic S, Donohoe GJ, Doyle AE, Duan J, Dudbridge F, Duketis E, Ebstein RP, Edenberg HJ, Elia J, Ennis S, Etain B, Fanous A, Farmer AE, Ferrier IN, Flickinger M, Fombonne E, Foroud T, Frank J, Franke B, Fraser C, Freedman R, Freimer NB, Freitag CM, Friedl M, Frisen L, Gallagher L, Gejman PV, Georgieva L, Gershon ES, Geschwind DH, Giegling I, Gill M, Gordon SD, Gordon-Smith K, Green EK, Greenwood TA, Grice DE, Gross M, Grozeva D, Guan W, Gurling H, De Haan L, Haines JL, Hakonarson H, Hallmayer J, Hamilton SP, Hamshere ML, Hansen TF, Hartmann AM, Hautzinger M, Heath AC, Henders AK, Herms S, Hickie IB, Hipolito M, Hoefels S, Holmans PA, Holsboer F, Hoogendijk WJ, Hottenga JJ, Hultman CM, Hus V, Ingason A, Ising M, Jamain S, Jones EG, Jones I, Jones L, Tzeng JY, Kahler AK, Kahn RS, Kandaswamy R, Keller MC, Kennedy JL, Kenny E, Kent L, Kim Y, Kirov GK, Klauck SM, Klei L, Knowles JA, Kohli MA, Koller DL, Konte B, Korszun A, Krabbendam L, Krasucki R, Kuntsi J, Kwan P, Landen M, Langstrom N, Lathrop M, Lawrence J, Lawson WB, Leboyer M, Ledbetter DH, Lee PH, Lencz T, Lesch KP, Levinson DF, Lewis CM, Li J, Lichtenstein P, Lieberman JA, Lin DY, Linszen DH, Liu C, Lohoff FW, Loo SK, Lord C, Lowe JK, Lucae S, DJ MI, Madden PA, Maestrini E, Magnusson PK, Mahon PB, Maier W, Malhotra AK, Mane SM, Martin CL, Martin NG, Mattheisen M, Matthews K, Mattingsdal M, McCarroll SA, McGhee KA, McGough JJ, McGrath PJ, McGuffin P, McInnis MG, McIntosh A, McKinney R, McLean AW, McMahon FJ, McMahon WM, McQuillin A, Medeiros H, Medland SE, Meier S, Melle I, Meng F, Meyer J, Middeldorp CM, Middleton L, Milanova V, Miranda A, Monaco AP, Montgomery GW, Moran JL, Moreno-De-Luca D, Morken G, Morris DW, Morrow EM, Moskvina V, Muglia P, Muhleisen TW, Muir WJ, Muller-Myhsok B, Murtha M, Myers RM, Myin-Germeys I, Neale MC, Nelson SF, Nievergelt CM, Nikolov I, Nimgaonkar V, Nolen WA, Nothen MM, Nurnberger JI, Nwulia EA, Nyholt DR, O’Dushlaine C, Oades RD, Olincy A, Oliveira G, Olsen L, Ophoff RA, Osby U, Owen MJ, Palotie A, Parr JR, Paterson AD, Pato CN, Pato MT, Penninx BW, Pergadia ML, Pericak-Vance MA, Pickard BS, Pimm J, Piven J, Posthuma D, Potash JB, Poustka F, Propping P, Puri V, Quested DJ, Quinn EM, Ramos-Quiroga JA, Rasmussen HB, Raychaudhuri S, Rehnstrom K, Reif A, Ribases M, Rice JP, Rietschel M, Roeder K, Roeyers H, Rossin L, Rothenberger A, Rouleau G, Ruderfer D, Rujescu D, Sanders AR, Sanders SJ, Santangelo SL, Sergeant JA, Schachar R, Schalling M, Schatzberg AF, Scheftner WA, Schellenberg GD, Scherer SW, Schork NJ, Schulze TG, Schumacher J, Schwarz M, Scolnick E, Scott LJ, Shi J, Shilling PD, Shyn SI, Silverman JM, Slager SL, Smalley SL, Smit JH, Smith EN, Sonuga-Barke EJ, St Clair D, State M, Steffens M, Steinhausen HC, Strauss JS, Strohmaier J, Stroup TS, Sutcliffe JS, Szatmari P, Szelinger S, Thirumalai S, Thompson RC, Todorov AA, Tozzi F, Treutlein J, Uhr M, van den Oord EJ, Van Grootheest G, Van Os J, Vicente AM, Vieland VJ, Vincent JB, Visscher PM, Walsh CA, Wassink TH, Watson SJ, Weissman MM, Werge T, Wienker TF, Wijsman EM, Willemsen G, Williams N, Willsey AJ, Witt SH, Xu W, Young AH, Yu TW, Zammit S, Zandi PP, Zhang P, Zitman FG, Zollner S, Devlin B, Kelsoe JR, Sklar P, Daly MJ, O’Donovan MC, Craddock N, Sullivan PF, Smoller JW, Kendler KS, Wray NR, International Inflammatory Bowel Disease Genetics C (2013) Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet 45(9):984–994.  https://doi.org/10.1038/ng.2711 CrossRefGoogle Scholar
  143. Csernansky JG, Bardgett ME (1998) Limbic-cortical neuronal damage and the pathophysiology of schizophrenia. Schizophr Bull 24(2):231–248.  https://doi.org/10.1093/oxfordjournals.schbul.a033323 CrossRefPubMedGoogle Scholar
  144. Csernansky JG, Joshi S, Wang L, Haller JW, Gado M, Miller JP, Grenander U, Miller MI (1998) Hippocampal morphometry in schizophrenia by high dimensional brain mapping. Proc Natl Acad Sci U S A 95(19):11406–11411.  https://doi.org/10.1073/pnas.95.19.11406 CrossRefPubMedPubMedCentralGoogle Scholar
  145. Cuello AC, Bruno MA, Allard S, Leon W, Iulita MF (2010) Cholinergic involvement in Alzheimer’s disease. A link with NGF maturation and degradation. J Mol Neurosci 40(1-2):230–235.  https://doi.org/10.1007/s12031-009-9238-z CrossRefPubMedGoogle Scholar
  146. Culverhouse RC, Saccone NL, Horton AC, Ma Y, Anstey KJ, Banaschewski T, Burmeister M, Cohen-Woods S, Etain B, Fisher HL, Goldman N, Guillaume S, Horwood J, Juhasz G, Lester KJ, Mandelli L, Middeldorp CM, Olie E, Villafuerte S, Air TM, Araya R, Bowes L, Burns R, Byrne EM, Coffey C, Coventry WL, Gawronski KAB, Glei D, Hatzimanolis A, Hottenga JJ, Jaussent I, Jawahar C, Jennen-Steinmetz C, Kramer JR, Lajnef M, Little K, Zu Schwabedissen HM, Nauck M, Nederhof E, Petschner P, Peyrot WJ, Schwahn C, Sinnamon G, Stacey D, Tian Y, Toben C, Van der Auwera S, Wainwright N, Wang JC, Willemsen G, Anderson IM, Arolt V, Aslund C, Bagdy G, Baune BT, Bellivier F, Boomsma DI, Courtet P, Dannlowski U, de Geus EJC, Deakin JFW, Easteal S, Eley T, Fergusson DM, Goate AM, Gonda X, Grabe HJ, Holzman C, Johnson EO, Kennedy M, Laucht M, Martin NG, Munafo MR, Nilsson KW, Oldehinkel AJ, Olsson CA, Ormel J, Otte C, Patton GC, Penninx B, Ritchie K, Sarchiapone M, Scheid JM, Serretti A, Smit JH, Stefanis NC, Surtees PG, Volzke H, Weinstein M, Whooley M, Nurnberger JI Jr, Breslau N, Bierut LJ (2018) Collaborative meta-analysis finds no evidence of a strong interaction between stress and 5-HTTLPR genotype contributing to the development of depression. Mol Psychiatry 23(1):133–142.  https://doi.org/10.1038/mp.2017.44 CrossRefPubMedGoogle Scholar
  147. Cummings C, Stewart M, Stevenson M, Morrow J, Nelson J (2011) Neurodevelopment of children exposed in utero to lamotrigine, sodium valproate and carbamazepine. Arch Dis Child 96(7):643–647.  https://doi.org/10.1136/adc.2009.176990 CrossRefPubMedGoogle Scholar
  148. Cutrona CE, Cadoret RJ, Suhr JA, Richards CC, Troughton E, Schutte K, Woodworth G (1994) Interpersonal variables in the prediction of alcoholism among adoptees – evidence for gene-environment interactions. Compr Psychiatry 35(3):171–179.  https://doi.org/10.1016/0010-440x(94)90188-0 CrossRefPubMedGoogle Scholar
  149. Cutting J (1979) Memory in functional psychosis. J Neurol Neurosurg Psychiatry 42(11):1031–1037.  https://doi.org/10.1136/jnnp.42.11.1031 CrossRefPubMedPubMedCentralGoogle Scholar
  150. D’Amato RJ, Zweig RM, Whitehouse PJ, Wenk GL, Singer HS, Mayeux R, Price DL, Snyder SH (1987) Aminergic systems in Alzheimer’s disease and Parkinson’s disease. Ann Neurol 22(2):229–236.  https://doi.org/10.1002/ana.410220207 CrossRefPubMedGoogle Scholar
  151. Dackis CA, Gold MS (1985) New concepts in cocaine addiction: the dopamine depletion hypothesis. Neurosci Biobehav Rev 9(3):469–477.  https://doi.org/10.1016/0149-7634(85)90022-3 CrossRefPubMedGoogle Scholar
  152. Dalman C, Allebeck P, Cullberg J, Grunewald C, Koster M (1999) Obstetric complications and the risk of schizophrenia: a longitudinal study of a national birth cohort. Arch Gen Psychiatry 56(3):234–240.  https://doi.org/10.1001/archpsyc.56.3.234 CrossRefPubMedGoogle Scholar
  153. Daniel DG, Jones DW, Coppola R, Goldberg TE, Bigelow LB, Weinberger DR (1989) Effect of amphetamine on cerebral blood flow (XE-133 dynamic spect) in schizophrenia. Biol Psychiatry 25(7):A157.  https://doi.org/10.1016/0006-3223(89)91803-9 CrossRefGoogle Scholar
  154. Danysz W, Parsons CG (2012) Alzheimer’s disease, beta-amyloid, glutamate, NMDA receptors and memantine—searching for the connections. Br J Pharmacol 167(2):324–352.  https://doi.org/10.1111/j.1476-5381.2012.02057.x CrossRefPubMedPubMedCentralGoogle Scholar
  155. Davidson J (1972) Cholinergic-adrenergic hypothesis of mania and depression. Lancet 2(7789):1249PubMedCrossRefGoogle Scholar
  156. Davis KL, Kahn RS, Ko G, Davidson M (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 148(11):1474–1486.  https://doi.org/10.1176/ajp.148.11.1474 CrossRefPubMedGoogle Scholar
  157. Davis KL, Mohs RC, Marin DB, Purohit DP, Perl DP, Lantz M, Austin G, Haroutunian V (1999) Neuropeptide abnormalities in patients with early Alzheimer disease. Arch Gen Psychiatry 56(11):981–987.  https://doi.org/10.1001/archpsyc.56.11.981 CrossRefPubMedGoogle Scholar
  158. Daviss SR, Lewis DA (1995) Local circuit neurons of the prefrontal cortex in schizophrenia: selective increase in the density of calbindin-immunoreactive neurons. Psychiatry Res 59(1-2):81–96.  https://doi.org/10.1016/0165-1781(95)02720-3 CrossRefPubMedGoogle Scholar
  159. De Leon MJ, George AE, Golomb J, Convit A, De SS (1992) Hippocampal atrophy. Behav Pharmacol 3(Suppl):31.  https://doi.org/10.1097/00008877-199204001-00090 CrossRefGoogle Scholar
  160. Degl’Innocenti A, Agren H, Backman L (1998) Executive deficits in major depression. Acta Psychiatr Scand 97(3):182–188.  https://doi.org/10.1111/j.1600-0447.1998.tb09985.x CrossRefPubMedGoogle Scholar
  161. Del Bo R, Angeretti N, Lucca E, De Simoni MG, Forloni G (1995) Reciprocal control of inflammatory cytokines, IL-1 and IL-6, and beta-amyloid production in cultures. Neurosci Lett 188(1):70–74PubMedCrossRefGoogle Scholar
  162. Delay J, Buisson JF (1958) Psychic action of isoniazid in the treatment of depressive states. J Clin Exp Psychopathol 19(2, Suppl. 1):51–55PubMedGoogle Scholar
  163. Delay J, Deniker P (1955) Neuroleptic effects of chlorpromazine in therapeutics of neuropsychiatry. J Clin Exp Psychopathol 16(2):104–112PubMedGoogle Scholar
  164. Delay J, Deniker P (1956) Chlorpromazine and neuroleptic treatments in psychiatry. J Clin Exp Psychopathol 17(1):19–24PubMedGoogle Scholar
  165. Delay J, Deniker P, Harl JM (1952) Therapeutic use in psychiatry of phenothiazine of central elective action (4560 RP). Ann Med Psychol (Paris) 110(21):112–117Google Scholar
  166. Delay J, Deniker P, Ropert R (1956) Four years of experience with chlorpromazine in therapy of psychoses. Presse Med 64(22):493–496PubMedGoogle Scholar
  167. Delgado PL (2000) Depression: the case for a monoamine deficiency. J Clin Psychiatry 61(Suppl 6):7–11PubMedGoogle Scholar
  168. Delgado PL, Price LH, Miller HL, Salomon RM, Aghajanian GK, Heninger GR, Charney DS (1994) Serotonin and the neurobiology of depression. Effects of tryptophan depletion in drug-free depressed patients. Arch Gen Psychiatry 51(11):865–874.  https://doi.org/10.1001/archpsyc.1994.03950110025005 CrossRefPubMedGoogle Scholar
  169. Demers CH, Bogdan R, Agrawal A (2014) The genetics, neurogenetics and pharmacogenetics of addiction. Curr Behav Neurosci Rep 1(1):33–44.  https://doi.org/10.1007/s40473-013-0004-8 CrossRefPubMedPubMedCentralGoogle Scholar
  170. DeMyer MK, Gilmor RL, Hendrie HC, DeMyer WE, Augustyn GT, Jackson RK (1988) Magnetic resonance brain images in schizophrenic and normal subjects: influence of diagnosis and education. Schizophr Bull 14(1):21–37.  https://doi.org/10.1093/schbul/14.1.21 CrossRefPubMedGoogle Scholar
  171. Deutch AY, Tam S-Y, Roth RH (1985) Footshock and conditioned stress increase 3, 4-dihydroxyphenylacetic acid (DOPAC) in the ventral tegmental area but not substantia nigra. Brain Res 333(1):143–146.  https://doi.org/10.1016/0006-8993(85)90134-9 CrossRefPubMedGoogle Scholar
  172. Devor A, Andreassen OA, Wang Y, Maki-Marttunen T, Smeland OB, Fan CC, Schork AJ, Holland D, Thompson WK, Witoelar A, Chen CH, Desikan RS, McEvoy LK, Djurovic S, Greengard P, Svenningsson P, Einevoll GT, Dale AM (2017) Genetic evidence for role of integration of fast and slow neurotransmission in schizophrenia. Mol Psychiatry 22(6):792–801.  https://doi.org/10.1038/mp.2017.33 CrossRefPubMedPubMedCentralGoogle Scholar
  173. Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85(14):5274–5278.  https://doi.org/10.1073/pnas.85.14.5274 CrossRefPubMedPubMedCentralGoogle Scholar
  174. Dilts RP, Kalivas PW (1989) Autoradiographic localization of μ-opioid and neurotensin receptors within the mesolimbic dopamine system. Brain Res 488(1-2):311–327.  https://doi.org/10.1016/0006-8993(89)90723-3 CrossRefPubMedGoogle Scholar
  175. Doan A, Thinakaran G, Borchelt DR, Slunt HH, Ratovitsky T, Podlisny M, Selkoe DJ, Seeger M, Gandy SE, Price DL, Sisodia SS (1996) Protein topology of presenilin 1. Neuron 17(5):1023–1030.  https://doi.org/10.1016/s0896-6273(00)80232-9 CrossRefPubMedGoogle Scholar
  176. Doherty MD, Gratton A (1997) NMDA receptors in nucleus accumbens modulate stress-induced dopamine release in nucleus accumbens and ventral tegmental area. Synapse 26(3):225–234.  https://doi.org/10.1002/(SICI)1098-2396(199707)26:3<225::AID-SYN4>3.0.CO;2-9 CrossRefPubMedGoogle Scholar
  177. Dong D, Wang Y, Chang X, Luo C, Yao D (2018) Dysfunction of large-scale brain networks in schizophrenia: a meta-analysis of resting-state functional connectivity. Schizophr Bull 44(1):168–181.  https://doi.org/10.1093/schbul/sbx034 CrossRefPubMedGoogle Scholar
  178. Drevets WC, Videen TO, Price JL, Preskorn SH, Carmichael ST, Raichle ME (1992) A functional anatomical study of unipolar depression. J Neurosci 12(9):3628–3641PubMedCrossRefGoogle Scholar
  179. Drevets WC, Price JL, Simpson JR Jr, Todd RD, Reich T, Vannier M, Raichle ME (1997) Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386(6627):824–827.  https://doi.org/10.1038/386824a0 CrossRefPubMedGoogle Scholar
  180. Duman RS, Charney DS (1999) Cell atrophy and loss in major depression. Biol Psychiatry 45(9):1083–1084PubMedCrossRefGoogle Scholar
  181. Duman RS, Heninger GR, Nestler EJ (1997) A molecular and cellular theory of depression. Arch Gen Psychiatry 54(7):597–606.  https://doi.org/10.1001/archpsyc.1997.01830190015002 CrossRefPubMedGoogle Scholar
  182. Eastwood SL (2004) The synaptic pathology of schizophrenia: is aberrant neurodevelopment and plasticity to blame? Int Rev Neurobiol.  https://doi.org/10.1016/s0074-7742(04)59003-7 Google Scholar
  183. Eastwood SL, Harrison PJ (2001) Synaptic pathology in the anterior cingulate cortex in schizophrenia and mood disorders. A review and a Western blot study of synaptophysin, GAP-43 and the complexins. Brain Res Bull 55(5):569–578PubMedCrossRefGoogle Scholar
  184. Eikelenboom P, Zhan SS, van Gool WA, Allsop D (1994) Inflammatory mechanisms in Alzheimer’s disease. Trends Pharmacol Sci 15(12):447–450PubMedCrossRefGoogle Scholar
  185. Eikelenboom P, Rozemuller JM, van Muiswinkel FL (1998) Inflammation and Alzheimer’s disease: relationships between pathogenic mechanisms and clinical expression. Exp Neurol 154(1):89–98.  https://doi.org/10.1006/exnr.1998.6920 CrossRefPubMedGoogle Scholar
  186. Elliott R, Sahakian BJ, McKay AP, Herrod JJ, Robbins TW, Paykel ES (1996) Neuropsychological impairments in unipolar depression: the influence of perceived failure on subsequent performance. Psychol Med 26(5):975–989.  https://doi.org/10.1017/s0033291700035303 CrossRefPubMedGoogle Scholar
  187. Elliott R, Baker SC, Rogers RD, OLeary DA, Paykel ES, Frith CD, Dolan RJ, Sahakian BJ (1997) Prefrontal dysfunction in depressed patients performing a complex planning task: a study using positron emission tomography. Psychol Med 27(4):931–942.  https://doi.org/10.1017/S0033291797005187 CrossRefPubMedGoogle Scholar
  188. Espey MG, Chernyshev ON, Reinhard JF Jr, Namboodiri MA, Colton CA (1997) Activated human microglia produce the excitotoxin quinolinic acid. Neuroreport 8(2):431–434.  https://doi.org/10.1097/00001756-199701200-00011 CrossRefPubMedGoogle Scholar
  189. Ettenberg A, Pettit HO, Bloom FE, Koob GF (1982) Heroin and cocaine intravenous self-administration in rats: mediation by separate neural systems. Psychopharmacology (Berl) 78(3):204–209.  https://doi.org/10.1007/bf00428151 CrossRefGoogle Scholar
  190. Everitt BJ, Morris KA, Obrien A, Robbins TW (1991) The basolateral amygdala ventral striatal system and conditioned place preference – further evidence of limbic striatal interactions underlying reward-related processes. Neuroscience 42(1):1–18.  https://doi.org/10.1016/0306-4522(91)90145-E CrossRefPubMedGoogle Scholar
  191. Ezrin-Waters C, Resch L (1986) The nucleus basalis of Meynert. Can J Neurol Sci 13(1):8–14.  https://doi.org/10.1017/s0317167100035721 CrossRefPubMedGoogle Scholar
  192. Fadda F, Rossetti ZL (1998) Chronic ethanol consumption: from neuroadaptation to neurodegeneration. Prog Neurobiol 56(4):385–431.  https://doi.org/10.1016/s0301-0082(98)00032-x CrossRefPubMedGoogle Scholar
  193. Farrow TF, Whitford TJ, Williams LM, Gomes L, Harris AW (2005) Diagnosis-related regional gray matter loss over two years in first episode schizophrenia and bipolar disorder. Biol Psychiatry 58(9):713–723.  https://doi.org/10.1016/j.biopsych.2005.04.033 CrossRefPubMedGoogle Scholar
  194. Fernandez-Tome P, Brera B, Arevalo MA, de Ceballos ML (2004) Beta-amyloid25-35 inhibits glutamate uptake in cultured neurons and astrocytes: modulation of uptake as a survival mechanism. Neurobiol Dis 15(3):580–589.  https://doi.org/10.1016/j.nbd.2003.12.006 CrossRefPubMedGoogle Scholar
  195. Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM (2016) Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol 14(1):101–115PubMedPubMedCentralCrossRefGoogle Scholar
  196. Fibiger HC (1978) Drugs and reinforcement mechanisms: a critical review of the catecholamine theory. Annu Rev Pharmacol Toxicol 18(1):37–56.  https://doi.org/10.1146/annurev.pa.18.040178.000345 CrossRefPubMedGoogle Scholar
  197. Forloni G, Demicheli F, Giorgi S, Bendotti C, Angeretti N (1992) Expression of amyloid precursor protein mRNAs in endothelial, neuronal and glial cells: modulation by interleukin-1. Brain Res Mol Brain Res 16(1-2):128–134PubMedCrossRefGoogle Scholar
  198. Fosnaugh JS, Bhat RV, Yamagata K, Worley PF, Baraban JM (2002) Activation of arc, a putative “effector” immediate early gene, by cocaine in rat brain. J Neurochem 64(5):2377–2380.  https://doi.org/10.1046/j.1471-4159.1995.64052377.x CrossRefGoogle Scholar
  199. Fountoulakis KN (2012) The possible involvement of NMDA glutamate receptor in the etiopathogenesis of bipolar disorder. Curr Pharm Des 18(12):1605–1608PubMedCrossRefGoogle Scholar
  200. Fountoulakis K (2015a) Aetiopathogenesis of bipolar disorder. In: Fountoulakis K (ed) Bipolar disorder: an evidence-based guide to manic depression. Springer-Verlag, Berlin, pp 389–419.  https://doi.org/10.1007/978-3-642-37216-2 CrossRefGoogle Scholar
  201. Fountoulakis K (2015b) Biological therapies. In: Fountoulakis K (ed) Bipolar disorder: an evidence-based guide to manic depression. Springer-Verlag, Berlin, pp 461–625.  https://doi.org/10.1007/978-3-642-37216-2 CrossRefGoogle Scholar
  202. Fountoulakis KN, Moller HJ (2012) Antidepressant drugs and the response in the placebo group: the real problem lies in our understanding of the issue. J Psychopharmacol 26(5):744–750.  https://doi.org/10.1177/0269881111421969 CrossRefPubMedGoogle Scholar
  203. Fountoulakis KN, Giannakopoulos P, Kovari E, Bouras C (2008a) Assessing the role of cingulate cortex in bipolar disorder: neuropathological, structural and functional imaging data. Brain Res Rev 59(1):9–21.  https://doi.org/10.1016/j.brainresrev.2008.04.005 CrossRefPubMedPubMedCentralGoogle Scholar
  204. Fountoulakis KN, Vieta E, Bouras C, Notaridis G, Giannakopoulos P, Kaprinis G, Akiskal H (2008b) A systematic review of existing data on long-term lithium therapy: neuroprotective or neurotoxic? Int J Neuropsychopharmacol 11(2):269–287.  https://doi.org/10.1017/S1461145707007821 CrossRefPubMedGoogle Scholar
  205. Fountoulakis KN, Gonda X, Vieta E, Rihmer Z (2011) Class effect of pharmacotherapy in bipolar disorder: fact or misbelief? Ann Gen Psychiatry 10(1):8.  https://doi.org/10.1186/1744-859X-10-8 CrossRefPubMedPubMedCentralGoogle Scholar
  206. Fountoulakis KN, Kelsoe JR, Akiskal H (2012) Receptor targets for antidepressant therapy in bipolar disorder: an overview. J Affect Disord 138(3):222–238.  https://doi.org/10.1016/j.jad.2011.04.043 CrossRefPubMedGoogle Scholar
  207. Fountoulakis KN, Veroniki AA, Siamouli M, Moller HJ (2013) No role for initial severity on the efficacy of antidepressants: results of a multi-meta-analysis. Ann Gen Psychiatry 12(1):26.  https://doi.org/10.1186/1744-859X-12-26 CrossRefPubMedPubMedCentralGoogle Scholar
  208. Fountoulakis KN, Gazouli M, Kelsoe J, Akiskal H (2015) The pharmacodynamic properties of lurasidone and their role in its antidepressant efficacy in bipolar disorder. Eur Neuropsychopharmacol 25(3):335–342.  https://doi.org/10.1016/j.euroneuro.2014.11.010 CrossRefPubMedGoogle Scholar
  209. Fountoulakis KN, Grunze H, Vieta E, Young A, Yatham L, Blier P, Kasper S, Moeller HJ (2017a) The International College of Neuro-Psychopharmacology (CINP) treatment guidelines for bipolar disorder in adults (CINP-BD-2017), part 3: the clinical guidelines. Int J Neuropsychopharmacol 20(2):180–195.  https://doi.org/10.1093/ijnp/pyw109 CrossRefPubMedGoogle Scholar
  210. Fountoulakis KN, Vieta E, Young A, Yatham L, Grunze H, Blier P, Moeller HJ, Kasper S (2017b) The International College of Neuropsychopharmacology (CINP) treatment guidelines for bipolar disorder in adults (CINP-BD-2017), part 4: unmet needs in the treatment of bipolar disorder and recommendations for future research. Int J Neuropsychopharmacol 20(2):196–205.  https://doi.org/10.1093/ijnp/pyw072 CrossRefPubMedGoogle Scholar
  211. Fountoulakis KN, Yatham L, Grunze H, Vieta E, Young A, Blier P, Kasper S, Moeller HJ (2017c) The International College of Neuro-Psychopharmacology (CINP) treatment guidelines for bipolar disorder in adults (CINP-BD-2017), part 2: review, grading of the evidence, and a precise algorithm. Int J Neuropsychopharmacol 20(2):121–179.  https://doi.org/10.1093/ijnp/pyw100 CrossRefPubMedGoogle Scholar
  212. Fountoulakis KN, Young A, Yatham L, Grunze H, Vieta E, Blier P, Moeller HJ, Kasper S (2017d) The International College of Neuropsychopharmacology (CINP) treatment guidelines for bipolar disorder in adults (CINP-BD-2017), part 1: background and methods of the development of guidelines. Int J Neuropsychopharmacol 20(2):98–120.  https://doi.org/10.1093/ijnp/pyw091 CrossRefPubMedGoogle Scholar
  213. Fox JH, Penn R, Clasen R, Martin E, Wilson R, Savoy S (1985) Pathological diagnosis in clinically typical Alzheimer’s disease. N Engl J Med 313(22):1419–1420PubMedGoogle Scholar
  214. Fox NC, Warrington EK, Rossor MN (1999) Serial magnetic resonance imaging of cerebral atrophy in preclinical Alzheimer’s disease. Lancet 353(9170):2125.  https://doi.org/10.1016/S0140-6736(99)00496-1 CrossRefPubMedGoogle Scholar
  215. Frank RA, Martz S, Pommering T (1988) The effect of chronic cocaine on self-stimulation train-duration thresholds. Pharmacol Biochem Behav 29(4):755–758.  https://doi.org/10.1016/0091-3057(88)90199-2 CrossRefPubMedGoogle Scholar
  216. Frank RA, Manderscheid PZ, Panicker S, Williams HP, Kokoris D (1992) Cocaine euphoria, dysphoria, and tolerance assessed using drug-induced changes in brain-stimulation reward. Pharmacol Biochem Behav 42(4):771–779.  https://doi.org/10.1016/0091-3057(92)90028-E CrossRefPubMedGoogle Scholar
  217. French ED (1997) Δ9-Tetrahydrocannabinol excites rat VTA dopamine neurons through activation of cannabinoid CB1 but not opioid receptors. Neurosci Lett 226(3):159–162.  https://doi.org/10.1016/s0304-3940(97)00278-4 CrossRefPubMedGoogle Scholar
  218. French ED, Ceci A (1990) Non-competitive N-methyl-D-aspartate antagonists are potent activators of ventral tegmental A10 dopamine neurons. Neurosci Lett 119(2):159–162.  https://doi.org/10.1016/0304-3940(90)90823-r CrossRefPubMedGoogle Scholar
  219. Frey U, Frey S, Schollmeier F, Krug M (1996) Influence of actinomycin D, a RNA synthesis inhibitor, on long-term potentiation in rat hippocampal neurons in vivo and in vitro. J Physiol 490(Pt 3):703–711.  https://doi.org/10.1113/jphysiol.1996.sp021179 CrossRefPubMedPubMedCentralGoogle Scholar
  220. Friedman AS (1964) Minimal effects of severe depression on cognitive functioning. J Abnorm Psychol 69(3):237–243.  https://doi.org/10.1037/h0048608 CrossRefPubMedGoogle Scholar
  221. Frith CD, Stevens M, Johnstone EC, Deakin JFW, Lawler P, Crow TJ (1983) Effects of ECT and depression on various aspects of memory. Br J Psychiatry 142:610–617.  https://doi.org/10.1192/bjp.142.6.610 CrossRefPubMedGoogle Scholar
  222. Fuchs E, Flugge G (1998) Stress, glucocorticoids and structural plasticity of the hippocampus. Neurosci Biobehav Rev 23(2):295–300.  https://doi.org/10.1016/s0149-7634(98)00031-1 CrossRefPubMedGoogle Scholar
  223. Fujita M, Charney DS, Innis RB (2000) Imaging serotonergic neurotransmission in depression: hippocampal pathophysiology may mirror global brain alterations. Biol Psychiatry 48(8):801–812.  https://doi.org/10.1016/S0006-3223(00)00960-4 CrossRefPubMedGoogle Scholar
  224. Fusar-Poli P, Meyer-Lindenberg A (2013) Striatal presynaptic dopamine in schizophrenia, part II: meta-analysis of [(18)F/(11)C]-DOPA PET studies. Schizophr Bull 39(1):33–42.  https://doi.org/10.1093/schbul/sbr180 CrossRefPubMedGoogle Scholar
  225. Galynker II, Cai J, Ongseng F, Finestone H, Dutta E, Serseni D (1998) Hypofrontality and negative symptoms in major depressive disorder. J Nucl Med 39(4):608–612PubMedGoogle Scholar
  226. Gannon M, Che P, Chen Y, Jiao K, Roberson ED, Wang Q (2015) Noradrenergic dysfunction in Alzheimer’s disease. Front Neurosci 9:220.  https://doi.org/10.3389/fnins.2015.00220 CrossRefPubMedPubMedCentralGoogle Scholar
  227. Garbutt JC, Vankammen DP (1983) The interaction between gaba and dopamine – implications for schizophrenia. Schizophr Bull 9(3):336–353.  https://doi.org/10.1093/schbul/9.3.336 CrossRefPubMedGoogle Scholar
  228. Garcia-Ayllon MS, Small DH, Avila J, Saez-Valero J (2011) Revisiting the role of acetylcholinesterase in Alzheimer’s disease: cross-talk with P-tau and beta-amyloid. Front Mol Neurosci 4:22.  https://doi.org/10.3389/fnmol.2011.00022 CrossRefPubMedPubMedCentralGoogle Scholar
  229. Gatto GJ, Mcbride WJ, Murphy JM, Lumeng L, Li TK (1994) Ethanol self-infusion into the ventral tegmental area by alcohol-preferring rats. Alcohol 11(6):557–564.  https://doi.org/10.1016/0741-8329(94)90083-3 CrossRefPubMedGoogle Scholar
  230. Geddes JR, Lawrie SM (1995) Obstetric complications and schizophrenia: a meta-analysis. Br J Psychiatry 167(6):786–793.  https://doi.org/10.1192/bjp.167.6.786 CrossRefPubMedGoogle Scholar
  231. Geddes JW, Chang-Chui H, Cooper SM, Lott IT, Cotman CW (1986) Density and distribution of NMDA receptors in the human hippocampus in Alzheimer’s disease. Brain Res 399(1):156–161PubMedCrossRefGoogle Scholar
  232. George MS, Ketter TA, Parekh PI, Rosinsky N, Ring HA, Pazzaglia PJ, Marangell LB, Callahan AM, Post RM (1997) Blunted left cingulate activation in mood disorder subjects during a response interference task (the Stroop). J Neuropsychiatry Clin Neurosci 9(1):55–63.  https://doi.org/10.1176/jnp.9.1.55 CrossRefPubMedGoogle Scholar
  233. George TP, Verrico CD, Roth RH (1998) Effects of repeated nicotine pre-treatment on mesoprefrontal dopaminergic and behavioral responses to acute footshock stress. Brain Res 801(1-2):36–49.  https://doi.org/10.1016/s0006-8993(98)00537-x CrossRefPubMedGoogle Scholar
  234. Gerard RW (1955a) The biological roots of psychiatry. Am J Psychiatry 112(2):81–90.  https://doi.org/10.1176/ajp.112.2.81 CrossRefGoogle Scholar
  235. Gerard RW (1955b) Biological roots of psychiatry. Science 122(3162):225–230CrossRefGoogle Scholar
  236. Gershon S, Yuwiler A (1960) Lithium ion: a specific psychopharmacological approach to the treatment of mania. J Neuropsychiatr 1:229–241PubMedGoogle Scholar
  237. Gessa GL, Muntoni F, Collu M, Vargiu L, Mereu G (1985) Low doses of ethanol activate dopaminergic neurons in the ventral tegmental area. Brain Res 348(1):201–203.  https://doi.org/10.1016/0006-8993(85)90381-6 CrossRefPubMedGoogle Scholar
  238. Geula C, Mesulam MM (1996) Systematic regional variations in the loss of cortical cholinergic fibers in Alzheimer’s disease. Cereb Cortex 6(2):165–177PubMedCrossRefGoogle Scholar
  239. Giulian D, Haverkamp LJ, Li J, Karshin WL, Yu J, Tom D, Li X, Kirkpatrick JB (1995) Senile plaques stimulate microglia to release a neurotoxin found in Alzheimer brain. Neurochem Int 27(1):119–137.  https://doi.org/10.1016/0197-0186(95)00067-I CrossRefPubMedGoogle Scholar
  240. Glausier JR, Lewis DA (2013) Dendritic spine pathology in schizophrenia. Neuroscience 251:90–107.  https://doi.org/10.1016/j.neuroscience.2012.04.044 CrossRefPubMedGoogle Scholar
  241. Goeders NE, Smith JE (1986) Reinforcing properties of cocaine in the medial prefrontal cortex – primary action on presynaptic dopaminergic terminals. Pharmacol Biochem Behav 25(1):191–199.  https://doi.org/10.1016/0091-3057(86)90252-2 CrossRefPubMedGoogle Scholar
  242. Goeders NE, Lane JD, Smith JE (1984) Self-administration of methionine enkephalin into the nucleus accumbens. Pharmacol Biochem Behav 20(3):451–455.  https://doi.org/10.1016/0091-3057(84)90284-3 CrossRefPubMedGoogle Scholar
  243. Goeders NE, Dworkin SI, Smith JE (1986) Neuropharmacological assessment of cocaine self-administration into the medial prefrontal cortex. Pharmacol Biochem Behav 24(5):1429–1440.  https://doi.org/10.1016/0091-3057(86)90206-6 CrossRefPubMedGoogle Scholar
  244. Golinkoff M, Sweeney JA (1989) Cognitive impairments in depression. J Affect Disord 17(2):105–112.  https://doi.org/10.1016/0165-0327(89)90032-3 CrossRefPubMedGoogle Scholar
  245. Gonzales RA, Weiss F (1998) Suppression of ethanol-reinforced behavior by naltrexone is associated with attenuation of the ethanol-induced increase in dialysate dopamine levels in the nucleus accumbens. J Neurosci 18(24):10663–10671PubMedCrossRefGoogle Scholar
  246. Gooch MD, Stennett DJ (1996) Molecular basis of Alzheimer’s disease. Am J Health Syst Pharm 53(13):1545–1557. quiz 1603–1544PubMedCrossRefGoogle Scholar
  247. Goodwin GM (1997) Neuropsychological and neuroimaging evidence for the involvement of the frontal lobes in depression. J Psychopharmacol 11(2):115–122.  https://doi.org/10.1177/026988119701100204 CrossRefPubMedGoogle Scholar
  248. Goodwin FK (2002) Rationale for long-term treatment of bipolar disorder and evidence for long-term lithium treatment. J Clin Psychiatry 63(Suppl 10):5–12PubMedGoogle Scholar
  249. Goodwin FK, Zis AP (1979) Lithium in the treatment of mania: comparisons with neuroleptics. Arch Gen Psychiatry 36(8 Spec):840–844PubMedCrossRefGoogle Scholar
  250. Goodwin FK, Murphy DL, Bunney WE Jr (1969a) Lithium. Lancet 2(7613):212–213PubMedCrossRefGoogle Scholar
  251. Goodwin FK, Murphy DL, Bunney WE Jr (1969b) Lithium-carbonate treatment in depression and mania. A longitudinal double-blind study. Arch Gen Psychiatry 21(4):486–496PubMedCrossRefGoogle Scholar
  252. Goodwin FK, Murphy DL, Dunner DL, Bunney WE Jr (1972) Lithium response in unipolar versus bipolar depression. Am J Psychiatry 129(1):44–47.  https://doi.org/10.1176/ajp.129.1.44 CrossRefPubMedGoogle Scholar
  253. Goodwin FK, Fireman B, Simon GE, Hunkeler EM, Lee J, Revicki D (2003) Suicide risk in bipolar disorder during treatment with lithium and divalproex. JAMA 290(11):1467–1473.  https://doi.org/10.1001/jama.290.11.1467 CrossRefPubMedGoogle Scholar
  254. Gottesman II, Shields J (1982) Schizophrenia: the epigenetic puzzle. Cambridge University Press, CambridgeGoogle Scholar
  255. Grace AA (2000) Gating of information flow within the limbic system and the pathophysiology of schizophrenia. Brain Res Brain Res Rev 31(2-3):330–341PubMedCrossRefGoogle Scholar
  256. Granger P, Biton B, Faure C, Vige X, Depoortere H, Graham D, Langer SZ, Scatton B, Avenet P (1995) Modulation of the gamma-aminobutyric acid type A receptor by the antiepileptic drugs carbamazepine and phenytoin. Mol Pharmacol 47(6):1189–1196PubMedGoogle Scholar
  257. Grant S, London ED, Newlin DB, Villemagne VL, Liu X, Contoreggi C, Phillips RL, Kimes AS, Margolin A (1996) Activation of memory circuits during cue-elicited cocaine craving. Proc Natl Acad Sci U S A 93(21):12040–12045.  https://doi.org/10.1073/pnas.93.21.12040 CrossRefPubMedPubMedCentralGoogle Scholar
  258. Graybiel AM (1998) The basal ganglia and chunking of action repertoires. Neurobiol Learn Mem 70(1-2):119–136.  https://doi.org/10.1006/nlme.1998.3843 CrossRefPubMedGoogle Scholar
  259. Greenamyre JT, Maragos WF (1993) Neurotransmitter receptors in Alzheimer disease. Cerebrovasc Brain Metab Rev 5(2):61–94PubMedGoogle Scholar
  260. Greenamyre JT, Young AB (1989) Synaptic localization of striatal NMDA, quisqualate and kainate receptors. Neurosci Lett 101(2):133–137PubMedCrossRefGoogle Scholar
  261. Greenamyre JT, Penney JB, Young AB, D’Amato CJ, Hicks SP, Shoulson I (1985) Alterations in L-glutamate binding in Alzheimer’s and Huntington’s diseases. Science 227(4693):1496–1499PubMedCrossRefGoogle Scholar
  262. Greenamyre JT, Penney JB, D’Amato CJ, Young AB (1987) Dementia of the Alzheimer’s type: changes in hippocampal L-[3H]glutamate binding. J Neurochem 48(2):543–551PubMedCrossRefGoogle Scholar
  263. Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, Reiss AL, Schatzberg AF (2007) Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry 62(5):429–437.  https://doi.org/10.1016/j.biopsych.2006.09.020 CrossRefPubMedPubMedCentralGoogle Scholar
  264. Grenhoff J, Aston-Jones G, Svensson TH (1986) Nicotinic effects on the firing pattern of midbrain dopamine neurons. Acta Physiol Scand 128(3):351–358.  https://doi.org/10.1111/j.1748-1716.1986.tb07988.x CrossRefPubMedGoogle Scholar
  265. Griffin WST, Sheng JG, Royston MC, Gentleman SM, McKenzie JE, Graham DI, Roberts GW, Mrak RE (2006) Glial-neuronal interactions in Alzheimer’s disease: the potential role of a ‘cytokine cycle’ in disease progression. Brain Pathol 8(1):65–72.  https://doi.org/10.1111/j.1750-3639.1998.tb00136.x CrossRefGoogle Scholar
  266. Grimm JW, See RE (2000) Dissociation of primary and secondary reward-relevant limbic nuclei in an animal model of relapse. Neuropsychopharmacology 22(5):473–479.  https://doi.org/10.1016/S0893-133X(99)00157-8 CrossRefPubMedGoogle Scholar
  267. Grove WM, Eckert ED, Heston L, Bouchard TJ Jr, Segal N, Lykken DT (1990) Heritability of substance abuse and antisocial behavior: a study of monozygotic twins reared apart. Biol Psychiatry 27(12):1293–1304.  https://doi.org/10.1016/0006-3223(90)90500-2 CrossRefPubMedGoogle Scholar
  268. Gruber SA, Rogowska J, Yurgelun-Todd DA (2004) Decreased activation of the anterior cingulate in bipolar patients: an fMRI study. J Affect Disord 82(2):191–201.  https://doi.org/10.1016/j.jad.2003.10.010 CrossRefPubMedGoogle Scholar
  269. Gudayol-Ferre E, Pero-Cebollero M, Gonzalez-Garrido AA, Guardia-Olmos J (2015) Changes in brain connectivity related to the treatment of depression measured through fMRI: a systematic review. Front Hum Neurosci 9:582.  https://doi.org/10.3389/fnhum.2015.00582 CrossRefPubMedPubMedCentralGoogle Scholar
  270. von Gunten A, Fox NC, Cipolotti L, Ron MA (2000) A volumetric study of hippocampus and amygdala in depressed patients with subjective memory problems. J Neuropsychiatry Clin Neurosci 12(4):493–498.  https://doi.org/10.1176/jnp.12.4.493 CrossRefGoogle Scholar
  271. Gysling K, Wang RY (1983) Morphine-induced activation of A10 dopamine neurons in the rat. Brain Res 277(1):119–127.  https://doi.org/10.1016/0006-8993(83)90913-7 CrossRefPubMedGoogle Scholar
  272. Haggerty JJ Jr, Stern RA, Mason GA, Beckwith J, Morey CE, Prange AJ Jr (1993) Subclinical hypothyroidism: a modifiable risk factor for depression? Am J Psychiatry 150(3):508–510.  https://doi.org/10.1176/ajp.150.3.508 CrossRefPubMedGoogle Scholar
  273. Haile CN, Kosten TR, Kosten TA (2007) Genetics of dopamine and its contribution to cocaine addiction. Behav Genet 37(1):119–145.  https://doi.org/10.1007/s10519-006-9115-2 CrossRefPubMedGoogle Scholar
  274. Hajek T, Carrey N, Alda M (2005) Neuroanatomical abnormalities as risk factors for bipolar disorder. Bipolar Disord 7(5):393–403.  https://doi.org/10.1111/j.1399-5618.2005.00238.x CrossRefPubMedGoogle Scholar
  275. Halliday GM, McCann HL, Pamphlett R, Brooks WS, Creasey H, McCusker E, Cotton RG, Broe GA, Harper CG (1992) Brain stem serotonin-synthesizing neurons in Alzheimer’s disease: a clinicopathological correlation. Acta Neuropathol 84(6):638–650PubMedCrossRefGoogle Scholar
  276. Harrison PJ (2004) The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology (Berl) 174(1):151–162.  https://doi.org/10.1007/s00213-003-1761-y CrossRefGoogle Scholar
  277. Harvey I, Ron MA, Du Boulay G, Wicks D, Lewis SW, Murray RM (1993) Reduction of cortical volume in schizophrenia on magnetic resonance imaging. Psychol Med 23(3):591–604.  https://doi.org/10.1017/s003329170002537x CrossRefPubMedGoogle Scholar
  278. Haxby JV, Grady CL, Duara R, Schlageter N, Berg G, Rapoport SI (1986) Neocortical metabolic abnormalities precede nonmemory cognitive defects in early Alzheimer’s-type dementia. Arch Neurol 43(9):882–885.  https://doi.org/10.1001/archneur.1986.00520090022010 CrossRefPubMedGoogle Scholar
  279. Heikkila RE, Orlansky H, Cohen G (1975) Studies on the distinction between uptake inhibition and release of [3H]dopamine in rat brain tissue slices. Biochem Pharmacol 24(8):847–852.  https://doi.org/10.1016/0006-2952(75)90152-5 CrossRefPubMedGoogle Scholar
  280. Heller W, Nitscke JB (1997) regional brain activity in emotion: a framework for understanding cognition in depression. Cognit Emot 11(5-6):637–661.  https://doi.org/10.1080/026999397379845a CrossRefGoogle Scholar
  281. Heller W, Nitschke JB, Etienne MA, Miller GA (1997) Patterns of regional brain activity differentiate types of anxiety. J Abnorm Psychol 106(3):376–385.  https://doi.org/10.1037//0021-843x.106.3.376 CrossRefPubMedGoogle Scholar
  282. Heninger GR, Delgado PL, Charney DS (1996) The revised monoamine theory of depression: a modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry 29(1):2–11.  https://doi.org/10.1055/s-2007-979535 CrossRefPubMedGoogle Scholar
  283. Herholz K, Bauer B, Wienhard K, Kracht L, Mielke R, Lenz MO, Strotmann T, Heiss WD (2000) In-vivo measurements of regional acetylcholine esterase activity in degenerative dementia: comparison with blood flow and glucose metabolism. J Neural Transm 107(12):1457–1468.  https://doi.org/10.1007/s007020070009 CrossRefPubMedGoogle Scholar
  284. Herrmann M, Rotte M, Grubich C, Ebert AD, Schiltz K, Munte TF, Heinze HJ (2001) Control of semantic interference in episodic memory retrieval is associated with an anterior cingulate-prefrontal activation pattern. Hum Brain Mapp 13(2):94–103.  https://doi.org/10.1002/hbm.1027 CrossRefPubMedGoogle Scholar
  285. Hietala J, Syvalahti E, Vilkman H, Vuorio K, Rakkolainen V, Bergman J, Haaparanta M, Solin O, Kuoppamaki M, Eronen E, Ruotsalainen U, Salokangas RK (1999) Depressive symptoms and presynaptic dopamine function in neuroleptic-naive schizophrenia. Schizophr Res 35(1):41–50.  https://doi.org/10.1016/s0920-9964(98)00113-3 CrossRefPubMedGoogle Scholar
  286. Hilker R, Helenius D, Fagerlund B, Skytthe A, Christensen K, Werge TM, Nordentoft M, Glenthoj B (2018) Heritability of schizophrenia and schizophrenia spectrum based on the Nationwide Danish Twin Register. Biol Psychiatry 83(6):492–498.  https://doi.org/10.1016/j.biopsych.2017.08.017 CrossRefPubMedGoogle Scholar
  287. Hirayasu Y, Shenton ME, Salisbury DF, Kwon JS, Wible CG, Fischer IA, Yurgelun-Todd D, Zarate C, Kikinis R, Jolesz FA, McCarley RW (1999) Subgenual cingulate cortex volume in first-episode psychosis. Am J Psychiatry 156(7):1091–1093.  https://doi.org/10.1176/ajp.156.7.1091 CrossRefPubMedPubMedCentralGoogle Scholar
  288. Hirsch C, Bartenstein P, Minoshima S, Mosch D, Willoch F, Buch K, Schad D, Schwaiger M, Kurz A (1997) Reduction of regional cerebral blood flow and cognitive impairment in patients with Alzheimer’s disease: evaluation of an observer-independent analytic approach. Dement Geriatr Cogn Disord 8(2):98–104.  https://doi.org/10.1159/000106613 CrossRefPubMedGoogle Scholar
  289. Hirschfeld RM (2000) History and evolution of the monoamine hypothesis of depression. J Clin Psychiatry 61(Suppl 6):4–6PubMedGoogle Scholar
  290. Hirvonen J, van Erp TG, Huttunen J, Aalto S, Nagren K, Huttunen M, Lonnqvist J, Kaprio J, Cannon TD, Hietala J (2006) Brain dopamine d1 receptors in twins discordant for schizophrenia. Am J Psychiatry 163(10):1747–1753.  https://doi.org/10.1176/ajp.2006.163.10.1747 CrossRefPubMedGoogle Scholar
  291. Hoebel BG, Monaco AP, Hernandez L, Aulisi EF, Stanley BG, Lenard L (1983) Self-injection of amphetamine directly into the brain. Psychopharmacology 81(2):158–163.  https://doi.org/10.1007/Bf00429012 CrossRefPubMedGoogle Scholar
  292. Holman BL, Johnson KA, Gerada B, Carvalho PA, Satlin A (1992) The scintigraphic appearance of Alzheimer’s disease: a prospective study using technetium-99m-HMPAO SPECT. J Nucl Med 33(2):181–185PubMedGoogle Scholar
  293. Holzman PS, Levy DL, Matthysse SW, Abel LA (1997) Smooth pursuit eye tracking in twins. A critical commentary. Arch Gen Psychiatry 54(5):429–431PubMedCrossRefGoogle Scholar
  294. Homan P, Neumeister A, Nugent AC, Charney DS, Drevets WC, Hasler G (2015) Serotonin versus catecholamine deficiency: behavioral and neural effects of experimental depletion in remitted depression. Transl Psychiatry 5(3):e532.  https://doi.org/10.1038/tp.2015.25 CrossRefPubMedPubMedCentralGoogle Scholar
  295. Horger BA, Shelton K, Schenk S (1990) Preexposure sensitizes rats to the rewarding effects of cocaine. Pharmacol Biochem Behav 37(4):707–711.  https://doi.org/10.1016/0091-3057(90)90552-s CrossRefPubMedGoogle Scholar
  296. Horger BA, Giles MK, Schenk S (1992) Preexposure to amphetamine and nicotine predisposes rats to self-administer a low dose of cocaine. Psychopharmacology (Berl) 107(2-3):271–276.  https://doi.org/10.1007/bf02245147 CrossRefGoogle Scholar
  297. Houenou J, Wessa M, Douaud G, Leboyer M, Chanraud S, Perrin M, Poupon C, Martinot JL, Paillere-Martinot ML (2007) Increased white matter connectivity in euthymic bipolar patients: diffusion tensor tractography between the subgenual cingulate and the amygdalo-hippocampal complex. Mol Psychiatry 12(11):1001–1010.  https://doi.org/10.1038/sj.mp.4002010 CrossRefPubMedGoogle Scholar
  298. Howell O, Atack JR, Dewar D, McKernan RM, Sur C (2000) Density and pharmacology of alpha5 subunit-containing GABA(A) receptors are preserved in hippocampus of Alzheimer’s disease patients. Neuroscience 98(4):669–675PubMedCrossRefGoogle Scholar
  299. Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull 35(3):549–562.  https://doi.org/10.1093/schbul/sbp006 CrossRefPubMedPubMedCentralGoogle Scholar
  300. Howes OD, Egerton A, Allan V, McGuire P, Stokes P, Kapur S (2009a) Mechanisms underlying psychosis and antipsychotic treatment response in schizophrenia: insights from PET and SPECT imaging. Curr Pharm Des 15(22):2550–2559.  https://doi.org/10.2174/138161209788957528 CrossRefPubMedPubMedCentralGoogle Scholar
  301. Howes OD, Montgomery AJ, Asselin MC, Murray RM, Valli I, Tabraham P, Bramon-Bosch E, Valmaggia L, Johns L, Broome M, McGuire PK, Grasby PM (2009b) Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch Gen Psychiatry 66(1):13–20.  https://doi.org/10.1001/archgenpsychiatry.2008.514 CrossRefPubMedGoogle Scholar
  302. Howes OD, Kambeitz J, Kim E, Stahl D, Slifstein M, Abi-Dargham A, Kapur S (2012) The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Arch Gen Psychiatry 69(8):776–786.  https://doi.org/10.1001/archgenpsychiatry.2012.169 CrossRefPubMedPubMedCentralGoogle Scholar
  303. Howes OD, Williams M, Ibrahim K, Leung G, Egerton A, McGuire PK, Turkheimer F (2013) Midbrain dopamine function in schizophrenia and depression: a post-mortem and positron emission tomographic imaging study. Brain 136(Pt 11):3242–3251.  https://doi.org/10.1093/brain/awt264 CrossRefPubMedPubMedCentralGoogle Scholar
  304. Howes O, McCutcheon R, Stone J (2015) Glutamate and dopamine in schizophrenia: an update for the 21st century. J Psychopharmacol 29(2):97–115.  https://doi.org/10.1177/0269881114563634 CrossRefPubMedPubMedCentralGoogle Scholar
  305. Hultman CM, Sparen P, Takei N, Murray RM, Cnattingius S, Geddes J (1999) Prenatal and perinatal risk factors for schizophrenia, affective psychosis, and reactive psychosis of early onset: case-control study prenatal and perinatal risk factors for early onset schizophrenia, affective psychosis, and reactive psychosis. BMJ 318(7181):421–426.  https://doi.org/10.1136/bmj.318.7181.421 CrossRefPubMedPubMedCentralGoogle Scholar
  306. Humphries C, Mortimer A, Hirsch S, de Belleroche J (1996) NMDA receptor mRNA correlation with antemortem cognitive impairment in schizophrenia. Neuroreport 7(12):2051–2055.  https://doi.org/10.1097/00001756-199608120-00040 CrossRefPubMedGoogle Scholar
  307. Hurd YL, Weiss F, Koob GF, And NE, Ungerstedt U (1989) Cocaine reinforcement and extracellular dopamine overflow in rat nucleus accumbens: an in vivo microdialysis study. Brain Res 498(1):199–203.  https://doi.org/10.1016/0006-8993(89)90422-8 CrossRefPubMedGoogle Scholar
  308. Hyman SE (1996) Shaking out the cause of addiction. Science 273(5275):611–612.  https://doi.org/10.1126/science.273.5275.611 CrossRefPubMedGoogle Scholar
  309. Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL (1984) Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225(4667):1168–1170PubMedCrossRefGoogle Scholar
  310. Hyman BT, Van Hoesen GW, Damasio AR (1987) Alzheimer’s disease: glutamate depletion in the hippocampal perforant pathway zone. Ann Neurol 22(1):37–40.  https://doi.org/10.1002/ana.410220110 CrossRefPubMedGoogle Scholar
  311. Iacono WG, Clementz BA (1993) A strategy for elucidating genetic influences on complex psychopathological syndromes (with special reference to ocular motor functioning and schizophrenia). Prog Exp Pers Psychopathol Res 16:11–65PubMedGoogle Scholar
  312. Ikeda M, Tanabe H, Nakagawa Y, Kazui H, Oi H, Yamazaki H, Harada K, Nishimura T (1994) MRI-based quantitative assessment of the hippocampal region in very mild to moderate Alzheimer’s disease. Neuroradiology 36(1):7–10.  https://doi.org/10.1007/bf00599184 CrossRefPubMedGoogle Scholar
  313. Ikeda Y, Kameyama M, Narita K, Takei Y, Suda M, Aoyama Y, Yuuki N, Sakurai N, Fukuda M, Mikuni M, Amanuma M (2010) Total and regional brain volume reductions due to the Syndrome of Irreversible Lithium-Effectuated Neurotoxicity (SILENT): a voxel-based morphometric study. Prog Neuropsychopharmacol Biol Psychiatry 34(1):244–246.  https://doi.org/10.1016/j.pnpbp.2009.10.010 CrossRefPubMedGoogle Scholar
  314. Imperato A, Di Chiara G (1986) Preferential stimulation of dopamine release in the nucleus accumbens of freely moving rats by ethanol. J Pharmacol Exp Ther 239(1):219–228PubMedGoogle Scholar
  315. Imran MB, Kawashima R, Awata S, Sato K, Kinomura S, Ono S, Sato M, Fukuda H (1999) Tc-99m HMPAO SPECT in the evaluation of Alzheimer’s disease: correlation between neuropsychiatric evaluation and CBF images. J Neurol Neurosurg Psychiatry 66(2):228–232.  https://doi.org/10.1136/jnnp.66.2.228 CrossRefPubMedPubMedCentralGoogle Scholar
  316. Ingvar DH, Franzen G (1974) Distribution of cerebral activity in chronic schizophrenia. Lancet 2(7895):1484–1486.  https://doi.org/10.1016/s0140-6736(74)90221-9 CrossRefPubMedGoogle Scholar
  317. Ishita S, Negishi K, Teranishi T, Shimada Y, Kato S (1988) GABAergic inhibition on dopamine cells of the fish retina: a [3H]dopamine release study with isolated cell fractions. J Neurochem 50(1):1–6.  https://doi.org/10.1111/j.1471-4159.1988.tb13221.x CrossRefPubMedGoogle Scholar
  318. Itokawa M, Yamada K, Iwayama-Shigeno Y, Ishitsuka Y, Detera-Wadleigh S, Yoshikawa T (2003) Genetic analysis of a functional GRIN2A promoter (GT)n repeat in bipolar disorder pedigrees in humans. Neurosci Lett 345(1):53–56PubMedCrossRefGoogle Scholar
  319. Itzhak Y, Martin JL (1999) Effects of cocaine, nicotine, dizocipline and alcohol on mice locomotor activity: cocaine–alcohol cross-sensitization involves upregulation of striatal dopamine transporter binding sites. Brain Res 818(2):204–211.  https://doi.org/10.1016/s0006-8993(98)01260-8 CrossRefPubMedGoogle Scholar
  320. Jack CR Jr, Petersen RC, Xu YC, O’Brien PC, Smith GE, Ivnik RJ, Boeve BF, Waring SC, Tangalos EG, Kokmen E (1999) Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 52(7):1397–1403.  https://doi.org/10.1212/wnl.52.7.1397 CrossRefPubMedPubMedCentralGoogle Scholar
  321. Janowsky DS, El-Yousef MK, Davis JM, Sekerke HJ (1972) A cholinergic-adrenergic hypothesis of mania and depression. Lancet 2(7778):632–635PubMedCrossRefGoogle Scholar
  322. Jentink J, Dolk H, Loane MA, Morris JK, Wellesley D, Garne E, de Jong-van den Berg L, EASW Group (2010) Intrauterine exposure to carbamazepine and specific congenital malformations: systematic review and case-control study. BMJ 341:c6581.  https://doi.org/10.1136/bmj.c6581 CrossRefPubMedPubMedCentralGoogle Scholar
  323. Jeste DV, Heaton SC, Paulsen JS, Ercoli L, Harris J, Heaton RK (1996) Clinical and neuropsychological comparison of psychotic depression with nonpsychotic depression and schizophrenia. Am J Psychiatry 153(4):490–496.  https://doi.org/10.1176/ajp.153.4.490 CrossRefPubMedGoogle Scholar
  324. Jog MS, Kubota Y, Connolly CI, Hillegaart V, Graybiel AM (1999) Building neural representations of habits. Science 286(5445):1745–1749.  https://doi.org/10.1126/science.286.5445.1745 CrossRefPubMedGoogle Scholar
  325. Johnson FN, Amdisen A (1983) The first era of lithium in medicine. An historical note. Pharmacopsychiatria 16(2):61–63.  https://doi.org/10.1055/s-2007-1017450 CrossRefPubMedGoogle Scholar
  326. Johnson SW, North RA (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12(2):483–488PubMedCrossRefGoogle Scholar
  327. Johnson SM, Pillai NP (1990) Hyperpolarization of myenteric neurons by opioids does not involve cyclic adenosine-3′,5′-monophosphate. Neuroscience 36(2):299–304.  https://doi.org/10.1016/0306-4522(90)90427-6 CrossRefPubMedGoogle Scholar
  328. Johnstone EC, Crow TJ, Frith CD, Husband J, Kreel L (1976) Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet 2(7992):924–926.  https://doi.org/10.1016/s0140-6736(76)90890-4 CrossRefPubMedGoogle Scholar
  329. Johnstone EC, Crow TJ, Frith CD, Owens DG (1988) The Northwick Park “functional” psychosis study: diagnosis and treatment response. Lancet 2(8603):119–125PubMedCrossRefGoogle Scholar
  330. Jones MW, Kilpatrick IC, Phillipson OT (1988) Dopamine function in the prefrontal cortex of the rat is sensitive to a reduction of tonic Gaba-mediated inhibition in the thalamic mediodorsal nucleus. Exp Brain Res 69(3):623–634.  https://doi.org/10.1007/bf00247314 CrossRefPubMedGoogle Scholar
  331. Jones PB, Rantakallio P, Hartikainen AL, Isohanni M, Sipila P (1998) Schizophrenia as a long-term outcome of pregnancy, delivery, and perinatal complications: a 28-year follow-up of the 1966 north Finland general population birth cohort. Am J Psychiatry 155(3):355–364.  https://doi.org/10.1176/ajp.155.3.355 CrossRefPubMedGoogle Scholar
  332. Kalivas PW, Duffy P (1995) Selective activation of dopamine transmission in the shell of the nucleus accumbens by stress. Brain Res 675(1-2):325–328.  https://doi.org/10.1016/0006-8993(95)00013-g CrossRefPubMedGoogle Scholar
  333. Kalivas PW, Duffy P, White SR (1998) MDMA elicits behavioral and neurochemical sensitization in rats. Neuropsychopharmacology 18(6):469–479.  https://doi.org/10.1016/S0893-133X(97)00195-4 CrossRefPubMedGoogle Scholar
  334. Kambeitz J, Abi-Dargham A, Kapur S, Howes OD (2014) Alterations in cortical and extrastriatal subcortical dopamine function in schizophrenia: systematic review and meta-analysis of imaging studies. Br J Psychiatry 204(6):420–429.  https://doi.org/10.1192/bjp.bp.113.132308 CrossRefPubMedGoogle Scholar
  335. Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Muller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325(6106):733–736.  https://doi.org/10.1038/325733a0 CrossRefPubMedGoogle Scholar
  336. Kapur S, Mann JJ (1992) Role of the dopaminergic system in depression. Biol Psychiatry 32(1):1–17.  https://doi.org/10.1016/0006-3223(92)90137-o CrossRefPubMedGoogle Scholar
  337. Kapur S, Seeman P (2001) Does fast dissociation from the dopamine d(2) receptor explain the action of atypical antipsychotics? A new hypothesis. Am J Psychiatry 158(3):360–369.  https://doi.org/10.1176/appi.ajp.158.3.360 CrossRefPubMedGoogle Scholar
  338. Karlsson P, Farde L, Halldin C, Sedvall G (2002) PET study of D(1) dopamine receptor binding in neuroleptic-naive patients with schizophrenia. Am J Psychiatry 159(5):761–767.  https://doi.org/10.1176/appi.ajp.159.5.761 CrossRefPubMedGoogle Scholar
  339. Kaur S, Sassi RB, Axelson D, Nicoletti M, Brambilla P, Monkul ES, Hatch JP, Keshavan MS, Ryan N, Birmaher B, Soares JC (2005) Cingulate cortex anatomical abnormalities in children and adolescents with bipolar disorder. Am J Psychiatry 162(9):1637–1643.  https://doi.org/10.1176/appi.ajp.162.9.1637 CrossRefPubMedGoogle Scholar
  340. Kegeles LS, Abi-Dargham A, Zea-Ponce Y, Rodenhiser-Hill J, Mann JJ, Van Heertum RL, Cooper TB, Carlsson A, Laruelle M (2000) Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia. Biol Psychiatry 48(7):627–640.  https://doi.org/10.1016/s0006-3223(00)00976-8 CrossRefPubMedGoogle Scholar
  341. Kegeles LS, Martinez D, Kochan LD, Hwang DR, Huang Y, Mawlawi O, Suckow RF, Van Heertum RL, Laruelle M (2002) NMDA antagonist effects on striatal dopamine release: positron emission tomography studies in humans. Synapse 43(1):19–29.  https://doi.org/10.1002/syn.10010 CrossRefPubMedGoogle Scholar
  342. Kegeles LS, Abi-Dargham A, Frankle WG, Gil R, Cooper TB, Slifstein M, Hwang DR, Huang Y, Haber SN, Laruelle M (2010) Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Arch Gen Psychiatry 67(3):231–239.  https://doi.org/10.1001/archgenpsychiatry.2010.10 CrossRefPubMedGoogle Scholar
  343. Kelsoe J (2009) Mood disorders: genetics. In: Sadock B, Sadock V, Ruiz P (eds) Kaplan & Sadock’s comprehensive textbook of psychiatry, 9th edn. Lippincott Williams & Wilkins, Philadelphia, PAGoogle Scholar
  344. Kendler KS (1983) Overview: a current perspective on twin studies of schizophrenia. Am J Psychiatry 140(11):1413–1425.  https://doi.org/10.1176/ajp.140.11.1413 CrossRefPubMedGoogle Scholar
  345. Kendler KS (1993) The roscommon family study. Arch Gen Psychiatry 50(8):645.  https://doi.org/10.1001/archpsyc.1993.01820200059006 CrossRefPubMedGoogle Scholar
  346. Kendler KS, Prescott CA (1998a) Cannabis use, abuse, and dependence in a population-based sample of female twins. Am J Psychiatry 155(8):1016–1022.  https://doi.org/10.1176/ajp.155.8.1016 CrossRefPubMedGoogle Scholar
  347. Kendler KS, Prescott CA (1998b) Cocaine use, abuse and dependence in a population-based sample of female twins. Br J Psychiatry 173(4):345–350.  https://doi.org/10.1192/bjp.173.4.345 CrossRefPubMedGoogle Scholar
  348. Kendler KS, Gruenberg AM, Kinney DK (1994) Independent diagnoses of adoptees and relatives as defined by Dsm-Iii in the provincial and National Samples of the Danish Adoption Study of Schizophrenia. Arch Gen Psychiatry 51(6):456–468.  https://doi.org/10.1001/archpsyc.1994.03950060020002 CrossRefPubMedGoogle Scholar
  349. Kendler KS, Karkowski LM, Neale MC, Prescott CA (2000) Illicit psychoactive substance use, heavy use, abuse, and dependence in a US population-based sample of male twins. Arch Gen Psychiatry 57(3):261–269.  https://doi.org/10.1001/archpsyc.57.3.261 CrossRefPubMedGoogle Scholar
  350. Kendler KS, Karkowski L, Prescott CA (2007) Hallucinogen, opiate, sedative and stimulant use and abuse in a population-based sample of female twins. Acta Psychiatr Scand 99(5):368–376.  https://doi.org/10.1111/j.1600-0447.1999.tb07243.x CrossRefGoogle Scholar
  351. Kesslak JP, Nalcioglu O, Cotman CW (1991) Quantification of magnetic resonance scans for hippocampal and parahippocampal atrophy in Alzheimer’s disease. Neurology 41(1):51–54.  https://doi.org/10.1212/wnl.41.1.51 CrossRefPubMedGoogle Scholar
  352. Khachaturian ZS (1985) Diagnosis of Alzheimer’s disease. Arch Neurol 42(11):1097–1105PubMedCrossRefGoogle Scholar
  353. Kilts CD, Schweitzer JB, Quinn CK, Gross RE, Faber TL, Muhammad F, Ely TD, Hoffman JM, Drexler KP (2001) Neural activity related to drug craving in cocaine addiction. Arch Gen Psychiatry 58(4):334–341.  https://doi.org/10.1001/archpsyc.58.4.334 CrossRefPubMedGoogle Scholar
  354. Kim J, Horti AG, Mathews WB, Pogorelov V, Valentine H, Brasic JR, Holt DP, Ravert HT, Dannals RF, Zhou L, Jedynak B, Kamiya A, Pletnikov MV, Wong DF (2015) Quantitative multi-modal brain autoradiography of glutamatergic, dopaminergic, cannabinoid, and nicotinic receptors in mutant disrupted-in-schizophrenia-1 (DISC1) mice. Mol Imaging Biol 17(3):355–363.  https://doi.org/10.1007/s11307-014-0786-4 CrossRefPubMedGoogle Scholar
  355. Kisilevsky R, Fraser PE (1997) A beta amyloidogenesis: unique, or variation on a systemic theme? Crit Rev Biochem Mol Biol 32(5):361–404.  https://doi.org/10.3109/10409239709082674 CrossRefPubMedGoogle Scholar
  356. Kleinman JE, Law AJ, Lipska BK, Hyde TM, Ellis JK, Harrison PJ, Weinberger DR (2011) Genetic neuropathology of schizophrenia: new approaches to an old question and new uses for postmortem human brains. Biol Psychiatry 69(2):140–145.  https://doi.org/10.1016/j.biopsych.2010.10.032 CrossRefPubMedPubMedCentralGoogle Scholar
  357. Knable MB (1999) Schizophrenia and bipolar disorder: findings from studies of the Stanley Foundation Brain Collection. Schizophr Res 39(2):149–152. discussion 163PubMedCrossRefGoogle Scholar
  358. Kokkinidis L, McCarter BD (1990) Postcocaine depression and sensitization of brain-stimulation reward: analysis of reinforcement and performance effects. Pharmacol Biochem Behav 36(3):463–471.  https://doi.org/10.1016/0091-3057(90)90242-a CrossRefPubMedGoogle Scholar
  359. Kokkinidis L, Zacharko RM, Predy PA (1980) Post-amphetamine depression of self-stimulation responding from the substantia nigra: reversal by tricyclic antidepressants. Pharmacol Biochem Behav 13(3):379–383.  https://doi.org/10.1016/0091-3057(80)90242-7 CrossRefPubMedGoogle Scholar
  360. Konopaske GT, Lange N, Coyle JT, Benes FM (2014) Prefrontal cortical dendritic spine pathology in schizophrenia and bipolar disorder. JAMA Psychiat 71(12):1323–1331.  https://doi.org/10.1001/jamapsychiatry.2014.1582 CrossRefGoogle Scholar
  361. Koob GF, Bloom FE (1988) Cellular and molecular mechanisms of drug dependence. Science 242(4879):715–723.  https://doi.org/10.1126/science.2903550 CrossRefPubMedGoogle Scholar
  362. Koob GF, Stinus L, Le Moal M, Bloom FE (1989) Opponent process theory of motivation: neurobiological evidence from studies of opiate dependence. Neurosci Biobehav Rev 13(2-3):135–140.  https://doi.org/10.1016/s0149-7634(89)80022-3 CrossRefPubMedGoogle Scholar
  363. Kornhuber J, Weller M (1997) Psychotogenicity and N-methyl-D-aspartate receptor antagonism: implications for neuroprotective pharmacotherapy. Biol Psychiatry 41(2):135–144.  https://doi.org/10.1016/S0006-3223(96)00047-9 CrossRefPubMedGoogle Scholar
  364. Korte M, Kang H, Bonhoeffer T, Schuman E (1998) A role for BDNF in the late-phase of hippocampal long-term potentiation. Neuropharmacology 37(4-5):553–559.  https://doi.org/10.1016/s0028-3908(98)00035-5 CrossRefPubMedGoogle Scholar
  365. Kosaka J, Takahashi H, Ito H, Takano A, Fujimura Y, Matsumoto R, Nozaki S, Yasuno F, Okubo Y, Kishimoto T, Suhara T (2010) Decreased binding of [11C]NNC112 and [11C]SCH23390 in patients with chronic schizophrenia. Life Sci 86(21-22):814–818.  https://doi.org/10.1016/j.lfs.2010.03.018 CrossRefPubMedGoogle Scholar
  366. Kovacs GG, Kloppel S, Fischer I, Dorner S, Lindeck-Pozza E, Birner P, Botefur IC, Pilz P, Volk B, Budka H (2003) Nucleus-specific alteration of raphe neurons in human neurodegenerative disorders. Neuroreport 14(1):73–76.  https://doi.org/10.1097/01.wnr.0000050301.92401.0c CrossRefPubMedGoogle Scholar
  367. Kubicki M, McCarley R, Westin CF, Park HJ, Maier S, Kikinis R, Jolesz FA, Shenton ME (2007) A review of diffusion tensor imaging studies in schizophrenia. J Psychiatr Res 41(1-2):15–30.  https://doi.org/10.1016/j.jpsychires.2005.05.005 CrossRefPubMedGoogle Scholar
  368. Kuczenski R, Segal DS (1999) Dynamic changes in sensitivity occur during the acute response to cocaine and methylphenidate. Psychopharmacology (Berl) 147(1):96–103.  https://doi.org/10.1007/s002130051147 CrossRefGoogle Scholar
  369. Kuhl DE, Koeppe RA, Minoshima S, Snyder SE, Ficaro EP, Foster NL, Frey KA, Kilbourn MR (1999) In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer’s disease. Neurology 52(4):691–699PubMedCrossRefGoogle Scholar
  370. Kuhn R (1957) Treatment of depressive states with an iminodibenzyl derivative (G 22355). Schweiz Med Wochenschr 87(35–36):1135–1140PubMedGoogle Scholar
  371. Kuhn R (1958) The treatment of depressive states with G 22355 (imipramine hydrochloride). Am J Psychiatry 115(5):459–464.  https://doi.org/10.1176/ajp.115.5.459 CrossRefPubMedGoogle Scholar
  372. Kundakovic M, Peter C, Roussos P, Akbarian S (2016) Epigenetic approaches to define the molecular and genetic risk architectures of schizophrenia. Neurobiol Schizophrenia.  https://doi.org/10.1016/b978-0-12-801829-3.00013-6 CrossRefGoogle Scholar
  373. Lagopoulos J, Hermens DF, Naismith SL, Scott EM, Hickie IB (2012) Frontal lobe changes occur early in the course of affective disorders in young people. BMC Psychiatry 12:4.  https://doi.org/10.1186/1471-244X-12-4 CrossRefPubMedPubMedCentralGoogle Scholar
  374. Laruelle M (2014) Schizophrenia: from dopaminergic to glutamatergic interventions. Curr Opin Pharmacol 14:97–102.  https://doi.org/10.1016/j.coph.2014.01.001 CrossRefPubMedGoogle Scholar
  375. Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R (1999) Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatry 46(1):56–72.  https://doi.org/10.1016/s0006-3223(99)00067-0 CrossRefPubMedGoogle Scholar
  376. Lauer CJ, Riemann D, Wiegand M, Berger M (1991) From early to late adulthood. Changes in EEG sleep of depressed patients and healthy volunteers. Biol Psychiatry 29(10):979–993.  https://doi.org/10.1016/0006-3223(91)90355-p CrossRefPubMedGoogle Scholar
  377. Lees G, Leach MJ (1993) Studies on the mechanism of action of the novel anticonvulsant lamotrigine (Lamictal) using primary neurological cultures from rat cortex. Brain Res 612(1-2):190–199PubMedCrossRefGoogle Scholar
  378. Legros S, Mendlewicz J, Wybran J (1985) Immunoglobulins, autoantibodies and other serum protein fractions in psychiatric disorders. Eur Arch Psychiatry Neurol Sci 235(1):9–11PubMedCrossRefGoogle Scholar
  379. Lehericy S, Baulac M, Chiras J, Pierot L, Martin N, Pillon B, Deweer B, Dubois B, Marsault C (1994) Amygdalohippocampal MR volume measurements in the early stages of Alzheimer disease. AJNR Am J Neuroradiol 15(5):929–937PubMedGoogle Scholar
  380. Lehmann S, Chiesa R, Harris DA (1997) Evidence for a six-transmembrane domain structure of presenilin 1. J Biol Chem 272(18):12047–12051.  https://doi.org/10.1074/jbc.272.18.12047 CrossRefPubMedGoogle Scholar
  381. Leith NJ, Barrett RJ (1976) Amphetamine and the reward system: evidence for tolerance and post-drug depression. Psychopharmacologia 46(1):19–25.  https://doi.org/10.1007/bf00421544 CrossRefPubMedGoogle Scholar
  382. Lesser IM, Miller BL, Boone KB, Hill-Gutierrez E, Mehringer CM, Wong K, Mena I (1991) Brain injury and cognitive function in late-onset psychotic depression. J Neuropsychiatry Clin Neurosci 3(1):33–40.  https://doi.org/10.1176/jnp.3.1.33 CrossRefPubMedGoogle Scholar
  383. Lett BT (1989) Repeated exposures intensify rather than diminish the rewarding effects of amphetamine, morphine, and cocaine. Psychopharmacology 98(3):357–362.  https://doi.org/10.1007/Bf00451687 CrossRefPubMedGoogle Scholar
  384. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, Yu CE, Jondro PD, Schmidt SD, Wang K et al (1995a) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269(5226):973–977.  https://doi.org/10.1126/science.7638622 CrossRefPubMedGoogle Scholar
  385. Levy-Lahad E, Wijsman E, Nemens E, Anderson L, Goddard K, Weber J, Bird T, Schellenberg G (1995b) A familial Alzheimer’s disease locus on chromosome 1. Science 269(5226):970–973.  https://doi.org/10.1126/science.7638621 CrossRefPubMedGoogle Scholar
  386. Lewis DA, Pierri JN, Volk DW, Melchitzky DS, Woo TU (1999a) Altered GABA neurotransmission and prefrontal cortical dysfunction in schizophrenia. Biol Psychiatry 46(5):616–626.  https://doi.org/10.1016/s0006-3223(99)00061-x CrossRefPubMedGoogle Scholar
  387. Lewis R, Kapur S, Jones C, DaSilva J, Brown GM, Wilson AA, Houle S, Zipursky RB (1999b) Serotonin 5-HT2 receptors in schizophrenia: a PET study using [18F]setoperone in neuroleptic-naive patients and normal subjects. Am J Psychiatry 156(1):72–78.  https://doi.org/10.1176/ajp.156.1.72 CrossRefPubMedGoogle Scholar
  388. Li X, Greenwald I (1998) Additional evidence for an eight-transmembrane-domain topology for Caenorhabditis elegans and human presenilins. Proc Natl Acad Sci U S A 95(12):7109–7114.  https://doi.org/10.1073/pnas.95.12.7109 CrossRefPubMedPubMedCentralGoogle Scholar
  389. Li Y, Sun H, Chen Z, Xu H, Bu G, Zheng H (2016) Implications of GABAergic neurotransmission in Alzheimer’s disease. Front Aging Neurosci 8:31.  https://doi.org/10.3389/fnagi.2016.00031 CrossRefPubMedPubMedCentralGoogle Scholar
  390. Liddle PF, Frith CD, Friston KJ (1992) Supervisory mental processes in schizophrenia – a study using pet. Schizophr Res 6(2):148–148.  https://doi.org/10.1016/0920-9964(92)90221-P CrossRefGoogle Scholar
  391. Lieberman JA, Kinon BJ, Loebel AD (1990) Dopaminergic mechanisms in idiopathic and drug-induced psychoses. Schizophr Bull 16(1):97–110.  https://doi.org/10.1093/schbul/16.1.97 CrossRefPubMedGoogle Scholar
  392. Lim KO, Rosenbloom MJ, Faustman WO, Sullivan EV, Pfefferbaum A (1999) Cortical gray matter deficit in patients with bipolar disorder. Schizophr Res 40(3):219–227PubMedCrossRefGoogle Scholar
  393. Lim CS, Baldessarini RJ, Vieta E, Yucel M, Bora E, Sim K (2013) Longitudinal neuroimaging and neuropsychological changes in bipolar disorder patients: review of the evidence. Neurosci Biobehav Rev 37(3):418–435.  https://doi.org/10.1016/j.neubiorev.2013.01.003 CrossRefPubMedGoogle Scholar
  394. Lin N, Eisen SA, Scherrer JF, Goldberg J, True WR, Lyons MJ, Tsuang MT (1996) The influence of familial and non-familial factors on the association between major depression and substance abuse dependence in 1874 monozygotic male twin pairs. Drug Alcohol Depend 43(1-2):49–55.  https://doi.org/10.1016/S0376-8716(96)01287-2 CrossRefPubMedGoogle Scholar
  395. Lin A, Reniers RL, Wood SJ (2013) Clinical staging in severe mental disorder: evidence from neurocognition and neuroimaging. Br J Psychiatry Suppl 54:s11–s17.  https://doi.org/10.1192/bjp.bp.112.119156 CrossRefPubMedGoogle Scholar
  396. Liu L, Zheng T, Morris MJ, Wallengren C, Clarke AL, Reid CA, Petrou S, O’Brien TJ (2006) The mechanism of carbamazepine aggravation of absence seizures. J Pharmacol Exp Ther 319(2):790–798.  https://doi.org/10.1124/jpet.106.104968 CrossRefPubMedGoogle Scholar
  397. Lochhead RA, Parsey RV, Oquendo MA, Mann JJ (2004) Regional brain gray matter volume differences in patients with bipolar disorder as assessed by optimized voxel-based morphometry. Biol Psychiatry 55(12):1154–1162.  https://doi.org/10.1016/j.biopsych.2004.02.026 CrossRefPubMedGoogle Scholar
  398. Lopez-Munoz F, Alamo C, Juckel G, Assion HJ (2007) Half a century of antidepressant drugs: on the clinical introduction of monoamine oxidase inhibitors, tricyclics, and tetracyclics. Part I: monoamine oxidase inhibitors. J Clin Psychopharmacol 27(6):555–559.  https://doi.org/10.1097/jcp.0b013e3181bb617 CrossRefPubMedGoogle Scholar
  399. Lorrain DS, Arnold GM, Vezina P (2000) Previous exposure to amphetamine increases incentive to obtain the drug: long-lasting effects revealed by the progressive ratio schedule. Behav Brain Res 107(1-2):9–19.  https://doi.org/10.1016/s0166-4328(99)00109-6 CrossRefPubMedGoogle Scholar
  400. Lovinger DM (1997) Alcohols and neurotransmitter gated ion channels: past, present and future. Naunyn Schmiedebergs Arch Pharmacol 356(3):267–282.  https://doi.org/10.1007/pl00005051 CrossRefPubMedGoogle Scholar
  401. Lyford GL, Yamagata K, Kaufmann WE, Barnes CA, Sanders LK, Copeland NG, Gilbert DJ, Jenkins NA, Lanahan AA, Worley PF (1995) Arc, a growth-factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14(2):433–445.  https://doi.org/10.1016/0896-6273(95)90299-6 CrossRefPubMedGoogle Scholar
  402. Lynch M (1998) Age-related impairment in long-term potentiation in hippocampus: a role for the cytokine, interleukin-1β? Prog Neurobiol 56(5):571–589.  https://doi.org/10.1016/s0301-0082(98)00054-9 CrossRefPubMedGoogle Scholar
  403. Lyons DM, Yang C, Sawyer-Glover AM, Moseley ME, Schatzberg AF (2001) Early life stress and inherited variation in monkey hippocampal volumes. Arch Gen Psychiatry 58(12):1145–1151.  https://doi.org/10.1001/archpsyc.58.12.1145 CrossRefPubMedGoogle Scholar
  404. Lyoo IK, Kim MJ, Stoll AL, Demopulos CM, Parow AM, Dager SR, Friedman SD, Dunner DL, Renshaw PF (2004) Frontal lobe gray matter density decreases in bipolar I disorder. Biol Psychiatry 55(6):648–651.  https://doi.org/10.1016/j.biopsych.2003.10.017 CrossRefPubMedGoogle Scholar
  405. Lyoo IK, Sung YH, Dager SR, Friedman SD, Lee JY, Kim SJ, Kim N, Dunner DL, Renshaw PF (2006) Regional cerebral cortical thinning in bipolar disorder. Bipolar Disord 8(1):65–74.  https://doi.org/10.1111/j.1399-5618.2006.00284.x CrossRefPubMedGoogle Scholar
  406. Maas JW (1975) Biogenic amines and depression. Biochemical and pharmacological separation of two types of depression. Arch Gen Psychiatry 32(11):1357–1361PubMedCrossRefGoogle Scholar
  407. Maes M, Meltzer HY (1995) The serotonin hypothesis of major depression. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven Press, New York, NY, pp 933–944Google Scholar
  408. Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240(4852):622–630.  https://doi.org/10.1126/science.3283935 CrossRefPubMedGoogle Scholar
  409. Malhi GS, Lagopoulos J, Owen AM, Ivanovski B, Shnier R, Sachdev P (2007) Reduced activation to implicit affect induction in euthymic bipolar patients: an fMRI study. J Affect Disord 97(1-3):109–122.  https://doi.org/10.1016/j.jad.2006.06.005 CrossRefPubMedGoogle Scholar
  410. Malm H (2012) Prenatal exposure to selective serotonin reuptake inhibitors and infant outcome. Ther Drug Monit 34(6):607–614.  https://doi.org/10.1097/FTD.0b013e31826d07ea CrossRefPubMedGoogle Scholar
  411. Mann DMA (1988) The pathological association between down syndrome and Alzheimer-disease. Mech Ageing Dev 43(2):99–136.  https://doi.org/10.1016/0047-6374(88)90041-3 CrossRefPubMedGoogle Scholar
  412. Mann DMA (1998) Neuropathological and neurochemical aspects of Alzheimer’s disease. In: Iversen LL, Iversen SD, Snyder SH (eds) Psychopharmacology of the aging nervous system. Plenum, New York, NY, pp 1–67Google Scholar
  413. Marlinge E, Bellivier F, Houenou J (2014) White matter alterations in bipolar disorder: potential for drug discovery and development. Bipolar Disord 16(2):97–112.  https://doi.org/10.1111/bdi.12135 CrossRefPubMedGoogle Scholar
  414. Marmol F (2008) Lithium: bipolar disorder and neurodegenerative diseases Possible cellular mechanisms of the therapeutic effects of lithium. Prog Neuropsychopharmacol Biol Psychiatry 32(8):1761–1771.  https://doi.org/10.1016/j.pnpbp.2008.08.012 CrossRefPubMedGoogle Scholar
  415. Marshall DL, Redfern PH, Wonnacott S (2002) Presynaptic nicotinic modulation of dopamine release in the three ascending pathways studied by in vivo microdialysis: comparison of naive and chronic nicotine-treated rats. J Neurochem 68(4):1511–1519.  https://doi.org/10.1046/j.1471-4159.1997.68041511.x CrossRefGoogle Scholar
  416. Martorana A, Koch G (2014) Is dopamine involved in Alzheimer’s disease? Front Aging Neurosci 6:252.  https://doi.org/10.3389/fnagi.2014.00252 CrossRefPubMedPubMedCentralGoogle Scholar
  417. Martucci L, Wong AH, De Luca V, Likhodi O, Wong GW, King N, Kennedy JL (2006) N-methyl-D-aspartate receptor NR2B subunit gene GRIN2B in schizophrenia and bipolar disorder: polymorphisms and mRNA levels. Schizophr Res 84(2-3):214–221.  https://doi.org/10.1016/j.schres.2006.02.001 CrossRefPubMedGoogle Scholar
  418. Massman PJ, Delis DC, Butters N, Dupont RM, Gillin JC (1992) The subcortical dysfunction hypothesis of memory deficits in depression: neuropsychological validation in a subgroup of patients. J Clin Exp Neuropsychol 14(5):687–706.  https://doi.org/10.1080/01688639208402856 CrossRefPubMedGoogle Scholar
  419. Matthysse S (1973) Antipsychotic drug actions: a clue to the neuropathology of schizophrenia? Fed Proc 32(2):200–205PubMedGoogle Scholar
  420. Mattson MP, Guo ZH, Geiger JD (1999) Secreted form of amyloid precursor protein enhances basal glucose and glutamate transport and protects against oxidative impairment of glucose and glutamate transport in synaptosomes by a cyclic GMP-mediated mechanism. J Neurochem 73(2):532–537PubMedCrossRefGoogle Scholar
  421. Mayberg HS (1997) Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clin Neurosci 9(3):471–481.  https://doi.org/10.1176/jnp.9.3.471 CrossRefPubMedGoogle Scholar
  422. Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA, Silva JA, Tekell JL, Martin CC, Lancaster JL, Fox PT (1999) Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 156(5):675–682.  https://doi.org/10.1176/ajp.156.5.675 CrossRefPubMedGoogle Scholar
  423. Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK, McGinnis S, Jerabek PA (2000) Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry 48(8):830–843PubMedCrossRefGoogle Scholar
  424. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45(5):651–660.  https://doi.org/10.1016/j.neuron.2005.02.014 CrossRefPubMedGoogle Scholar
  425. McCarthy MJ, Liang S, Spadoni AD, Kelsoe JR, Simmons AN (2014) Whole brain expression of bipolar disorder associated genes: structural and genetic analyses. PLoS One 9(6):e100204.  https://doi.org/10.1371/journal.pone.0100204 CrossRefPubMedPubMedCentralGoogle Scholar
  426. McCullumsmith RE, Kristiansen LV, Beneyto M, Scarr E, Dean B, Meador-Woodruff JH (2007) Decreased NR1, NR2A, and SAP102 transcript expression in the hippocampus in bipolar disorder. Brain Res 1127(1):108–118.  https://doi.org/10.1016/j.brainres.2006.09.011 CrossRefPubMedGoogle Scholar
  427. McCullumsmith RE, Hammond J, Funk A, Meador-Woodruff JH (2012) Recent advances in targeting the ionotropic glutamate receptors in treating schizophrenia. Curr Pharm Biotechnol 13(8):1535–1542PubMedPubMedCentralCrossRefGoogle Scholar
  428. McDonald C, Bullmore ET, Sham PC, Chitnis X, Wickham H, Bramon E, Murray RM (2004) Association of genetic risks for schizophrenia and bipolar disorder with specific and generic brain structural endophenotypes. Arch Gen Psychiatry 61(10):974–984.  https://doi.org/10.1001/archpsyc.61.10.974 CrossRefPubMedGoogle Scholar
  429. McEwen BS (2000) Effects of adverse experiences for brain structure and function. Biol Psychiatry 48(8):721–731.  https://doi.org/10.1016/s0006-3223(00)00964-1 CrossRefPubMedGoogle Scholar
  430. McGeer EG, McGeer PL (1999) Brain inflammation in Alzheimer disease and the therapeutic implications. Curr Pharm Des 5(10):821–836PubMedGoogle Scholar
  431. McGeer EG, McGeer PL, Kamo H, Tago H, Harrop R (1986a) Cortical metabolism, acetylcholinesterase staining and pathological changes in Alzheimer’s disease. Can J Neurol Sci 13(4 Suppl):511–516PubMedCrossRefGoogle Scholar
  432. McGeer PL, Kamo H, Harrop R, Li DK, Tuokko H, McGeer EG, Adam MJ, Ammann W, Beattie BL, Calne DB et al (1986b) Positron emission tomography in patients with clinically diagnosed Alzheimer’s disease. Can Med Assoc J 134(6):597–607Google Scholar
  433. McGeer PL, McGeer EG, Kamo H, Wong K (1986c) Positron emission tomography and the possible origins of cytopathology in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 10(3-5):501–518PubMedCrossRefGoogle Scholar
  434. McGeer PL, Akiyama H, Itagaki S, McGeer EG (1989) Immune system response in Alzheimer’s disease. Can J Neurol Sci 16(4 Suppl):516–527.  https://doi.org/10.1017/s0317167100029863 CrossRefPubMedGoogle Scholar
  435. McGeer PL, Rogers J, McGeer EG (1994) Neuroimmune mechanisms in Alzheimer disease pathogenesis. Alzheimer Dis Assoc Disord 8(3):149–158PubMedCrossRefGoogle Scholar
  436. McGrath CL, Kelley ME, Holtzheimer PE, Dunlop BW, Craighead WE, Franco AR, Craddock RC, Mayberg HS (2013) Toward a neuroimaging treatment selection biomarker for major depressive disorder. JAMA Psychiat 70(8):821–829.  https://doi.org/10.1001/jamapsychiatry.2013.143 CrossRefGoogle Scholar
  437. McGue M, Elkins I, Iacono WG (2000) Genetic and environmental influences on adolescent substance use and abuse. Am J Med Genet 96(5):671–677.  https://doi.org/10.1002/1096-8628(20001009)96:5<671::Aid-Ajmg14>3.0.Co;2-W CrossRefPubMedGoogle Scholar
  438. McGuire P, Howes OD, Stone J, Fusar-Poli P (2008) Functional neuroimaging in schizophrenia: diagnosis and drug discovery. Trends Pharmacol Sci 29(2):91–98.  https://doi.org/10.1016/j.tips.2007.11.005 CrossRefPubMedGoogle Scholar
  439. Meda L, Cassatella MA, Szendrei GI, Otvos L Jr, Baron P, Villalba M, Ferrari D, Rossi F (1995) Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 374(6523):647–650.  https://doi.org/10.1038/374647a0 CrossRefPubMedGoogle Scholar
  440. Melis M, Gessa GL, Diana M (2000) Different mechanisms for dopaminergic excitation induced by opiates and cannabinoids in the rat midbrain. Prog Neuropsychopharmacol Biol Psychiatry 24(6):993–1006.  https://doi.org/10.1016/s0278-5846(00)00119-6 CrossRefPubMedGoogle Scholar
  441. Meltzer CC, Price JC, Mathis CA, Greer PJ, Cantwell MN, Houck PR, Mulsant BH, Ben-Eliezer D, Lopresti B, DeKosky ST, Reynolds CF 3rd (1999) PET imaging of serotonin type 2A receptors in late-life neuropsychiatric disorders. Am J Psychiatry 156(12):1871–1878.  https://doi.org/10.1176/ajp.156.12.1871 CrossRefPubMedGoogle Scholar
  442. Mereu G, Yoon KW, Boi V, Gessa GL, Naes L, Westfall TC (1987) Preferential stimulation of ventral tegmental area dopaminergic neurons by nicotine. Eur J Pharmacol 141(3):395–399.  https://doi.org/10.1016/0014-2999(87)90556-5 CrossRefPubMedGoogle Scholar
  443. Merikangas KR, Stolar M, Stevens DE, Goulet J, Preisig MA, Fenton B, Zhang HP, O’Malley SS, Rounsaville BJ (1998) Familial transmission of substance use disorders. Arch Gen Psychiatry 55(11):973–979.  https://doi.org/10.1001/archpsyc.55.11.973 CrossRefPubMedGoogle Scholar
  444. Mermelstein PG, Becker JB (1995) Increased extracellular dopamine in the nucleus accumbens and striatum of the female rat during paced copulatory behavior. Behav Neurosci 109(2):354–365.  https://doi.org/10.1037//0735-7044.109.2.354 CrossRefPubMedGoogle Scholar
  445. Mervaala E, Fohr J, Kononen M, Valkonen-Korhonen M, Vainio P, Partanen K, Partanen J, Tiihonen J, Viinamaki H, Karjalainen AK, Lehtonen J (2000) Quantitative MRI of the hippocampus and amygdala in severe depression. Psychol Med 30(1):117–125.  https://doi.org/10.1017/s0033291799001567 CrossRefPubMedGoogle Scholar
  446. Mesulam MM (1996) The systems-level organization of cholinergic innervation in the human cerebral cortex and its alterations in Alzheimer’s disease. Prog Brain Res 109:285–297PubMedCrossRefGoogle Scholar
  447. Mesulam MM, Mufson EJ, Levey AI, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214(2):170–197.  https://doi.org/10.1002/cne.902140206 CrossRefPubMedGoogle Scholar
  448. Meunier H, Carraz G, Neunier Y, Eymard P, Aimard M (1963) Pharmacodynamic properties of N-dipropylacetic acid. Therapie 18:435–438PubMedGoogle Scholar
  449. Meyer JH, Kapur S, Houle S, DaSilva J, Owczarek B, Brown GM, Wilson AA, Kennedy SH (1999) Prefrontal cortex 5-HT2 receptors in depression: an [18F]setoperone PET imaging study. Am J Psychiatry 156(7):1029–1034.  https://doi.org/10.1176/ajp.156.7.1029 CrossRefPubMedGoogle Scholar
  450. Meyer-Lindenberg A, Miletich RS, Kohn PD, Esposito G, Carson RE, Quarantelli M, Weinberger DR, Berman KF (2002) Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci 5(3):267–271.  https://doi.org/10.1038/nn804 CrossRefPubMedGoogle Scholar
  451. Mialet JP, Pope HG, Yurgelun-Todd D (1996) Impaired attention in depressive states: a non-specific deficit? Psychol Med 26(5):1009–1020.  https://doi.org/10.1017/s0033291700035339 CrossRefPubMedGoogle Scholar
  452. Miller HL, Delgado PL, Salomon RM, Heninger GR, Charney DS (1996) Effects of alpha-methyl-para-tyrosine (AMPT) in drug-free depressed patients. Neuropsychopharmacology 14(3):151–157.  https://doi.org/10.1016/0893-133X(95)00072-L CrossRefPubMedGoogle Scholar
  453. Miller CL, Llenos IC, Dulay JR, Weis S (2006) Upregulation of the initiating step of the kynurenine pathway in postmortem anterior cingulate cortex from individuals with schizophrenia and bipolar disorder. Brain Res 1073-1074:25–37.  https://doi.org/10.1016/j.brainres.2005.12.056 CrossRefPubMedGoogle Scholar
  454. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41(4):479–486PubMedCrossRefGoogle Scholar
  455. Mitchell JB, Gratton A (1991) Opioid modulation and sensitization of dopamine release elicited by sexually relevant stimuli: a high speed chronoamperometric study in freely behaving rats. Brain Res 551(1-2):20–27.  https://doi.org/10.1016/0006-8993(91)90908-e CrossRefPubMedGoogle Scholar
  456. Mitchell PB, Hadzi-Pavlovic D (2000) Lithium treatment for bipolar disorder. Bull World Health Organ 78(4):515–517PubMedPubMedCentralGoogle Scholar
  457. Mizrahi R, Kenk M, Suridjan I, Boileau I, George TP, McKenzie K, Wilson AA, Houle S, Rusjan P (2014) Stress-induced dopamine response in subjects at clinical high risk for schizophrenia with and without concurrent cannabis use. Neuropsychopharmacology 39(6):1479–1489.  https://doi.org/10.1038/npp.2013.347 CrossRefPubMedPubMedCentralGoogle Scholar
  458. Mizukami K, Grayson DR, Ikonomovic MD, Sheffield R, Armstrong DM (1998a) GABAA receptor beta 2 and beta 3 subunits mRNA in the hippocampal formation of aged human brain with Alzheimer-related neuropathology. Brain Res Mol Brain Res 56(1-2):268–272PubMedCrossRefGoogle Scholar
  459. Mizukami K, Ikonomovic MD, Grayson DR, Sheffield R, Armstrong DM (1998b) Immunohistochemical study of GABAA receptor alpha1 subunit in the hippocampal formation of aged brains with Alzheimer-related neuropathologic changes. Brain Res 799(1):148–155PubMedCrossRefGoogle Scholar
  460. Monaghan DT, Geddes JW, Yao D, Chung C, Cotman CW (1987) [3H]TCP binding sites in Alzheimer’s disease. Neurosci Lett 73(2):197–200PubMedCrossRefGoogle Scholar
  461. Moore PB, Shepherd DJ, Eccleston D, Macmillan IC, Goswami U, McAllister VL, Ferrier IN (2001) Cerebral white matter lesions in bipolar affective disorder: relationship to outcome. Br J Psychiatry 178:172–176PubMedCrossRefGoogle Scholar
  462. Moore CM, Biederman J, Wozniak J, Mick E, Aleardi M, Wardrop M, Dougherty M, Harpold T, Hammerness P, Randall E, Lyoo IK, Renshaw PF (2007) Mania, glutamate/glutamine and risperidone in pediatric bipolar disorder: a proton magnetic resonance spectroscopy study of the anterior cingulate cortex. J Affect Disord 99(1-3):19–25.  https://doi.org/10.1016/j.jad.2006.08.023 CrossRefPubMedGoogle Scholar
  463. Moorhead TW, McKirdy J, Sussmann JE, Hall J, Lawrie SM, Johnstone EC, McIntosh AM (2007) Progressive gray matter loss in patients with bipolar disorder. Biol Psychiatry 62(8):894–900.  https://doi.org/10.1016/j.biopsych.2007.03.005 CrossRefPubMedGoogle Scholar
  464. Motzkin JC, Philippi CL, Wolf RC, Baskaya MK, Koenigs M (2015) Ventromedial prefrontal cortex is critical for the regulation of amygdala activity in humans. Biol Psychiatry 77(3):276–284.  https://doi.org/10.1016/j.biopsych.2014.02.014 CrossRefPubMedGoogle Scholar
  465. Mueller HT, Meador-Woodruff JH (2004) NR3A NMDA receptor subunit mRNA expression in schizophrenia, depression and bipolar disorder. Schizophr Res 71(2-3):361–370.  https://doi.org/10.1016/j.schres.2004.02.016 CrossRefPubMedGoogle Scholar
  466. Mundo E, Tharmalingham S, Neves-Pereira M, Dalton EJ, Macciardi F, Parikh SV, Bolonna A, Kerwin RW, Arranz MJ, Makoff AJ, Kennedy JL (2003) Evidence that the N-methyl-D-aspartate subunit 1 receptor gene (GRIN1) confers susceptibility to bipolar disorder. Mol Psychiatry 8(2):241–245.  https://doi.org/10.1038/sj.mp.4001218 CrossRefPubMedGoogle Scholar
  467. Munn NA (2000) Microglia dysfunction in schizophrenia: an integrative theory. Med Hypotheses 54(2):198–202.  https://doi.org/10.1054/mehy.1999.0018 CrossRefPubMedGoogle Scholar
  468. Myhrer T (1993) Animal models of Alzheimer’s disease: glutamatergic denervation as an alternative approach to cholinergic denervation. Neurosci Biobehav Rev 17(2):195–202PubMedCrossRefGoogle Scholar
  469. Myhrer T, Danscher G, Fonnum F (2003) Degenerative patterns following denervation of temporal structures in a rat model of mnemonic dysfunction. Brain Res 967(1-2):293–300PubMedCrossRefGoogle Scholar
  470. Nagga K, Bogdanovic N, Marcusson J (1999) GABA transporters (GAT-1) in Alzheimer’s disease. J Neural Transm 106(11-12):1141–1149.  https://doi.org/10.1007/s007020050230 CrossRefPubMedGoogle Scholar
  471. Namba Y, Tomonaga M, Kawasaki H, Otomo E, Ikeda K (1991) Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer’s disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res 541(1):163–166.  https://doi.org/10.1016/0006-8993(91)91092-f CrossRefPubMedGoogle Scholar
  472. Nelson EB, Sax KW, Strakowski SM (1998) Attentional performance in patients with psychotic and nonpsychotic major depression and schizophrenia. Am J Psychiatry 155(1):137–139.  https://doi.org/10.1176/ajp.155.1.137 CrossRefPubMedGoogle Scholar
  473. Nguyen TV, Kosofsky BE, Birnbaum R, Cohen BM, Hyman SE (1992) Differential expression of c-fos and zif268 in rat striatum after haloperidol, clozapine, and amphetamine. Proc Natl Acad Sci U S A 89(10):4270–4274.  https://doi.org/10.1073/pnas.89.10.4270 CrossRefPubMedPubMedCentralGoogle Scholar
  474. Nguyen PV, Abel T, Kandel ER (1994) Requirement of a critical period of transcription for induction of a late phase of LTP. Science 265(5175):1104–1107.  https://doi.org/10.1126/science.8066450 CrossRefPubMedGoogle Scholar
  475. Nisell M, Nomikos GG, Svensson TH (1994a) Infusion of nicotine in the ventral tegmental area or the nucleus accumbens of the rat differentially affects accumbal dopamine release. Pharmacol Toxicol 75(6):348–352.  https://doi.org/10.1111/j.1600-0773.1994.tb00373.x CrossRefPubMedGoogle Scholar
  476. Nisell M, Nomikos GG, Svensson TH (1994b) Systemic nicotine-induced dopamine release in the rat nucleus accumbens is regulated by nicotinic receptors in the ventral tegmental area. Synapse 16(1):36–44.  https://doi.org/10.1002/syn.890160105 CrossRefPubMedGoogle Scholar
  477. Noack CH, Trautner EM (1951) The lithium treatment of maniacal psychosis. Med J Aust 2(7):219–222PubMedGoogle Scholar
  478. Nordberg A (1996) Pharmacological treatment of cognitive dysfunction in dementia disorders. Acta Neurol Scand Suppl 168:87–92PubMedCrossRefGoogle Scholar
  479. Nordstrom AL, Farde L, Wiesel FA, Forslund K, Pauli S, Halldin C, Uppfeldt G (1993) Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients. Biol Psychiatry 33(4):227–235.  https://doi.org/10.1016/0006-3223(93)90288-O CrossRefPubMedGoogle Scholar
  480. Nurmi M, Ashizawa T, Sinclair JD, Kiianmaa K (1996) Effect of prior ethanol experience on dopamine overflow in accumbens of AA and ANA rats. Eur J Pharmacol 315(3):277–283.  https://doi.org/10.1016/s0014-2999(96)00650-4 CrossRefPubMedGoogle Scholar
  481. Nurnberger JI Jr, Koller DL, Jung J, Edenberg HJ, Foroud T, Guella I, Vawter MP, Kelsoe JR, Psychiatric Genomics Consortium Bipolar Group (2014) Identification of pathways for bipolar disorder: a meta-analysis. JAMA Psychiat 71(6):657–664.  https://doi.org/10.1001/jamapsychiatry.2014.176 CrossRefGoogle Scholar
  482. O’Brien CP, Childress AR, McLellan AT, Ehrman R (1992) Classical conditioning in drug-dependent humans. Ann N Y Acad Sci 654:400–415.  https://doi.org/10.1111/j.1749-6632.1992.tb25984.x CrossRefPubMedGoogle Scholar
  483. Ohmori T, Koyama T, Nakamura F, Wang P, Yamashita I (1992) Effect of phencyclidine on spontaneous and N-methyl-D-aspartate (NMDA)-induced efflux of dopamine from superfused slices of rat striatum. Neuropharmacology 31(5):461–467.  https://doi.org/10.1016/0028-3908(92)90084-3 CrossRefPubMedGoogle Scholar
  484. Ohyagi Y, Tabira T (1993) Effect of growth factors and cytokines on expression of amyloid beta protein precursor mRNAs in cultured neural cells. Brain Res Mol Brain Res 18(1-2):127–132PubMedCrossRefGoogle Scholar
  485. Okubo Y, Suhara T, Sudo Y, Toru M (1997a) Possible role of dopamine D1 receptors in schizophrenia. Mol Psychiatry 2(4):291–292PubMedCrossRefGoogle Scholar
  486. Okubo Y, Suhara T, Suzuki K, Kobayashi K, Inoue O, Terasaki O, Someya Y, Sassa T, Sudo Y, Matsushima E, Iyo M, Tateno Y, Toru M (1997b) Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385(6617):634–636.  https://doi.org/10.1038/385634a0 CrossRefPubMedGoogle Scholar
  487. Okuma T, Kishimoto A (1998) A history of investigation on the mood stabilizing effect of carbamazepine in Japan. Psychiatry Clin Neurosci 52(1):3–12.  https://doi.org/10.1111/j.1440-1819.1998.tb00966.x CrossRefPubMedGoogle Scholar
  488. Olds ME (1982) Reinforcing effects of morphine in the nucleus accumbens. Brain Res 237(2):429–440.  https://doi.org/10.1016/0006-8993(82)90454-1 CrossRefPubMedGoogle Scholar
  489. Olney JW (1989) Excitatory amino acids and neuropsychiatric disorders. Biol Psychiatry 26(5):505–525.  https://doi.org/10.1016/0006-3223(89)90072-3 CrossRefPubMedGoogle Scholar
  490. Olney JW, Farber NB (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52(12):998–1007.  https://doi.org/10.1001/archpsyc.1995.03950240016004 CrossRefPubMedGoogle Scholar
  491. Ongur D, Drevets WC, Price JL (1998) Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci U S A 95(22):13290–13295PubMedPubMedCentralCrossRefGoogle Scholar
  492. Onteniente B, Simon H, Taghzouti K, Geffard M, Lemoal M, Calas A (1987) Dopamine Gaba interactions in the nucleus-accumbens and lateral septum of the rat. Brain Res 421(1–2):391–396.  https://doi.org/10.1016/0006-8993(87)91315-1 CrossRefPubMedGoogle Scholar
  493. Overmyer M, Helisalmi S, Soininen H, Laakso M, Riekkinen P Sr, Alafuzoff I (1999) Astrogliosis and the ApoE genotype. an immunohistochemical study of postmortem human brain tissue. Dement Geriatr Cogn Disord 10(4):252–257.  https://doi.org/10.1159/000017128 CrossRefPubMedGoogle Scholar
  494. Pacchiarotti I, Bond DJ, Baldessarini RJ, Nolen WA, Grunze H, Licht RW, Post RM, Berk M, Goodwin GM, Sachs GS, Tondo L, Findling RL, Youngstrom EA, Tohen M, Undurraga J, Gonzalez-Pinto A, Goldberg JF, Yildiz A, Altshuler LL, Calabrese JR, Mitchell PB, Thase ME, Koukopoulos A, Colom F, Frye MA, Malhi GS, Fountoulakis KN, Vazquez G, Perlis RH, Ketter TA, Cassidy F, Akiskal H, Azorin JM, Valenti M, Mazzei DH, Lafer B, Kato T, Mazzarini L, Martinez-Aran A, Parker G, Souery D, Ozerdem A, McElroy SL, Girardi P, Bauer M, Yatham LN, Zarate CA, Nierenberg AA, Birmaher B, Kanba S, El-Mallakh RS, Serretti A, Rihmer Z, Young AH, Kotzalidis GD, MacQueen GM, Bowden CL, Ghaemi SN, Lopez-Jaramillo C, Rybakowski J, Ha K, Perugi G, Kasper S, Amsterdam JD, Hirschfeld RM, Kapczinski F, Vieta E (2013) The International Society for Bipolar Disorders (ISBD) task force report on antidepressant use in bipolar disorders. Am J Psychiatry 170(11):1249–1262.  https://doi.org/10.1176/appi.ajp.2013.13020185 CrossRefPubMedPubMedCentralGoogle Scholar
  495. Pakkenberg B (1993) Total nerve cell number in neocortex in chronic schizophrenics and controls estimated using optical disectors. Biol Psychiatry 34(11):768–772.  https://doi.org/10.1016/0006-3223(93)90065-l CrossRefPubMedGoogle Scholar
  496. Palmer AM, DeKosky ST (1993) Monoamine neurons in aging and Alzheimer’s disease. J Neural Transm Gen Sect 91(2-3):135–159PubMedCrossRefGoogle Scholar
  497. Palmer AM, Gershon S (1990) Is the neuronal basis of Alzheimer’s disease cholinergic or glutamatergic? FASEB J 4(10):2745–2752PubMedCrossRefGoogle Scholar
  498. Palmer AM, Francis PT, Benton JS, Sims NR, Mann DM, Neary D, Snowden JS, Bowen DM (1987a) Presynaptic serotonergic dysfunction in patients with Alzheimer’s disease. J Neurochem 48(1):8–15PubMedCrossRefGoogle Scholar
  499. Palmer AM, Francis PT, Bowen DM, Benton JS, Neary D, Mann DM, Snowden JS (1987b) Catecholaminergic neurones assessed ante-mortem in Alzheimer’s disease. Brain Res 414(2):365–375PubMedCrossRefGoogle Scholar
  500. Palmer AM, Wilcock GK, Esiri MM, Francis PT, Bowen DM (1987c) Monoaminergic innervation of the frontal and temporal lobes in Alzheimer’s disease. Brain Res 401(2):231–238PubMedCrossRefGoogle Scholar
  501. Pantel J, Schroder J, Schad LR, Friedlinger M, Knopp MV, Schmitt R, Geissler M, Bluml S, Essig M, Sauer H (1997) Quantitative magnetic resonance imaging and neuropsychological functions in dementia of the Alzheimer type. Psychol Med 27(1):221–229PubMedCrossRefGoogle Scholar
  502. Parsey RV, Hwang D, Simpson N, Kegeles L, Anjivel S, Zea-Ponce Y, Lombardo I, Popilskis S, Van Heertum R, Mann JJ, Laruelle M (1998) Kinetic derivation of serotonin 5HT-1A receptor binding potential with [C-11]carbonyl-WAY 100635 and competition studies with endogenous serotonin. J Nucl Med 39(5):167p–167pGoogle Scholar
  503. Pavuluri MN, O’Connor MM, Harral E, Sweeney JA (2007) Affective neural circuitry during facial emotion processing in pediatric bipolar disorder. Biol Psychiatry 62(2):158–167.  https://doi.org/10.1016/j.biopsych.2006.07.011 CrossRefPubMedGoogle Scholar
  504. Pearlson GD, Marsh L (1999) Structural brain imaging in schizophrenia: a selective review. Biol Psychiatry 46(5):627–649.  https://doi.org/10.1016/s0006-3223(99)00071-2 CrossRefPubMedGoogle Scholar
  505. Pearlson GD, Barta PE, Powers RE, Menon RR, Richards SS, Aylward EH, Federman EB, Chase GA, Petty RG, Tien AY (1997) Ziskind-Somerfeld Research Award 1996. Medial and superior temporal gyral volumes and cerebral asymmetry in schizophrenia versus bipolar disorder. Biol Psychiatry 41(1):1–14.  https://doi.org/10.1016/s0006-3223(96)00373-3 CrossRefPubMedGoogle Scholar
  506. Pearson RC, Esiri MM, Hiorns RW, Wilcock GK, Powell TP (1985) Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease. Proc Natl Acad Sci U S A 82(13):4531–4534PubMedPubMedCentralCrossRefGoogle Scholar
  507. Penit-Soria J, Audinat E, Crepel F (1987) Excitation of rat prefrontal cortical neurons by dopamine: an in vitro electrophysiological study. Brain Res 425(2):263–274.  https://doi.org/10.1016/0006-8993(87)90509-9 CrossRefPubMedGoogle Scholar
  508. Perl DP (2010) Neuropathology of Alzheimer’s disease. Mount Sinai J Med 77(1):32–42.  https://doi.org/10.1002/msj.20157 CrossRefGoogle Scholar
  509. Perlis RH, Sachs GS, Lafer B, Otto MW, Faraone SV, Kane JM, Rosenbaum JF (2002) Effect of abrupt change from standard to low serum levels of lithium: a reanalysis of double-blind lithium maintenance data. Am J Psychiatry 159(7):1155–1159.  https://doi.org/10.1176/appi.ajp.159.7.1155 CrossRefPubMedGoogle Scholar
  510. Perry EK, Morris CM, Court JA, Cheng A, Fairbairn AF, McKeith IG, Irving D, Brown A, Perry RH (1995) Alteration in nicotine binding sites in Parkinson's disease, Lewy body dementia and Alzheimer’s disease: possible index of early neuropathology. Neuroscience 64(2):385–395PubMedCrossRefGoogle Scholar
  511. Pettit HO, Justice JB (1989) Dopamine in the nucleus accumbens during cocaine self-administration as studied by in vivo microdialysis. Pharmacol Biochem Behav 34(4):899–904.  https://doi.org/10.1016/0091-3057(89)90291-8 CrossRefPubMedGoogle Scholar
  512. Pettit HO, Ettenberg A, Bloom FE, Koob GF (1984) Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology (Berl) 84(2):167–173.  https://doi.org/10.1007/bf00427441 CrossRefGoogle Scholar
  513. Piazza PV, Deminiere JM, le Moal M, Simon H (1990) Stress- and pharmacologically-induced behavioral sensitization increases vulnerability to acquisition of amphetamine self-administration. Brain Res 514(1):22–26.  https://doi.org/10.1016/0006-8993(90)90431-a CrossRefPubMedGoogle Scholar
  514. Pidsley R, Mill J (2011) Epigenetic studies of psychosis: current findings, methodological approaches, and implications for postmortem research. Biol Psychiatry 69(2):146–156.  https://doi.org/10.1016/j.biopsych.2010.03.029 CrossRefPubMedGoogle Scholar
  515. Pierce RC, Kalivas PW (1997) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Brain Res Rev 25(2):192–216.  https://doi.org/10.1016/s0165-0173(97)00021-0 CrossRefPubMedGoogle Scholar
  516. Pilowsky LS, Bressan RA, Stone JM, Erlandsson K, Mulligan RS, Krystal JH, Ell PJ (2006) First in vivo evidence of an NMDA receptor deficit in medication-free schizophrenic patients. Mol Psychiatry 11(2):118–119.  https://doi.org/10.1038/sj.mp.4001751 CrossRefPubMedGoogle Scholar
  517. Pogarell O, Koch W, Karch S, Dehning S, Muller N, Tatsch K, Poepperl G, Moller HJ (2012) Dopaminergic neurotransmission in patients with schizophrenia in relation to positive and negative symptoms. Pharmacopsychiatry 45(Suppl 1):S36–S41.  https://doi.org/10.1055/s-0032-1306313 CrossRefPubMedGoogle Scholar
  518. Ponte P, Gonzalez-DeWhitt P, Schilling J, Miller J, Hsu D, Greenberg B, Davis K, Wallace W, Lieberburg I, Fuller F (1988) A new A4 amyloid mRNA contains a domain homologous to serine proteinase inhibitors. Nature 331(6156):525–527.  https://doi.org/10.1038/331525a0 CrossRefPubMedGoogle Scholar
  519. Pontieri FE, Tanda G, Orzi F, Di Chiara G (1996) Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 382(6588):255–257.  https://doi.org/10.1038/382255a0 CrossRefPubMedGoogle Scholar
  520. Portet F, Scarmeas N, Cosentino S, Helzner EP, Stern Y (2009) Extrapyramidal signs before and after diagnosis of incident Alzheimer disease in a prospective population study. Arch Neurol 66(9):1120–1126.  https://doi.org/10.1001/archneurol.2009.196 CrossRefPubMedPubMedCentralGoogle Scholar
  521. Porto FH, Leite MA, Fontenelle LF, Marrocos RP, Szczerback NF, de Freitas MR (2009) The Syndrome of Irreversible Lithium-Effectuated Neurotoxicity (SILENT): one-year follow-up of a single case. J Neurol Sci 277(1-2):172–173.  https://doi.org/10.1016/j.jns.2008.10.010 CrossRefPubMedGoogle Scholar
  522. Posner J, Cha J, Wang Z, Talati A, Warner V, Gerber A, Peterson BS, Weissman M (2016) Increased default mode network connectivity in individuals at high familial risk for depression. Neuropsychopharmacology 41(7):1759–1767.  https://doi.org/10.1038/npp.2015.342 CrossRefPubMedGoogle Scholar
  523. van Praag HM (1971) The position of biological psychiatry among the psychiatric disciplines. Compr Psychiatry 12(1):1–7PubMedCrossRefGoogle Scholar
  524. Price LH, Malison RT, McDougle CJ, McCance-Katz EF, Owen KR, Heninger GR (1997) Neurobiology of tryptophan depletion in depression: effects of m-chlorophenylpiperazine (mCPP). Neuropsychopharmacology 17(5):342–350.  https://doi.org/10.1016/S0893-133X(97)00084-5 CrossRefPubMedGoogle Scholar
  525. Price LH, Malison RT, McDougle CJ, Pelton GH, Heninger GR (1998) The neurobiology of tryptophan depletion in depression: effects of intravenous tryptophan infusion. Biol Psychiatry 43(5):339–347.  https://doi.org/10.1016/s0006-3223(97)00284-9 CrossRefPubMedGoogle Scholar
  526. Procter AW, Wong EH, Stratmann GC, Lowe SL, Bowen DM (1989) Reduced glycine stimulation of [3H]MK-801 binding in Alzheimer’s disease. J Neurochem 53(3):698–704PubMedCrossRefGoogle Scholar
  527. Quinn PD, Harden KP (2013) Differential changes in impulsivity and sensation seeking and the escalation of substance use from adolescence to early adulthood. Dev Psychopathol 25(1):223–239.  https://doi.org/10.1017/S0954579412000284 CrossRefPubMedGoogle Scholar
  528. Raedler TJ, Knable MB, Lafargue T, Urbina RA, Egan MF, Pickar D, Weinberger DR (1999) In vivo determination of striatal dopamine D2 receptor occupancy in patients treated with olanzapine. Psychiatry Res 90(2):81–90PubMedCrossRefGoogle Scholar
  529. Ragland JD, Gur RC, Glahn DC, Censits DM, Smith RJ, Lazarev MG, Alavi A, Gur RE (1998) Frontotemporal cerebral blood flow change during executive and declarative memory tasks in schizophrenia: a positron emission tomography study. Neuropsychology 12(3):399–413.  https://doi.org/10.1037//0894-4105.12.3.399 CrossRefPubMedPubMedCentralGoogle Scholar
  530. Rahimi R, Nikfar S, Abdollahi M (2006) Pregnancy outcomes following exposure to serotonin reuptake inhibitors: a meta-analysis of clinical trials. Reprod Toxicol 22(4):571–575.  https://doi.org/10.1016/j.reprotox.2006.03.019 CrossRefPubMedGoogle Scholar
  531. Rajkowska G (1997) Morphometric methods for studying the prefrontal cortex in suicide victims and psychiatric patients. Ann N Y Acad Sci 836(1 Neurobiology):253–268.  https://doi.org/10.1111/j.1749-6632.1997.tb52364.x CrossRefPubMedGoogle Scholar
  532. Rajkowska G, Selemon LD, Goldman-Rakic PS (1998) Neuronal and glial somal size in the prefrontal cortex: a postmortem morphometric study of schizophrenia and Huntington disease. Arch Gen Psychiatry 55(3):215–224.  https://doi.org/10.1001/archpsyc.55.3.215 CrossRefPubMedGoogle Scholar
  533. Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, Overholser JC, Roth BL, Stockmeier CA (1999) Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. See accompanying Editorial, in this issue. Biol Psychiatry 45(9):1085–1098.  https://doi.org/10.1016/s0006-3223(99)00041-4 CrossRefPubMedGoogle Scholar
  534. Rajkowska G, Halaris A, Selemon LD (2001) Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder. Biol Psychiatry 49(9):741–752.  https://doi.org/10.1016/s0006-3223(01)01080-0 CrossRefPubMedGoogle Scholar
  535. Rao ML, Ruhrmann S, Retey B, Liappis N, Fuger J, Kraemer M, Kasper S, Moller HJ (1996) Low plasma thyroid indices of depressed patients are attenuated by antidepressant drugs and influence treatment outcome. Pharmacopsychiatry 29(5):180–186.  https://doi.org/10.1055/s-2007-979568 CrossRefPubMedGoogle Scholar
  536. Raz S, Raz N (1990) Structural brain abnormalities in the major psychoses: a quantitative review of the evidence from computerized imaging. Psychol Bull 108(1):93–108.  https://doi.org/10.1037//0033-2909.108.1.93 CrossRefPubMedGoogle Scholar
  537. Rebeck GW, Harr SD, Strickland DK, Hyman BT (1995) Multiple, diverse senile plaque-associated proteins are ligands of an apolipoprotein E receptor, the alpha 2-macroglobulin receptor/low-density-lipoprotein receptor-related protein. Ann Neurol 37(2):211–217.  https://doi.org/10.1002/ana.410370212 CrossRefPubMedGoogle Scholar
  538. Reid M, Herrera-Marschitz M, Hökfelt T, Terenius L, Ungerstedt U (1988) Differential modulation of striatal dopamine release by intranigral injection of γ-aminobutyric acid (GABA), dynorphin A and substance P. Eur J Pharmacol 147(3):411–420.  https://doi.org/10.1016/0014-2999(88)90176-8 CrossRefPubMedGoogle Scholar
  539. Reid MS, Fox L, Ho LB, Berger SP (2000) Nicotine stimulation of extracellular glutamate levels in the nucleus accumbens: neuropharmacological characterization. Synapse 35(2):129–136.  https://doi.org/10.1002/(SICI)1098-2396(200002)35:2<129::AID-SYN5>3.0.CO;2-D CrossRefPubMedGoogle Scholar
  540. Reimers A, Helde G, Brodtkorb E (2005) Ethinyl estradiol, not progestogens, reduces lamotrigine serum concentrations. Epilepsia 46(9):1414–1417.  https://doi.org/10.1111/j.1528-1167.2005.10105.x CrossRefPubMedGoogle Scholar
  541. Reith ME, Meisler BE, Sershen H, Lajtha A (1986) Structural requirements for cocaine congeners to interact with dopamine and serotonin uptake sites in mouse brain and to induce stereotyped behavior. Biochem Pharmacol 35(7):1123–1129.  https://doi.org/10.1016/0006-2952(86)90148-6 CrossRefPubMedGoogle Scholar
  542. Reith J, Benkelfat C, Sherwin A, Yasuhara Y, Kuwabara H, Andermann F, Bachneff S, Cumming P, Diksic M, Dyve SE, Etienne P, Evans AC, Lal S, Shevell M, Savard G, Wong DF, Chouinard G, Gjedde A (1994) Elevated dopa decarboxylase activity in living brain of patients with psychosis. Proc Natl Acad Sci U S A 91(24):11651–11654.  https://doi.org/10.1073/pnas.91.24.11651 CrossRefPubMedPubMedCentralGoogle Scholar
  543. Reynolds CF III, Kupfer DJ (1987) Sleep research in affective illness: state of the art circa 1987. Sleep 10(3):199–215.  https://doi.org/10.1093/sleep/10.3.199 CrossRefPubMedGoogle Scholar
  544. Richards PM, Ruff RM (1989) Motivational effects on neuropsychological functioning: comparison of depressed versus nondepressed individuals. J Consult Clin Psychol 57(3):396–402.  https://doi.org/10.1037//0022-006x.57.3.396 CrossRefPubMedGoogle Scholar
  545. Riemann D, Berger M, Voderholzer U (2001) Sleep and depression—results from psychobiological studies: an overview. Biol Psychol 57(1-3):67–103.  https://doi.org/10.1016/s0301-0511(01)00090-4 CrossRefPubMedGoogle Scholar
  546. Rioch DM (1955) Psychiatry as a biological science. Psychiatry 18(4):313–321PubMedCrossRefGoogle Scholar
  547. Risner ME, Jones BE (1980) Intravenous self-administration of cocaine and norcocaine by dogs. Psychopharmacology (Berl) 71(1):83–89.  https://doi.org/10.1007/bf00433258 CrossRefGoogle Scholar
  548. Rive MM, van Rooijen G, Veltman DJ, Phillips ML, Schene AH, Ruhe HG (2013) Neural correlates of dysfunctional emotion regulation in major depressive disorder. A systematic review of neuroimaging studies. Neurosci Biobehav Rev 37(10 Pt 2):2529–2553.  https://doi.org/10.1016/j.neubiorev.2013.07.018 CrossRefPubMedGoogle Scholar
  549. Robert P, Migneco O, Darcourt J, Ricq O, Aubin V, Bonhomme P, Pringuey D, Lapulus F, Darcourt G (1992) Correlation between <sup>99m</sup>Tc – HMPAO brain uptake and severity of dementia in Alzheimer’s disease: assessment using an automatized technique. Dement Geriatr Cogn Disord 3(1):15–20.  https://doi.org/10.1159/000106988 CrossRefGoogle Scholar
  550. Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 396(2):157–198.  https://doi.org/10.1016/s0006-8993(86)80193-7 CrossRefPubMedGoogle Scholar
  551. Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18(3):247–291.  https://doi.org/10.1016/0165-0173(93)90013-p CrossRefPubMedGoogle Scholar
  552. Robitzek EH, Selikoff IJ, Ornstein GG (1952) Chemotherapy of human tuberculosis with hydrazine derivatives of isonicotinic acid; preliminary report of representative cases. Q Bull Sea View Hosp 13(1):27–51PubMedGoogle Scholar
  553. Rodd-Henricks ZA, McKinzie DL, Crile RS, Murphy JM, McBride WJ (2000) Regional heterogeneity for the intracranial self-administration of ethanol within the ventral tegmental area of female Wistar rats. Psychopharmacology 149(3):217–224.  https://doi.org/10.1007/s002139900347 CrossRefPubMedGoogle Scholar
  554. Rogawski MA, Loscher W (2004a) The neurobiology of antiepileptic drugs. Nat Rev Neurosci 5(7):553–564.  https://doi.org/10.1038/nrn1430 CrossRefPubMedGoogle Scholar
  555. Rogawski MA, Loscher W (2004b) The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nat Med 10(7):685–692.  https://doi.org/10.1038/nm1074 CrossRefPubMedGoogle Scholar
  556. Rosa AR, Fountoulakis K, Siamouli M, Gonda X, Vieta E (2011) Is anticonvulsant treatment of mania a class effect? Data from randomized clinical trials. CNS Neurosci Ther 17(3):167–177.  https://doi.org/10.1111/j.1755-5949.2009.00089.x CrossRefPubMedGoogle Scholar
  557. Ross JA, McGonigle P, Van Bockstaele EJ (2015) Locus Coeruleus, norepinephrine and Abeta peptides in Alzheimer’s disease. Neurobiol Stress 2:73–84.  https://doi.org/10.1016/j.ynstr.2015.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  558. Roth RM, Koven NS, Randolph JJ, Flashman LA, Pixley HS, Ricketts SM, Wishart HA, Saykin AJ (2006) Functional magnetic resonance imaging of executive control in bipolar disorder. Neuroreport 17(11):1085–1089.  https://doi.org/10.1097/01.wnr.0000227979.06013.57 CrossRefPubMedGoogle Scholar
  559. Rothman SM, Olney JW (1987) Excitotoxity and the NMDA receptor. Trends Neurosci 10(7):299–302.  https://doi.org/10.1016/0166-2236(87)90177-9 CrossRefGoogle Scholar
  560. Rots NY, de Jong J, Workel JO, Levine S, Cools AR, DeKloet ER (1996) Neonatal maternally deprived rats have as adults elevated basal pituitary-adrenal activity and enhanced susceptibility to apomorphine. J Neuroendocrinol 8(7):501–506.  https://doi.org/10.1046/j.1365-2826.1996.04843.x CrossRefPubMedGoogle Scholar
  561. Rubinsztein JS, Fletcher PC, Rogers RD, Ho LW, Aigbirhio FI, Paykel ES, Robbins TW, Sahakian BJ (2001) Decision-making in mania: a PET study. Brain 124(Pt 12):2550–2563PubMedCrossRefGoogle Scholar
  562. Sabol SZ, Nelson ML, Fisher C, Gunzerath L, Brody CL, Hu S, Sirota LA, Marcus SE, Greenberg BD, Lucas FR, Benjamin J, Murphy DL, Hamer DH (1999) A genetic association for cigarette smoking behavior. Health Psychol 18(1):7–13.  https://doi.org/10.1037//0278-6133.18.1.7 CrossRefPubMedGoogle Scholar
  563. Salzer HM, Lurie ML (1953) Anxiety and depressive states treated with isonicotinyl hydrazide (isoniazid). AMA Arch Neurol Psychiatry 70(3):317–324PubMedCrossRefGoogle Scholar
  564. Sapolsky RM (2000) Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 57(10):925–935.  https://doi.org/10.1001/archpsyc.57.10.925 CrossRefPubMedGoogle Scholar
  565. Sartorius N, Baghai TC, Baldwin DS, Barrett B, Brand U, Fleischhacker W, Goodwin G, Grunze H, Knapp M, Leonard BE, Lieberman J, Nakane Y, Pinder RM, Schatzberg AF, Svestka J, Baumann P, Ghalib K, Markowitz JC, Padberg F, Fink M, Furukawa T, Fountoulakis KN, Jensen P, Kanba S, Riecher-Rossler A (2007) Antidepressant medications and other treatments of depressive disorders: a CINP Task Force report based on a review of evidence. Int J Neuropsychopharmacol 10(Suppl 1):S1–S207.  https://doi.org/10.1017/S1461145707008255 CrossRefPubMedGoogle Scholar
  566. Sassi RB, Brambilla P, Hatch JP, Nicoletti MA, Mallinger AG, Frank E, Kupfer DJ, Keshavan MS, Soares JC (2004) Reduced left anterior cingulate volumes in untreated bipolar patients. Biol Psychiatry 56(7):467–475.  https://doi.org/10.1016/j.biopsych.2004.07.005 CrossRefPubMedGoogle Scholar
  567. Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, Rosi BL, Gusella JF, Crapper-MacLachlan DR, Alberts MJ et al (1993) Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43(8):1467–1472.  https://doi.org/10.1212/wnl.43.8.1467 CrossRefPubMedGoogle Scholar
  568. Savitz JB, Price JL, Drevets WC (2014) Neuropathological and neuromorphometric abnormalities in bipolar disorder: view from the medial prefrontal cortical network. Neurosci Biobehav Rev 42:132–147.  https://doi.org/10.1016/j.neubiorev.2014.02.008 CrossRefPubMedGoogle Scholar
  569. Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122(5):509–522.  https://doi.org/10.1176/ajp.122.5.509 CrossRefPubMedGoogle Scholar
  570. Schioldann J (1999) John Cade’s seminal lithium paper turns fifty. Acta Psychiatr Scand 100(6):403–405PubMedCrossRefGoogle Scholar
  571. Schioldann J (2006) Mogens Abelin Schou (1918–2005) – half a century with lithium – obituary. Hist Psychiatry 17(2):247–252.  https://doi.org/10.1177/0957154x06061602 CrossRefGoogle Scholar
  572. Schioldann J (2011) On periodical depressions and their pathogenesis' by Carl Lange (1886). Hist Psychiatry 22(85 Pt 1):108–130.  https://doi.org/10.1177/0957154X10396807 CrossRefPubMedGoogle Scholar
  573. Schizophrenia Working Group of the Psychiatric Genomics C (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511(7510):421–427.  https://doi.org/10.1038/nature13595 CrossRefGoogle Scholar
  574. Schmidt MJ, Mirnics K (2015) Neurodevelopment, GABA system dysfunction, and schizophrenia. Neuropsychopharmacology 40(1):190–206.  https://doi.org/10.1038/npp.2014.95 CrossRefPubMedGoogle Scholar
  575. Schnack HG, van Haren NE, Nieuwenhuis M, Hulshoff Pol HE, Cahn W, Kahn RS (2016) Accelerated brain aging in schizophrenia: a longitudinal pattern recognition study. Am J Psychiatry 173(6):607–616.  https://doi.org/10.1176/appi.ajp.2015.15070922 CrossRefPubMedGoogle Scholar
  576. Schou M, Juel-Nielsen N, Stromgren E, Voldby H (1954) The treatment of manic psychoses by the administration of lithium salts. J Neurol Neurosurg Psychiatry 17(4):250–260PubMedPubMedCentralCrossRefGoogle Scholar
  577. Schou M, Baastrup PC, Grof P, Weis P, Angst J (1970) Pharmacological and clinical problems of lithium prophylaxis. Br J Psychiatry 116(535):615–619PubMedCrossRefGoogle Scholar
  578. Schulteis G, Markou A, Cole M, Koob GF (1995) Decreased brain reward produced by ethanol withdrawal. Proc Natl Acad Sci U S A 92(13):5880–5884.  https://doi.org/10.1073/pnas.92.13.5880 CrossRefPubMedPubMedCentralGoogle Scholar
  579. Schultz W (1997) The phasic reward signal of primate dopamine neurons. Adv Pharmacol.  https://doi.org/10.1016/s1054-3589(08)60841-8 Google Scholar
  580. Selemon LD (2001) Regionally diverse cortical pathology in schizophrenia: clues to the etiology of the disease. Schizophr Bull 27(3):349–377.  https://doi.org/10.1093/oxfordjournals.schbul.a006881 CrossRefPubMedGoogle Scholar
  581. Selemon LD, Goldman-Rakic PS (1999) The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 45(1):17–25.  https://doi.org/10.1016/s0006-3223(98)00281-9 CrossRefPubMedGoogle Scholar
  582. Selemon LD, Rajkowska G, Goldman-Rakic PS (1998) Elevated neuronal density in prefrontal area 46 in brains from schizophrenic patients: application of a three-dimensional, stereologic counting method. J Comp Neurol 392(3):402–412.  https://doi.org/10.1002/(sici)1096-9861(19980316)392:3<402::aid-cne9>3.0.co;2-5 CrossRefPubMedGoogle Scholar
  583. Selifoff IJ, Robitzek EH, Ornstein GG (1952) Toxicity of hydrazine derivatives of isonicotinic acid in the chemotherapy of human tuberculosis; a preliminary report. Q Bull Sea View Hosp 13(1):17–26PubMedGoogle Scholar
  584. Selikoff IJ, Robitzek EH (1952) Tuberculosis chemotherapy with hydrazine derivatives of isonicotinic acid. Dis Chest 21(4):385–438PubMedCrossRefGoogle Scholar
  585. Selkoe DJ (1994) Normal and abnormal biology of the beta-amyloid precursor protein. Annu Rev Neurosci 17:489–517.  https://doi.org/10.1146/annurev.ne.17.030194.002421 CrossRefPubMedGoogle Scholar
  586. Shah PJ, Ebmeier KP, Glabus MF, Goodwin GM (1998) Cortical grey matter reductions associated with treatment-resistant chronic unipolar depression. Controlled magnetic resonance imaging study. Br J Psychiatry 172(6):527–532.  https://doi.org/10.1192/bjp.172.6.527 CrossRefPubMedGoogle Scholar
  587. Shah PJ, O’Carroll RE, Rogers A, Moffoot AP, Ebmeier KP (1999) Abnormal response to negative feedback in depression. Psychol Med 29(1):63–72.  https://doi.org/10.1017/s0033291798007880 CrossRefPubMedGoogle Scholar
  588. Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW (1996) Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci U S A 93(9):3908–3913.  https://doi.org/10.1073/pnas.93.9.3908 CrossRefPubMedPubMedCentralGoogle Scholar
  589. Sheline YI, Gado MH, Price JL (1998) Amygdala core nuclei volumes are decreased in recurrent major depression. Neuroreport 9(9):2023–2028.  https://doi.org/10.1097/00001756-199806220-00021 CrossRefPubMedGoogle Scholar
  590. Sheline YI, Gado MH, Kraemer HC (2003) Untreated depression and hippocampal volume loss. Am J Psychiatry 160(8):1516–1518.  https://doi.org/10.1176/appi.ajp.160.8.1516 CrossRefPubMedGoogle Scholar
  591. Sheng JG, Ito K, Skinner RD, Mrak RE, Rovnaghi CR, VanEldik LJ, Griffin WST (1996) In vivo and in vitro evidence supporting a role for the inflammatory cytokine interleukin-1 as a driving force in Alzheimer pathogenesis. Neurobiol Aging 17(5):761–766.  https://doi.org/10.1016/0197-4580(96)00104-2 CrossRefPubMedPubMedCentralGoogle Scholar
  592. Shepard TH, Brent RL, Friedman JM, Jones KL, Miller RK, Moore CA, Polifka JE (2002) Update on new developments in the study of human teratogens. Teratology 65(4):153–161.  https://doi.org/10.1002/tera.10032 CrossRefPubMedGoogle Scholar
  593. Shiffman S (1996) Addiction versus stages of change models in predicting smoking cessation – “addiction versus stages of change models” vs “addiction and stages of change models” – comment. Addiction 91(9):1289–1290.  https://doi.org/10.1111/j.1360-0443.1996.tb03614.x CrossRefPubMedGoogle Scholar
  594. Shippenberg TS, Heidbreder C (1995) The δ-opioid receptor antagonist naltrindole prevents sensitization to the conditioned rewarding effects of cocaine. Eur J Pharmacol 280(1):55–61.  https://doi.org/10.1016/0014-2999(95)00185-n CrossRefPubMedGoogle Scholar
  595. Shoaib M, Schindler CW, Goldberg SR, Pauly JR (1997) Behavioural and biochemical adaptations to nicotine in rats: influence of MK801, an NMDA receptor antagonist. Psychopharmacology (Berl) 134(2):121–130.  https://doi.org/10.1007/s002130050433 CrossRefGoogle Scholar
  596. Shorter E (2009) The history of lithium therapy. Bipolar Disord 11(Suppl 2):4–9.  https://doi.org/10.1111/j.1399-5618.2009.00706.x CrossRefPubMedPubMedCentralGoogle Scholar
  597. Shotbolt P, Stokes PR, Owens SF, Toulopoulou T, Picchioni MM, Bose SK, Murray RM, Howes OD (2011) Striatal dopamine synthesis capacity in twins discordant for schizophrenia. Psychol Med 41(11):2331–2338.  https://doi.org/10.1017/S0033291711000341 CrossRefPubMedGoogle Scholar
  598. Siegle GJ, Thompson WK, Collier A, Berman SR, Feldmiller J, Thase ME, Friedman ES (2012) Toward clinically useful neuroimaging in depression treatment: prognostic utility of subgenual cingulate activity for determining depression outcome in cognitive therapy across studies, scanners, and patient characteristics. Arch Gen Psychiatry 69(9):913–924.  https://doi.org/10.1001/archgenpsychiatry.2012.65 CrossRefPubMedPubMedCentralGoogle Scholar
  599. Silberman EK, Weingartner H, Post RM (1983) Thinking disorder in depression. Arch Gen Psychiatry 40(7):775–780.  https://doi.org/10.1001/archpsyc.1983.01790060073009 CrossRefPubMedGoogle Scholar
  600. Silverstone T, McPherson H, Li Q, Doyle T (2003) Deep white matter hyperintensities in patients with bipolar depression, unipolar depression and age-matched control subjects. Bipolar Disord 5(1):53–57PubMedCrossRefGoogle Scholar
  601. Silvestri S, Seeman MV, Negrete JC, Houle S, Shammi CM, Remington GJ, Kapur S, Zipursky RB, Wilson AA, Christensen BK, Seeman P (2000) Increased dopamine D2 receptor binding after long-term treatment with antipsychotics in humans: a clinical PET study. Psychopharmacology (Berl) 152(2):174–180.  https://doi.org/10.1007/s002130000532 CrossRefGoogle Scholar
  602. Sklar P, Smoller JW, Fan J, Ferreira MA, Perlis RH, Chambert K, Nimgaonkar VL, McQueen MB, Faraone SV, Kirby A, de Bakker PI, Ogdie MN, Thase ME, Sachs GS, Todd-Brown K, Gabriel SB, Sougnez C, Gates C, Blumenstiel B, Defelice M, Ardlie KG, Franklin J, Muir WJ, McGhee KA, MacIntyre DJ, McLean A, VanBeck M, McQuillin A, Bass NJ, Robinson M, Lawrence J, Anjorin A, Curtis D, Scolnick EM, Daly MJ, Blackwood DH, Gurling HM, Purcell SM (2008) Whole-genome association study of bipolar disorder. Mol Psychiatry 13(6):558–569.  https://doi.org/10.1038/sj.mp.4002151 CrossRefPubMedPubMedCentralGoogle Scholar
  603. Smith MA, Kim SY, van Oers HJ, Levine S (1997) Maternal deprivation and stress induce immediate early genes in the infant rat brain. Endocrinology 138(11):4622–4628.  https://doi.org/10.1210/endo.138.11.5529 CrossRefPubMedGoogle Scholar
  604. Snyder SH (1976) The dopamine hypothesis of schizophrenia: focus on the dopamine receptor. Am J Psychiatry 133(2):197–202.  https://doi.org/10.1176/ajp.133.2.197 CrossRefPubMedGoogle Scholar
  605. Soares JC, Kochunov P, Monkul ES, Nicoletti MA, Brambilla P, Sassi RB, Mallinger AG, Frank E, Kupfer DJ, Lancaster J, Fox P (2005) Structural brain changes in bipolar disorder using deformation field morphometry. Neuroreport 16(6):541–544PubMedCrossRefGoogle Scholar
  606. Sokolov BP (2002) Expression of NMDAR1, GluR1, GluR7, and KA1 glutamate receptor mRNAs is decreased in frontal cortex of “neuroleptic-free” schizophrenics: evidence on reversible up-regulation by typical neuroleptics. J Neurochem 71(6):2454–2464.  https://doi.org/10.1046/j.1471-4159.1998.71062454.x CrossRefGoogle Scholar
  607. Solas M, Puerta E, Ramirez MJ (2015) Treatment options in Alzheimer’s disease: the GABA Story. Curr Pharm Des 21(34):4960–4971PubMedCrossRefGoogle Scholar
  608. Solomon RL, Corbit JD (1973) An opponent-process theory of motivation. II. Cigarette addiction. J Abnorm Psychol 81(2):158–171.  https://doi.org/10.1037/h0034534 CrossRefPubMedGoogle Scholar
  609. Solomon DA, Ristow WR, Keller MB, Kane JM, Gelenberg AJ, Rosenbaum JF, Warshaw MG (1996) Serum lithium levels and psychosocial function in patients with bipolar I disorder. Am J Psychiatry 153(10):1301–1307.  https://doi.org/10.1176/ajp.153.10.1301 CrossRefPubMedGoogle Scholar
  610. Sparks DL, DeKosky ST, Markesbery WR (1988) Alzheimer’s disease. Aminergic-cholinergic alterations in hypothalamus. Arch Neurol 45(9):994–999PubMedCrossRefGoogle Scholar
  611. Sparks DL, Hunsaker JC 3rd, Slevin JT, DeKosky ST, Kryscio RJ, Markesbery WR (1992) Monoaminergic and cholinergic synaptic markers in the nucleus basalis of Meynert (nbM): normal age-related changes and the effect of heart disease and Alzheimer’s disease. Ann Neurol 31(6):611–620.  https://doi.org/10.1002/ana.410310608 CrossRefPubMedGoogle Scholar
  612. Spence SA, Hirsch SR, Brooks DJ, Grasby PM (2018) Prefrontal cortex activity in people with schizophrenia and control subjects. Br J Psychiatry 172(04):316–323.  https://doi.org/10.1192/bjp.172.4.316 CrossRefGoogle Scholar
  613. Staner L, De La Fuente JM, Kerkhofs M, Linkowski P, Mendlewicz J (1992) Biological and clinical features of recurrent brief depression: a comparison with major depressed and healthy subjects. J Affect Disord 26(4):241–245PubMedCrossRefGoogle Scholar
  614. Stone JM (2011) Glutamatergic antipsychotic drugs: a new dawn in the treatment of schizophrenia? Ther Adv Psychopharmacol 1(1):5–18.  https://doi.org/10.1177/2045125311400779 CrossRefPubMedPubMedCentralGoogle Scholar
  615. Stone JM, Howes OD, Egerton A, Kambeitz J, Allen P, Lythgoe DJ, O’Gorman RL, McLean MA, Barker GJ, McGuire P (2010) Altered relationship between hippocampal glutamate levels and striatal dopamine function in subjects at ultra high risk of psychosis. Biol Psychiatry 68(7):599–602.  https://doi.org/10.1016/j.biopsych.2010.05.034 CrossRefPubMedGoogle Scholar
  616. Strakowski SM, Wilson DR, Tohen M, Woods BT, Douglass AW, Stoll AL (1993) Structural brain abnormalities in first-episode mania. Biol Psychiatry 33(8-9):602–609PubMedCrossRefGoogle Scholar
  617. Strakowski SM, DelBello MP, Zimmerman ME, Getz GE, Mills NP, Ret J, Shear P, Adler CM (2002) Ventricular and periventricular structural volumes in first- versus multiple-episode bipolar disorder. Am J Psychiatry 159(11):1841–1847.  https://doi.org/10.1176/appi.ajp.159.11.1841 CrossRefPubMedGoogle Scholar
  618. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, Roses AD (1993a) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A 90(5):1977–1981.  https://doi.org/10.1073/pnas.90.5.1977 CrossRefPubMedPubMedCentralGoogle Scholar
  619. Strittmatter WJ, Weisgraber KH, Huang DY, Dong LM, Salvesen GS, Pericak-Vance M, Schmechel D, Saunders AM, Goldgaber D, Roses AD (1993b) Binding of human apolipoprotein E to synthetic amyloid beta peptide: isoform-specific effects and implications for late-onset Alzheimer disease. Proc Natl Acad Sci U S A 90(17):8098–8102.  https://doi.org/10.1073/pnas.90.17.8098 CrossRefPubMedPubMedCentralGoogle Scholar
  620. Strobusch AD, Jefferson JW (1980) The checkered history of lithium in medicine. Pharm Hist 22(2):72–76PubMedGoogle Scholar
  621. Suchecki D, Mozaffarian D, Gross G, Rosenfeld P, Levine S (1993) Effects of maternal deprivation on the ACTH stress response in the infant rat. Neuroendocrinology 57(2):204–212.  https://doi.org/10.1159/000126361 CrossRefPubMedGoogle Scholar
  622. Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60(12):1187–1192.  https://doi.org/10.1001/archpsyc.60.12.1187 CrossRefPubMedGoogle Scholar
  623. Sumpter PQ, Mann DM, Davies CA, Neary D, Snowden JS, Yates PO (1986) A quantitative study of the ultrastructure of pyramidal neurons of the cerebral cortex in Alzheimer’s disease in relationship to the degree of dementia. Neuropathol Appl Neurobiol 12(3):321–329PubMedCrossRefGoogle Scholar
  624. Sweeney JA, Kmiec JA, Kupfer DJ (2000) Neuropsychologic impairments in bipolar and unipolar mood disorders on the CANTAB neurocognitive battery. Biol Psychiatry 48(7):674–684.  https://doi.org/10.1016/s0006-3223(00)00910-0 CrossRefPubMedGoogle Scholar
  625. Taber MT, Fibiger HC (1997) Feeding-evoked dopamine release in the nucleus, accumbens: regulation by glutamatergic mechanisms. Neuroscience 76(4):1105–1112.  https://doi.org/10.1016/s0306-4522(96)00450-2 CrossRefPubMedGoogle Scholar
  626. Tanda G (1997) Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common μ1 opioid receptor mechanism. Science 276(5321):2048–2050.  https://doi.org/10.1126/science.276.5321.2048 CrossRefPubMedGoogle Scholar
  627. Tanzi RE, Gusella JF, Watkins PC, Bruns GA, St George-Hyslop P, Van Keuren ML, Patterson D, Pagan S, Kurnit DM, Neve RL (1987) Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 235(4791):880–884.  https://doi.org/10.1126/science.2949367 CrossRefPubMedGoogle Scholar
  628. Tarsy D, Leopold N, Sax DS (1972) Cholinergic-adrenergic hypothesis of mania and depression. Lancet 2(7787):1153PubMedCrossRefGoogle Scholar
  629. Thompson PJ (1991) Antidepressants and memory – a review. Hum Psychopharmacol Clin Exp 6(2):79–90.  https://doi.org/10.1002/hup.470060202 CrossRefGoogle Scholar
  630. Todtenkopf MS, Vincent SL, Benes FM (2005) A cross-study meta-analysis and three-dimensional comparison of cell counting in the anterior cingulate cortex of schizophrenic and bipolar brain. Schizophr Res 73(1):79–89.  https://doi.org/10.1016/j.schres.2004.08.018 CrossRefPubMedGoogle Scholar
  631. Ton JMNC, Gerhardt GA, Friedemann M, Etgen AM, Rose GM, Sharpless NS, Gardner EL (1988) The effects of Δ9-tetrahydrocannabinol on potassium-evoked release of dopamine in the rat caudate nucleus: an in vivo electrochemical and in vivo microdialysis study. Brain Res 451(1-2):59–68.  https://doi.org/10.1016/0006-8993(88)90749-4 CrossRefGoogle Scholar
  632. Toro C, Deakin JF (2005) NMDA receptor subunit NRI and postsynaptic protein PSD-95 in hippocampus and orbitofrontal cortex in schizophrenia and mood disorder. Schizophr Res 80(2-3):323–330.  https://doi.org/10.1016/j.schres.2005.07.003 CrossRefPubMedGoogle Scholar
  633. Torrey EF, Barci BM, Webster MJ, Bartko JJ, Meador-Woodruff JH, Knable MB (2005) Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol Psychiatry 57(3):252–260.  https://doi.org/10.1016/j.biopsych.2004.10.019 CrossRefPubMedGoogle Scholar
  634. Toth E, Vizi ES, Lajtha A (1993) Effect of nicotine on levels of extracellular amino acids in regions of the rat brain in vivo. Neuropharmacology 32(8):827–832.  https://doi.org/10.1016/0028-3908(93)90192-6 CrossRefPubMedGoogle Scholar
  635. Tourney G (1969) History of biological psychiatry in America. Am J Psychiatry 126(1):29–42.  https://doi.org/10.1176/ajp.126.1.29 CrossRefPubMedGoogle Scholar
  636. Trichard C, Martinot JL, Alagille M, Masure MC, Hardy P, Ginestet D, Feline A (1995) Time course of prefrontal lobe dysfunction in severely depressed in-patients: a longitudinal neuropsychological study. Psychol Med 25(1):79–85.  https://doi.org/10.1017/s0033291700028105 CrossRefPubMedGoogle Scholar
  637. Trillo L, Das D, Hsieh W, Medina B, Moghadam S, Lin B, Dang V, Sanchez MM, De Miguel Z, Ashford JW, Salehi A (2013) Ascending monoaminergic systems alterations in Alzheimer’s disease. translating basic science into clinical care. Neurosci Biobehav Rev 37(8):1363–1379.  https://doi.org/10.1016/j.neubiorev.2013.05.008 CrossRefPubMedGoogle Scholar
  638. True WR, Heath AC, Scherrer JF, Waterman B, Goldberg J, Lin N, Eisen SA, Lyons MJ, Tsuang MT (1997) Genetic and environmental contributions to smoking. Addiction 92(10):1277–1287.  https://doi.org/10.1046/j.1360-0443.1997.921012775.x CrossRefPubMedGoogle Scholar
  639. Tuszynski MH, Yang JH, Barba D, HS U, Bakay RA, Pay MM, Masliah E, Conner JM, Kobalka P, Roy S, Nagahara AH (2015) Nerve growth factor gene therapy: activation of neuronal responses in Alzheimer disease. JAMA Neurol 72(10):1139–1147.  https://doi.org/10.1001/jamaneurol.2015.1807 CrossRefPubMedPubMedCentralGoogle Scholar
  640. Uhl GR, Liu QR, Walther D, Hess J, Naiman D (2001) Polysubstance abuse-vulnerability genes: genome scans for association, using 1,004 subjects and 1,494 single-nucleotide polymorphisms. Am J Hum Genet 69(6):1290–1300.  https://doi.org/10.1086/324467 CrossRefPubMedPubMedCentralGoogle Scholar
  641. Vakili K, Pillay SS, Lafer B, Fava M, Renshaw PF, Bonello-Cintron CM, Yurgelun-Todd DA (2000) Hippocampal volume in primary unipolar major depression: a magnetic resonance imaging study. Biol Psychiatry 47(12):1087–1090.  https://doi.org/10.1016/s0006-3223(99)00296-6 CrossRefPubMedGoogle Scholar
  642. Van Cauwenberghe C, Van Broeckhoven C, Sleegers K (2016) The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med 18(5):421–430.  https://doi.org/10.1038/gim.2015.117 CrossRefPubMedGoogle Scholar
  643. Van Horn JD, McManus IC (1992) Ventricular enlargement in schizophrenia. A meta-analysis of studies of the ventricle:brain ratio (VBR). Br J Psychiatry 160(5):687–697.  https://doi.org/10.1192/bjp.160.5.687 CrossRefPubMedGoogle Scholar
  644. Van Praag M, Leijnse B (1963) Die bedeutung dermonoamineoxydashemmung als antidepressives prinzip I. Psychopharmacologia 4:1–14CrossRefGoogle Scholar
  645. Vasilakos JP, Carroll RT, Emmerling MR, Doyle PD, Davis RE, Kim KS, Shivers BD (1994) Interleukin-1 beta dissociates beta-amyloid precursor protein and beta-amyloid peptide secretion. FEBS Lett 354(3):289–292PubMedCrossRefGoogle Scholar
  646. Vidal C (1994) Nicotinic potentiation of glutamatergic synapses in the prefrontal cortex – new insight into the analysis of the role of nicotinic receptors in cognitive functions. Drug Dev Res 31(2):120–126.  https://doi.org/10.1002/ddr.430310206 CrossRef