Uncertain Evidence for Probabilistic Relational Models

  • Marcel GehrkeEmail author
  • Tanya Braun
  • Ralf Möller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11489)


Standard approaches for inference in probabilistic relational models include lifted variable elimination (LVE) for single queries. To efficiently handle multiple queries, the lifted junction tree algorithm (LJT) uses a first-order cluster representation of a model, employing LVE as a subroutine in its steps. LVE and LJT can only handle certain evidence. However, most events are not certain. The purpose of this paper is twofold, (i) to adapt LVE, presenting LVE\(^{evi}\), to handle uncertain evidence and (ii) to incorporate uncertain evidence for multiple queries in LJT, presenting LJT\(^{evi}\). With LVE\(^{evi}\) and LJT\(^{evi}\), we can handle uncertain evidence for probabilistic relational models, while benefiting from the lifting idea. Further, we show that uncertain evidence does not have a detrimental effect on completeness results and leads to similar runtimes as certain evidence.


  1. 1.
    Ahmadi, B., Kersting, K., Mladenov, M., Natarajan, S.: Exploiting symmetries for scaling loopy belief propagation and relational training. Mach. Learn. 92(1), 91–132 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Braun, T., Möller, R.: Lifted junction tree algorithm. In: Friedrich, G., Helmert, M., Wotawa, F. (eds.) KI 2016. LNCS (LNAI), vol. 9904, pp. 30–42. Springer, Cham (2016). Scholar
  3. 3.
    Braun, T., Möller, R.: Counting and conjunctive queries in the lifted junction tree algorithm - extended version. In: Croitoru, M., Marquis, P., Rudolph, S., Stapleton, G. (eds.) GKR 2017. LNCS (LNAI), vol. 10775, pp. 54–72. Springer, Cham (2018). Scholar
  4. 4.
    Braun, T., Möller, R.: Parameterised queries and lifted query answering. In: Proceedings of IJCAI 2018, pp. 4980–4986 (2018)Google Scholar
  5. 5.
    Van den Broeck, G., Davis, J.: Conditioning in first-order knowledge compilation and lifted probabilistic inference. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, pp. 1–7. AAAI Press (2012)Google Scholar
  6. 6.
    van den Broeck, G., Taghipour, N., Meert, W., Davis, J., Raedt, L.D.: Lifted probabilistic inference by first-order knowledge compilation. In: IJCAI-11 Proceedings of the 22nd International Joint Conference on AI (2011)Google Scholar
  7. 7.
    Chan, H., Darwiche, A.: On the revision of probabilistic beliefs using uncertain evidence. Artif. Intell. 163(1), 67–90 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dalvi, N., Suciu, D.: Efficient query evaluation on probabilistic databases. VLDB J. Int. J. Very Large Data Bases 16(4), 523–544 (2007)CrossRefGoogle Scholar
  9. 9.
    Das, M., Wu, Y., Khot, T., Kersting, K., Natarajan, S.: Scaling lifted probabilistic inference and learning via graph databases. In: Proceedings of the SIAM International Conference on Data Mining, pp. 738–746 (2016)Google Scholar
  10. 10.
    Jeffrey, R.C.: The Logic of Decision. University of Chicago Press, Chicago (1990)Google Scholar
  11. 11.
    Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. J. Royal Stat. Soc. Ser. B Methodol. 50, 157–224 (1988)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Milch, B., Zettelmoyer, L.S., Kersting, K., Haimes, M., Kaelbling, L.P.: Lifted probabilistic inference with counting formulas. In: AAAI-08 Proceedings of the 23rd Conference on AI, pp. 1062–1068 (2008)Google Scholar
  13. 13.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Reasoning. Morgan Kaufmann, San Mateo (1988)zbMATHGoogle Scholar
  14. 14.
    Pearl, J.: On two pseudo-paradoxes in Bayesian analysis. Ann. Math. Artif. Intell. 32(1–4), 171–177 (2001)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Peng, Y., Zhang, S., Pan, R.: Bayesian network reasoning with uncertain evidences. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 18(05), 539–564 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Poole, D.: First-order probabilistic inference. In: IJCAI-03 Proceedings of the 18th International Joint Conference on AI (2003)Google Scholar
  17. 17.
    de Salvo Braz, R., Amir, E., Roth, D.: Lifted first-order probabilistic inference. In: IJCAI-05 Proceedings of the 19th International Joint Conference on AI (2005)Google Scholar
  18. 18.
    Steinhäuser, J., Kühlein, T.: Role of the general practitioner. In: Patient Blood Management, pp. 61–65. Thieme, Stuttgart (2015)Google Scholar
  19. 19.
    Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic databases. Synth. Lect. Data Manage. 3(2), 1–180 (2011)CrossRefGoogle Scholar
  20. 20.
    Taghipour, N., Fierens, D., van den Broeck, G., Davis, J., Blockeel, H.: Completeness results for lifted variable elimination. In: Proceedings of the 16th International Conference on AI and Statistics, pp. 572–580 (2013)Google Scholar
  21. 21.
    Taghipour, N., Fierens, D., Davis, J., Blockeel, H.: Lifted variable elimination: decoupling the operators from the constraint language. J. AI Res. 47(1), 393–439 (2013)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Theodorsson, E.: Uncertainty in measurement and total error: tools for coping with diagnostic uncertainty. Clin. Lab. Med. 37(1), 15–34 (2017)CrossRefGoogle Scholar
  23. 23.
    Thimm, M., Kern-Isberner, G.: On probabilistic inference in relational conditional logics. Logic J. IGPL 20(5), 872–908 (2012)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Wemmenhove, B., Mooij, J.M., Wiegerinck, W., Leisink, M., Kappen, H.J., Neijt, J.P.: Inference in the promedas medical expert system. In: Bellazzi, R., Abu-Hanna, A., Hunter, J. (eds.) AIME 2007. LNCS (LNAI), vol. 4594, pp. 456–460. Springer, Heidelberg (2007). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Information SystemsUniversity of LübeckLübeckGermany

Personalised recommendations