Predicting Commentaries on a Financial Report with Recurrent Neural Networks

  • Karim El MokhtariEmail author
  • John Maidens
  • Ayse Bener
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11489)


Aim: The paper aims to automatically generate commentaries on financial reports. Background: Analysing and commenting financial reports is critical to evaluate the performance of a company so that management may change course to meet the targets. Generating commentaries is a task that relies on the expertise of analysts. Methodology: We propose an encoder-decoder architecture based on Recurrent Neural Networks (RNN) that are trained on both financial reports and commentaries. This architecture learns to generate those commentaries from the detected patterns on data. The proposed model is assessed on both synthetic and real data. We compare different neural network combinations on both encoder and decoder, namely GRU, LSTM and one layer neural networks. Results: The accuracy of the generated commentaries is evaluated using BLEU, ROUGE and METEOR scores and probability of commentary generation. The results show that a combination of one layer neural network and an LSTM as encoder and decoder respectively provides a higher accuracy. Conclusion: We observe that the LSTM highly depends on long term memory particularly in learning from real commentaries.


NLP Recurrent Neural Networks LSTM GRU 



This work is supported by a grant from Smart Computing For Innovation (SOSCIP) consortium, Toronto, Canada.


  1. 1.
    Sutskever, I., Vinyals, O., Le, Q.V.V.: Sequence to sequence learning with neural networks. In: NIPS, pp. 3104–3112 (2014)Google Scholar
  2. 2.
    Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv:1409.0473 (2014)
  3. 3.
    Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734 (2014)Google Scholar
  4. 4.
    Farhadi, A., et al.: Every picture tells a story: generating sentences from images. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 15–29. Springer, Heidelberg (2010). Scholar
  5. 5.
    Hodosh, M., Young, P., Hockenmaier, J.: Framing image description as a ranking task: data, models and evaluation metrics. JAIR 47, 853–899 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Mao, J., Xu, W., Yang, Y., Wang, J., Yuille, A.: Deep captioning with multimodal recurrent neural networks (M-RNN). arXiv:1412.6632 (2014)
  7. 7.
    Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell, a neural image caption generator. arXiv:1411.4555 (2014)
  8. 8.
    Donahue, J., et al.: Long-term recurrent convolutional networks for visual recognition and description. arXiv:1411.4389v2 (2014)
  9. 9.
    Karpathy, A., Li, F.-F.: Deep visual-semantic alignments for generating image descriptions. arXiv:1412.2306 (2014)
  10. 10.
    Chen, L., He, Y., Fan, L.: Let the robot tell: describe car image with natural language via LSTM. Pattern Recogn. Lett. 98, 75–82 (2017)CrossRefGoogle Scholar
  11. 11.
    Fang, H., et al.: From captions to visual concepts and back. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, pp. 1473–1482 (2015)Google Scholar
  12. 12.
    Jia, X., Gavves, E., Fernando, B., Tuytelaars, T.: Guiding long-short term memory for image caption generation. In: Proceedings of the ICCV (2015)Google Scholar
  13. 13.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
  14. 14.
    Bridle, J.S.: Probabilistic interpretation of feedforward classification network outputs with relationships to statistical pattern recognition. In: Soulié, F.F., Hérault, J. (eds.) Neurocomputing: Algorithms, Architectures and Applications, pp. 227–236. Springer, Heidelberg (1990). Scholar
  15. 15.
    Tieleman, T., Hinton, G.: Lecture 6.5-RMSprop: divide the gradient by a running average of its recent magnitude. COURSERA 4(2), 26–31 (2012)Google Scholar
  16. 16.
    Keras Documentation. Accessed 28 Jan 2019
  17. 17.
    Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: ACL (2002)Google Scholar
  18. 18.
    Lin, C.Y.: Rouge: a package for automatic evaluation of summaries. In: Text Summarization Branches Out: Proceedings of the ACL 2004 Workshop, pp. 74–81 (2004)Google Scholar
  19. 19.
    Elliott, D., Keller, F.: Image description using visual dependency representations. In: EMNLP, pp. 1292–1302. ACL (2013)Google Scholar
  20. 20.
    Kilickaya, M., Erdem, A., Ikizler-Cinbis, N., Erdem, E.: Re-evaluating automatic metrics for image captioning. In: Proceedings of EACL 2017, pp. 199–209 (2017)Google Scholar
  21. 21.
    Sharma, S., El Asri, L., Schulz, H., Zumer, J.: Relevance of unsupervised metrics in task-oriented dialogue for evaluating natural language generation. CoRR, vol. abs/1706.09799 (2017).
  22. 22.
    Dangeti, P.: Statistics for Machine Learning, 1st edn. Packt Publishing Ltd., Birmingham (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Data Science LaboratoryRyerson UniversityTorontoCanada

Personalised recommendations