Advertisement

Weather Data Handlings for Tornado Recognition Using mHGN

  • Benny Benyamin NasutionEmail author
  • Rahmat Widia Sembiring
  • Muhammad Syahruddin
  • Nursiah Mustari
  • Abdul Rahman Dalimunthe
  • Nisfan Bahri
  • Bertha br Ginting
  • Zulkifli Lubis
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 516)

Abstract

The usage of the mHGN as a pattern recognizer cannot necessarily be used to recognize tornados. Two important issues that need to be solved first are related to data handlings of not-accurately recorded data, and to those of complex weather data. The not-so-appropriate data handlings will produce high false positive and true negative rate of the recognition results. Yet, the latest development of those data handlings has been carried out, and has shown positive and promising results. Such a new approach of data handlings can, therefore, be used to improve the quality and the accuracy of forecasting a tornado. The results taken from a simulated circumstances of a multidimensional pattern recognition have shown, that the tornado can be recognized around 9 h earlier with 90% of accuracy. However, several improvements related to the data representation within the mHGN architecture need to be implemented. The deployment of mHGN in several risky areas of tornados can then be expected as an alternative way of reducing damages, losses, and costs.

Keywords

Graph neuron Hierarchical graph neuron Multidimensional hierarchical graph neuron Natural disaster forecast Tornado forecast 

References

  1. 1.
    Cheng, R.T., Smith, R.E.: A nowcast model for tides and tidal currents in San Francisco Bay, California. In: Ocean Community Conference, Baltimore, USA (1998)Google Scholar
  2. 2.
    Sorensen, J.H.: Hazard warning systems: review of 20 years of progress. Nat. Hazards Rev. 1, 119–125 (2000)Google Scholar
  3. 3.
    Kirschbaum, D.B., Adler, R., Hong, Y., Kumar, S., Peters-Lidard, C., Lerner-Lam, A.: Advances in landslide nowcasting: evaluation of a global and regional modeling approach. Environ. Earth Sci. 1(1), 1–14 (2011)Google Scholar
  4. 4.
    Bellaire, S., Jamieson, B.: Nowcast with a forecast – snow cover simulations on slopes. J. Something 1(1), 1–7 (2012)Google Scholar
  5. 5.
    Li, P., Lai, E.: Applications of radar-based nowcasting techniques for mesoscale weather forecasting in Hong Kong. Meteorol. Appl. 11(1), 253–264 (2004)Google Scholar
  6. 6.
    Roy, S.S., Lakshmanan, V., Bhowmik, S.R., Thampi, S.: Doppler radar based nowcasting of cyclone Ogni. J. Earth Syst. Sci. 119(2), 183–199 (2009)Google Scholar
  7. 7.
    SuzukiI, Y., Michihiro, Y., Honma, M.: Development of strong wind nowcasting system. In: International Symposium on Extreme Weather and Cities, Tokyo, Japan (2013)Google Scholar
  8. 8.
    Nasution, B.B., et al.: Forecasting natural disasters of tornados using mHGN. In: Murayama, Y., Velev, D., Zlateva, P., Gonzalez, J.J. (eds.) ITDRR 2016. IFIPAICT, vol. 501, pp. 155–169. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68486-4_13Google Scholar
  9. 9.
    Nasution, B.B.: Towards real time multidimensional hierarchical graph neuron (mHGN). In: The 2nd International Conference on Computer and Information Sciences 2014 (ICCOINS 2014), Kuala Lumpur, Malaysia (2014)Google Scholar
  10. 10.
    Winterrath, T., Rosenow, W.: The radar‐based precipitation nowcasting system RADVOR of Deutscher Wetterdienst for the support of meteorological and hydrological alert systems. In: 8th European Conference on Radar in Meteorology and Hydrology, Germany (2014)Google Scholar
  11. 11.
    Kryvasheyeu, Y., Chen, H., Obradovich, N., Moro, E., Hentenryck, P.V., Fowler, J.: Nowcasting disaster damage. arXiv preprint arXiv:1504.06827 (2015)
  12. 12.
    Ogasawara, J., Tanimoto, K., Imaichi, O., Yoshimoto, M.: Disaster prevention and response support solutions. Hitachi Rev. 63(1), 236–243 (2014)Google Scholar
  13. 13.
    Doong, D.J., et al.: Development of an operational coastal flooding early warning system. Nat. Hazards Earth Syst. Sci. 12(1), 379–390 (2012)Google Scholar
  14. 14.
    Nasution, B.B., et al.: Realtime weather forecasting using multidimenssional hierarchical graph neuron (mHGN). In: The 16th International Conference on Neural Networks (NN 2015), Rome, Italy (2015)Google Scholar
  15. 15.
    Nasution, B.B., Khan, A.I.: A hierarchical graph neuron scheme for real-time pattern recognition. IEEE Trans. Neural Netw. 19, 212–229 (2008)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  • Benny Benyamin Nasution
    • 1
    Email author
  • Rahmat Widia Sembiring
    • 1
  • Muhammad Syahruddin
    • 1
  • Nursiah Mustari
    • 1
  • Abdul Rahman Dalimunthe
    • 1
  • Nisfan Bahri
    • 1
  • Bertha br Ginting
    • 1
  • Zulkifli Lubis
    • 1
  1. 1.Politeknik Negeri MedanMedanIndonesia

Personalised recommendations