Advertisement

Data Processing for Assessment of Meteorological and Hydrological Drought

  • Nina NikolovaEmail author
  • Kalina Radeva
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 516)

Abstract

Accurate and reliable data processing is of primary importance for drought assessment. It helps decision makers to lay out mitigation measures within the context of drought preparedness planning and water resources management. In order to understand meteorological and hydrological drought, we need to identify drought characteristics (duration, severity and spatial extent). Drought indices are essential tools quantifying drought severity and identifying its frequency and duration. For the calculation of drought indices, availability of long time series of undisturbed, good-quality observational data is essential. The studied area cover a Bulgarian part of the catchment of Struma River which is one of the largest Bulgarian rivers. The general aim of this research is to evaluate the occurrence of hydrological and meteorological droughts in Struma River basin and to show utilization of various indices for comparative analysis of meteorological and hydrological drought. Drought events are identified using the following indices—Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI) and Streamflow Drought Index (SDI) for time scales 6 and 12 months. Additionally to these indices, we use also Rainfall Anomaly Index (RAI) and introduce Streamflow Anomaly Index (SAI). The main investigated period is 1962–2016.

Keywords

Drought Precipitation River runoff SPI SDI 

References

  1. 1.
    Andreu, J., Solera, A., Paredes-Arquiola, J., Haro-Monteagudo, D., van Lanen, H.A.J. (eds.): Drought: Research and Science-Policy Interfacing. Taylor & Francis Group, London. European Commission. Drought Management Plan Report Including Agricultural, Drought Indicators and Climate Change Aspects (Water Scarcity and Droughts Expert Network), Technical report 2008–023 (2015)Google Scholar
  2. 2.
    Vasiliades, L., Loukas, A., Liberis, N.: A water balance derived drought index for Pinios River Basin. Greece. Water Resour Manag. 25, 1087–1101 (2011)CrossRefGoogle Scholar
  3. 3.
    Tallaksen, L.M., Hisdal, H., Lanen, H.A.J.V.: Space-time modelling of catchment scale drought characteristics. J. Hydrol. 375, 363–372 (2009)CrossRefGoogle Scholar
  4. 4.
    Mishra, A.K., Singh, V.P.: Drought modeling—a review. J. Hydrol. 403(1–2), 157–175 (2011).  https://doi.org/10.1016/j.jhydrol.2011.03.049CrossRefGoogle Scholar
  5. 5.
    Van Loon, A.F.: Hydrological drought explained. Wiley Interdiscip. Rev. Water 2, 359–392 (2015)CrossRefGoogle Scholar
  6. 6.
    Dai, A., Trenberth, K.E., Qian, T.: A global dataset of Palmer drought severity index for 1870–2002: relationship with soil moisture and effects of surface warming. J. Hydrometeorol. 5(6), 1117–1130 (2004)CrossRefGoogle Scholar
  7. 7.
    Sheffield, J., Wood, E.F., Roderick, M.L.: Little change in global drought over the past 60 years. Nature 491, 435–438 (2012)CrossRefGoogle Scholar
  8. 8.
    Stahl, K., et al.: Impacts of European drought events: insights from an international database of text-based reports. Nat. Hazards Earth Syst. Sci. 16, 801–819 (2016).  https://doi.org/10.5194/nhess-16-801-2016CrossRefGoogle Scholar
  9. 9.
    Water Scarcity & Droughts in the EU. Brussels, 27 April 2010Google Scholar
  10. 10.
    Poljanšek, K., Marin Ferrer, M., De Groeve, T., Clark, I.: Science for disaster risk management: knowing better and losing less. Publications Office of the European Union, Luxembourg (2017). https://ec.europa.eu/jrc/en/publication/science-disaster-risk-management-2017-knowing-better-and-losing-less
  11. 11.
    MOEW: National strategy for management and development of the water sector in Bulgaria. Sofia (2012)Google Scholar
  12. 12.
    Koleva, E., Alexandrov, V.: Drought in the Bulgarian low regions during the 20th century. Theor. Appl. Climatol. 92, 113–120 (2008)CrossRefGoogle Scholar
  13. 13.
    Heim Jr., R.R.: A review of twentieth-century drought indices used in the United States. Bull. Am. Meteor. Soc. 83, 1149–1165 (2002)CrossRefGoogle Scholar
  14. 14.
    McKee, T.B., Doesken, N.J., Kleist, J.: The relationship of drought frequency and duration to time scales. In: Eighth Conference on Applied Climatology, pp. 179–184. American Meteorological Society, Anaheim (1993)Google Scholar
  15. 15.
    Vicente-Serrano, S.M., Begueria, S., Lopez-Moreno, J.I.: A multi-scalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010)CrossRefGoogle Scholar
  16. 16.
    Begueria, S., Vicente-Serrano, S.M., Angulo-Martinez, M.: A multiscalar global drought dataset: the SPEI base. Bull. Am. Soc. 91, 1351–1354 (2010)CrossRefGoogle Scholar
  17. 17.
    Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I.: Comment on “Characteristics and trends in various forms of the palmer drought severity index (PDSI) during 1900–2008” by A. Dai. J. Geophys. Res.-Atmos. 116(19), D19112 (2011)CrossRefGoogle Scholar
  18. 18.
    McKee, T.B., Doesken, N.J., Kleist, J.: Drought monitoring with multiple time scales. In: Preprints of the 9th Conference of Applied Climatology, 15–20, Dallas, Texas, pp. 233–236 (1995)Google Scholar
  19. 19.
    Vermes, L.: How to work out a drought mitigation strategy. An ICID Guide, DVWK Guidelines for Water Management, vol. 309, 29 p. (1998)Google Scholar
  20. 20.
    World Meteorological Organization: Standardized Precipitation Index User Guide (2012)Google Scholar
  21. 21.
    Khadr, M., Morgenschweis, G., Schlenkhof, A.: Analysis of meteorological drought in the Ruhr Basin by using the standardized precipitation index. In: International Conference on Sustainable Water Resources Management (SWRM 2009), Amsterdam, Netherland (2009)Google Scholar
  22. 22.
    Karavitis, C.A., Alexandris, S., Tsesmelis, D.E., Athanasopoulos, G.: Application of the standardized precipitation index (SPI) in Greece. Water 3(3), 787–805 (2011)CrossRefGoogle Scholar
  23. 23.
    Costa, A.C.: Local patterns and trends of the standard precipitation index in southern Portugal (1940–1999). Adv. Geosci. 30, 11–16 (2011).  https://doi.org/10.5194/adgeo-30-11-2011CrossRefGoogle Scholar
  24. 24.
    Łabędzki, L.: Estimation of local drought frequency in central Poland using the standardized precipitation index SPI. Irrig. Drainage 56(1), 67–77 (2007).  https://doi.org/10.1002/ird.285CrossRefGoogle Scholar
  25. 25.
    Gocheva, A., Malcheva, K., Marinova, T.: Some drought indices on the territory of Bulgaria. BJNH 15(4), 88–96 (2010)Google Scholar
  26. 26.
    Alexandrov, V., Radeva, S., Koleva, E.: Utilization of SPI, PDSI, and RDI as drought indicators in South Bulgaria. In: 11th International Multidisciplinary Geoconference Proceedings, vol. II, pp. 969–976 (2011)Google Scholar
  27. 27.
    Nikolova, N.: Linkages between NAO and river runoff in Struma river catchments (Bulgaria). Meteorologický časopis 15(2012), 59–65 (2012)Google Scholar
  28. 28.
    Nalbantis, I., Tsakiris, G.: Assessment of hydrological drought revisited. Water Resour. Manag. 23, 881–897 (2009)CrossRefGoogle Scholar
  29. 29.
    Rimkus, E., et al.: Dynamics of meteorological and hydrological droughts in the Neman River Basin. Environ. Res. Lett. 8, 045014 (2013)CrossRefGoogle Scholar
  30. 30.
    Liu, L., et al.: Hydro climatological drought analyses and projections using meteorological and hydrological drought indices: a case study in Blue River Basin, Oklahoma. Water Resour. Manag. 26, 2761–2779 (2012)CrossRefGoogle Scholar
  31. 31.
    Tabari, H., Nikbakht, J., Talaee, P.H.: Hydrological drought assessment in northwestern Iran based on streamflow drought index (SDI). Water Resour. Manag. 27, 137–151 (2013)CrossRefGoogle Scholar
  32. 32.
    Hong, X., Shenglian, G., Yanlai, Z., Xiong, L.: Uncertainties in assessing hydrological drought using streamflow drought index for the upper Yangtze River Basin. Stoch. Environ. Res. Risk Assess. 29(4), 1235–1247 (2015)CrossRefGoogle Scholar
  33. 33.
    Gumus, V., Algin, H.M.: Meteorological and hydrological drought analysis of the Seyhan-Ceyhan River Basins, Turkey. Meteorol. Appl. 24(1), 62–73 (2016)CrossRefGoogle Scholar
  34. 34.
    Madadgar, S., Moradkhani, H.: Drought analysis under climate change using copula. J. Hydrol. Eng. 18, 746–759 (2013)CrossRefGoogle Scholar
  35. 35.
    River Basin Management Plan (Struma River), 2010–2015 (PURB), West Aegean Sea River Basin Directorate – BlagoevgradGoogle Scholar
  36. 36.
    Keyantash, J., Dracup, J.A.: The quantification of drought: an evaluation of drought indices. Bull. Am. Meteorol. Soc. 83, 1167–1180 (2002)CrossRefGoogle Scholar
  37. 37.
    Edwards, D.C., McKee, T.B.: Characteristics of 20th century drought in the United States at multiple time scales. Climatology Report No. 97-2, Colorado State University, Ft. Collins, CO (1997)Google Scholar
  38. 38.
    Olukayode Oladipo, E.: A comparative performance analysis of three meteorological drought indices. J. Climatol. 5(6), 655–664 (1985).  https://doi.org/10.1002/joc.3370050607CrossRefGoogle Scholar
  39. 39.
    Nikolova, N., Vassilev, S.: Variability of Summer-Time Precipitation in Danube Plain, Bulgaria. Collection of Papers, No. 54, Geographic Institute “Jovan Cvijc” Serbian Academy of Sciences and Arts, Belgrade, pp. 19–32 (2005)Google Scholar
  40. 40.
    Hänsel, S., Matschullat, J.: Drought in a changing climate, saxon dry periods. In: Bioclimatological Conference 2006. Bioclimatology and Water in the Land. International Scientific Conference, September 2006, Strecno, Slovakia, pp. 11–14 (2006)Google Scholar
  41. 41.
    Hänsel, S., Schucknecht, A., Matschullat, J.: The modified rainfall anomaly index (mRAI)—is this an alternative to the standardised precipitation index (SPI) in evaluating future extreme precipitation characteristics? Theor. Appl. Climatol. 123(3–4), 827–844 (2016)CrossRefGoogle Scholar
  42. 42.
    Fluixá-Sanmartín, J., et al.: Searching for the optimal drought index and time scale combination to detect drought: a case study from the lower Jinsha River Basin, China. Hydrol. Earth Syst. Sci. 22, 889–910 (2018)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.Faculty of Geology and GeographySofia UniversitySofiaBulgaria

Personalised recommendations