Advertisement

Final Considerations

  • Max A. Freund
Chapter
Part of the Synthese Library book series (SYLI, volume 408)

Abstract

In this chapter, we relate the different formal logical systems characterized in this work to nominalist and realist approaches to sortals. We also discuss the use of the absolute identity sign and the absolute quantifiers in the formal semantics. We argue that the way those two logical expressions occur in the semantic clauses cannot be necessarily interpreted as a reduction, by the formal semantics, of sortal identity and first-order sortal quantification.

Keywords

Set-theoretic semantics Conceptualism Logic of sortals Nominalism Realism 

References

  1. Allaire, E. (1963). Bare particulars. Philosophical Studies, 14, 1–8.CrossRefGoogle Scholar
  2. Armstrong, D. M. (1980). Universals and scientific realism (Vol. 1 and 2). Cambridge: Cambridge University Press.Google Scholar
  3. Bäuerle, R., & Cresswell, M. J. (2003). Propositional attitudes. In Gabbay & Guenther (2003), chapter 6 (pp. 121–141).Google Scholar
  4. Bergmann, G. (1967). Realism. Madison: University of Wisconsoin Press.Google Scholar
  5. Borgers, A. (1949). Development of the notion of set and of the axioms for sets. Synthese, 7, 374–390.Google Scholar
  6. Cocchiarella, N. (1986). Logical investigations of predication theory and the problem of universals. Naples: Bibliopolis Press.Google Scholar
  7. Cocchiarella, N. (1988). Predication vs membership in the distinction between logic as language and logic as calculus. Synthese, 77, 37–72.CrossRefGoogle Scholar
  8. Fitting, M. (2015). Intensional logic. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Summer 2015 Edition). https://plato.stanford.edu/archives//sum2015/entries/logic-intensional/
  9. Fox, C., & Lapin, S. (2005). Foundations of intensional semantics. Malden: Blackwell.CrossRefGoogle Scholar
  10. Fraenkel, A., Bar-Hillel, Y., & Levy, A. (1973). Foundations of set theory. Amsterdam/London: North Holland Publishing Co.Google Scholar
  11. Grandy, R. (2016). Sortals. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Winter 2016 Edition). https://plato.stanford.edu/archives//win2016/entries/sortals/
  12. Hamilton, E., & Cairns, H. (Eds.). (1961). Plato: The collected works. New York: Pantheon Books.Google Scholar
  13. Kim, J. (1998). Mind in a physical world. Cambridge: MIT Press.CrossRefGoogle Scholar
  14. Lear, J. (1977). Sets and semantics. The Journal of Philosophy, 74, 86–102.CrossRefGoogle Scholar
  15. Lewis, D. (1970). General semantics. Synthese, 22, 18–67.CrossRefGoogle Scholar
  16. Loux, M. (1998). Metaphysics. London: Routledge.CrossRefGoogle Scholar
  17. Lowe, E. (2009). More kinds of beings: A further study of individuation, identity and the logic of sortal terms. Sussex: Wiley.Google Scholar
  18. Maddy, P. (1983). Proper classes. The Journal of Symbolic Logic, 48, 113–139.CrossRefGoogle Scholar
  19. McKeon, R. (1941). The basic works of Aristotle. New York: Random House.Google Scholar
  20. Montague, R. (1974b). On the nature of certain philosophical entities. In Montague (1974a) (pp. 148–187).Google Scholar
  21. Montague, R. (1974c). English as formal language. In Montague (1974a) (pp. 188–221).Google Scholar
  22. Montague, R. (1974d). Universal grammar. In Montague (1974a) (pp. 222–246).Google Scholar
  23. Montague, R. (1974e). The proper treatment of quantification in ordinary English. In Montague (1974a) (pp. 247–270).Google Scholar
  24. Parsons, C. (1974). Sets and classes. Nous, 8, 1–12.CrossRefGoogle Scholar
  25. Simmons, K. (2000). Sets, classes, and extensions: A singularity approach to Russell’s Paradox. Philosophical Studies, 100, 109–149.CrossRefGoogle Scholar
  26. Sklar, L. (1967). Types of inter-theoretic reduction. The British Journal for the Philosophy of Science, 18, 109–124.CrossRefGoogle Scholar
  27. Suppes, P. (1972). Axiomatic set theory. New York: Dover.Google Scholar
  28. Von Neumann, J. (1925). An axiomatization of set theory. In van Heijenoort (1967) (pp. 393–413).Google Scholar
  29. Wittgenstein, L. (1998). Tractatus logico-philosophicus. New York: Dover Publications.Google Scholar
  30. Wright, C. (1983). Frege’s conception of numbers as objects. Aberdeen: Aberdeen University Press.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Max A. Freund
    • 1
  1. 1.Professor of Logic and Philosophy, Graduate Program in PhilosophyUniversity of Costa RicaSan JoséCosta Rica

Personalised recommendations