Boosting Macroevolution: Genomic Changes Triggering Qualitative Expansions of Regulatory Potential

  • Manuel Irimia
  • Ignacio Maeso
Part of the Fascinating Life Sciences book series (FLS)


Two main types of factors have been traditionally considered as potential driving forces underlying macroevolutionary patterns: environmental (“external”) cues and genetic and/or developmental (“internal”) factors. However, whereas the impact of non-gradual environmental changes has been extensively investigated, the contribution of internal causes, especially of genomic factors, has been approached in a less systematic manner, without clear definitions and classification schemes. Here, taking advantage of recent advances in comparative and functional genomics, we define three types of genomic changes that likely play important roles in macroevolutionary processes: (1) emergence of novel functional genomic properties, (2) large-scale genome reshaping and (3) qualitative single amplifications of regulatory potentials (which we term quasa-regs). Their unifying theme is their ability to qualitatively expand the genomic regulatory potential of the species. We review examples in which these types of changes have likely played important roles and discuss their potential macroevolutionary implications. We conclude that, although such changes may have a minor organismal impact at the time of emergence, they are likely to often have profound long-term effects by expanding regulatory abilities and opening new highways that boost the evolutionary process.



We would like to thank Alex de Mendoza, María Almuedo-Castillo, Rafael D. Acemel, Arnau Sebé-Pedrós and Isabel Almudí for insightful scientific discussions and critical comments on the manuscript. We are especially grateful to Alex de Mendoza for sharing unpublished data on the evolution of YY1 genes in animals. The authors are funded by the Spanish Ministerio de Economía y Competitividad (RYC-2016-20089 to I.M., BFU2014-55076-P and BFU2017-89201-P to M.I.) and by the European Research Council (ERC) under the European Union’s Seventh Framework Programme FP7 research and innovation programme (ERC-StG-LS2-637591 to M.I).


  1. Acemel RD, Tena JJ, Irastorza-Azcarate I, Marletaz F, Gomez-Marin C, de la Calle-Mustienes E, Bertrand S, Diaz SG, Aldea D, Aury JM et al (2016) A single three-dimensional chromatin compartment in amphioxus indicates a stepwise evolution of vertebrate Hox bimodal regulation. Nat Genet 48:336–341PubMedCrossRefPubMedCentralGoogle Scholar
  2. Acemel RD, Maeso I, Gomez-Skarmeta JL (2017) Topologically associated domains: a successful scaffold for the evolution of gene regulation in animals. Wiley Interdiscip Rev Dev Biol 6CrossRefGoogle Scholar
  3. Albalat R, Canestro C (2016) Evolution by gene loss. Nat Rev Genet 17:379–391PubMedCrossRefPubMedCentralGoogle Scholar
  4. Alekseyenko AV, Kim N, Lee CJ (2007) Global analysis of exon creation versus loss and the role of alternative splicing in 17 vertebrate genomes. RNA 13:661–670PubMedPubMedCentralCrossRefGoogle Scholar
  5. Almuedo-Castillo M, Salo E, Adell T (2011) Dishevelled is essential for neural connectivity and planar cell polarity in planarians. Proc Natl Acad Sci U S A 108:2813–2818PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ashley J, Cordy B, Lucia D, Fradkin LG, Budnik V, Thomson T (2018) Retrovirus-like gag protein Arc1 binds RNA and traffics across synaptic boutons. Cell 172:262–274.e211PubMedPubMedCentralCrossRefGoogle Scholar
  7. Barbosa-Morais NL, Carmo-Fonseca M, Aparicio S (2006) Systematic genome-wide annotation of spliceosomal proteins reveals differential gene family expansion. Genome Res 16:66–77PubMedPubMedCentralCrossRefGoogle Scholar
  8. Barbosa-Morais NL, Irimia M, Pan Q, Xiong HY, Gueroussov S, Lee LJ, Slobodeniuc V, Kutter C, Watt S, Colak R et al (2012) The evolutionary landscape of alternative splicing in vertebrate species. Science 338:1587–1593PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bejerano G, Lowe CB, Ahituv N, King B, Siepel A, Salama SR, Rubin EM, James Kent W, Haussler D (2006) A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441:87–90PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bhuiyan SA, Ly S, Phan M, Huntington B, Hogan E, Liu CC, Liu J, Pavlidis P (2018) Systematic evaluation of isoform function in literature reports of alternative splicing. BMC Genomics 19:637PubMedPubMedCentralCrossRefGoogle Scholar
  11. Blencowe BJ (2006) Alternative splicing: new insights from global analyses. Cell 126:37–47PubMedCrossRefPubMedCentralGoogle Scholar
  12. Blumenthal T (1995) Trans-splicing and polycistronic transcription in Caenorhabditis elegans. Trends Genet 11:132–136PubMedCrossRefPubMedCentralGoogle Scholar
  13. Blumenthal T (2004) Operons in eukaryotes. Brief Funct Genomic Proteomic 3:199–211PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bogdanović O, Smits AH, de la Calle Mustienes E, Tena JJ, Ford E, Williams R, Senanayake U, Schultz MD, Hontelez S, van Kruijsbergen I et al (2016) Active DNA demethylation at enhancers during the vertebrate phylotypic period. Nat Genet 48:417–426PubMedPubMedCentralCrossRefGoogle Scholar
  15. Brate J, Neumann RS, Fromm B, Haraldsen AAB, Tarver JE, Suga H, Donoghue PCJ, Peterson KJ, Ruiz-Trillo I, Grini PE, Shalchian-Tabrizi K (2018) Unicellular origin of the animal microRNA machinery. Curr Biol 28:3288–3295 e3285PubMedPubMedCentralCrossRefGoogle Scholar
  16. Breitling R, Gerber JK (2000) Origin of the paired domain. Dev Genes Evol 210:644–650PubMedCrossRefPubMedCentralGoogle Scholar
  17. Britten RJ, Davidson EH (1969) Gene regulation for higher cells: a theory. Science 165(3891):349–357. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Brunet T, Bouclet A, Ahmadi P, Mitrossilis D, Driquez B, Brunet AC, Henry L, Serman F, Bealle G, Menager C et al (2013) Evolutionary conservation of early mesoderm specification by mechanotransduction in Bilateria. Nat Commun 4:2821PubMedPubMedCentralCrossRefGoogle Scholar
  19. Buljan M, Chalancon G, Eustermann S, Wagner GP, Fuxreiter M, Bateman A, Babu MM (2012) Tissue-specific splicing of disordered segments that embed binding motifs rewires protein interaction networks. Mol Cell 46:871–883PubMedPubMedCentralCrossRefGoogle Scholar
  20. Burguera D, Marquez Y, Racioppi C, Permanyer J, Torres-Mendez A, Esposito R, Albuixech-Crespo B, Fanlo L, D’Agostino Y, Gohr A et al (2017) Evolutionary recruitment of flexible Esrp-dependent splicing programs into diverse embryonic morphogenetic processes. Nat Commun 8:1799PubMedPubMedCentralCrossRefGoogle Scholar
  21. Canela A, Maman Y, Jung S, Wong N, Callen E, Day A, Kieffer-Kwon KR, Pekowska A, Zhang H, Rao SSP et al (2017) Genome organization drives chromosome fragility. Cell 170:507–521.e518PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cañestro C, Albalat R, Irimia M, Garcia-Fernàndez J (2013) Impact of gene gains, losses and duplication modes on the origin and diversification of vertebrates. Semin Cell Dev Biol. pii: S1084-9521(1012)00232-00237
  23. Carbone L, Harris RA, Gnerre S, Veeramah KR, Lorente-Galdos B, Huddleston J, Meyer TJ, Herrero J, Roos C, Aken B et al (2014) Gibbon genome and the fast karyotype evolution of small apes. Nature 513:195–201PubMedPubMedCentralCrossRefGoogle Scholar
  24. Clark JW, Donoghue PCJ (2018) Whole-genome duplication and plant macroevolution. Trends Plant Sci 23:933–945PubMedCrossRefPubMedCentralGoogle Scholar
  25. Clark RM, Wagler TN, Quijada P, Doebley J (2006) A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nat Genet 38:594–597PubMedCrossRefPubMedCentralGoogle Scholar
  26. Clarke JT, Lloyd GT, Friedman M (2016) Little evidence for enhanced phenotypic evolution in early teleosts relative to their living fossil sister group. Proc Natl Acad Sci U S A 113:11531–11536PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cornelis G, Funk M, Vernochet C, Leal F, Tarazona OA, Meurice G, Heidmann O, Dupressoir A, Miralles A, Ramirez-Pinilla MP, Heidmann T (2017) An endogenous retroviral envelope syncytin and its cognate receptor identified in the viviparous placental Mabuya lizard. Proc Natl Acad Sci U S A 114:E10991–E11000PubMedPubMedCentralCrossRefGoogle Scholar
  28. Crampton JS, Meyers SR, Cooper RA, Sadler PM, Foote M, Harte D (2018) Pacing of Paleozoic macroevolutionary rates by Milankovitch grand cycles. Proc Natl Acad Sci U S A 115:5686–5691PubMedPubMedCentralCrossRefGoogle Scholar
  29. Crane E, Bian Q, McCord RP, Lajoie BR, Wheeler BS, Ralston EJ, Uzawa S, Dekker J, Meyer BJ (2015) Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 523:240–244PubMedPubMedCentralCrossRefGoogle Scholar
  30. D’Aniello S, Irimia M, Maeso I, Pascual-Anaya J, Jiménez-Delgado S, Bertrand S, Garcia-Fernàndez J (2008) Gene expansion and retention leads to a diverse tyrosine kinase superfamily in amphioxus. Mol Biol Evol 25:1841–1854PubMedCrossRefPubMedCentralGoogle Scholar
  31. De Conti L, Baralle M, Buratti E (2013) Exon and intron definition in pre-mRNA splicing. Wiley Interdiscip Rev RNA 4:49–60PubMedCrossRefPubMedCentralGoogle Scholar
  32. de Mendoza A, Sebe-Pedros A, Sestak MS, Matejcic M, Torruella G, Domazet-Loso T, Ruiz-Trillo I (2013) Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages. Proc Natl Acad Sci U S A 110:E4858–E4866PubMedPubMedCentralCrossRefGoogle Scholar
  33. de Mendoza A, Sebe-Pedros A, Ruiz-Trillo I (2014) The evolution of the GPCR signaling system in eukaryotes: modularity, conservation, and the transition to metazoan multicellularity. Genome Biol Evol 6:606–619PubMedPubMedCentralCrossRefGoogle Scholar
  34. de Mendoza A, Bonnet A, Vargas-Landin DB, Ji N, Li H, Yang F, Li L, Hori K, Pflueger J, Buckberry S et al (2018) Recurrent acquisition of cytosine methyltransferases into eukaryotic retrotransposons. Nat Commun 9:1341PubMedPubMedCentralCrossRefGoogle Scholar
  35. De Moerlooze L, Spencer-Dene B, Revest JM, Hajihosseini M, Rosewell I, Dickson C (2000) An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development 127:483–492PubMedPubMedCentralGoogle Scholar
  36. Deline B, Greenwood JM, Clark JW, Puttick MN, Peterson KJ, Donoghue PCJ (2018) Evolution of metazoan morphological disparity. Proc Natl Acad Sci U S A 115:E8909–E8918PubMedPubMedCentralCrossRefGoogle Scholar
  37. Devenport D (2014) The cell biology of planar cell polarity. J Cell Biol 207:171–179PubMedPubMedCentralCrossRefGoogle Scholar
  38. Dittmar KA, Jiang P, Park JW, Amirikian K, Wan J, Shen S, Xing Y, Carstens RP (2012) Genome-wide determination of a broad ESRP-regulated posttranscriptional network by high-throughput sequencing. Mol Cell Biol 32:1468–1482PubMedPubMedCentralCrossRefGoogle Scholar
  39. Dogan ES, Liu C (2018) Three-dimensional chromatin packing and positioning of plant genomes. Nat Plants 4:521–529PubMedCrossRefPubMedCentralGoogle Scholar
  40. Dong P, Tu X, Chu PY, Lu P, Zhu N, Grierson D, Du B, Li P, Zhong S (2017) 3D chromatin architecture of large plant genomes determined by local A/B compartments. Mol Plant 10:1497–1509PubMedCrossRefPubMedCentralGoogle Scholar
  41. Donoghue PC, Purnell MA (2005) Genome duplication, extinction and vertebrate evolution. Trends Ecol Evol 20:312–319PubMedCrossRefGoogle Scholar
  42. Du S, Lawrence EJ, Strzelecki D, Rajput P, Xia SJ, Gottesman DM, Barr FG (2005) Co-expression of alternatively spliced forms of PAX3, PAX7, PAX3-FKHR and PAX7-FKHR with distinct DNA binding and transactivation properties in rhabdomyosarcoma. Int J Cancer 115:85–92PubMedCrossRefGoogle Scholar
  43. DuBuc TQ, Stephenson TB, Rock AQ, Martindale MQ (2018) Hox and Wnt pattern the primary body axis of an anthozoan cnidarian before gastrulation. Nat Commun 9:2007PubMedPubMedCentralCrossRefGoogle Scholar
  44. Ellis JD, Barrios-Rodiles M, Colak R, Irimia M, Kim T, Calarco JA, Wang X, Pan Q, O’Hanlon D, Kim PM et al (2012) Tissue-specific alternative splicing remodels protein-protein interaction networks. Mol Cell 46:884–892PubMedPubMedCentralCrossRefGoogle Scholar
  45. Emerson RO, Thomas JH (2011) Gypsy and the birth of the SCAN domain. J Virol 85:12043–12052PubMedPubMedCentralCrossRefGoogle Scholar
  46. Engstrom PG, Ho Sui SJ, Drivenes O, Becker TS, Lenhard B (2007) Genomic regulatory blocks underlie extensive microsynteny conservation in insects. Genome Res 17:1898–1908PubMedPubMedCentralCrossRefGoogle Scholar
  47. Erwin DH (2017) Developmental push or environmental pull? The causes of macroevolutionary dynamics. Hist Philos Life Sci 39:36PubMedCrossRefGoogle Scholar
  48. Fawcett JA, Maere S, Van de Peer Y (2009) Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc Natl Acad Sci U S A 106:5737–5742PubMedPubMedCentralCrossRefGoogle Scholar
  49. Feng S, Cokus SJ, Zhang X, Chen PY, Bostick M, Goll MG, Hetzel J, Jain J, Strauss SH, Halpern ME et al (2010) Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci U S A 107:8689–8694PubMedPubMedCentralCrossRefGoogle Scholar
  50. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J et al (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230PubMedCrossRefPubMedCentralGoogle Scholar
  51. Flot JF, Hespeels B, Li X, Noel B, Arkhipova I, Danchin EG, Hejnol A, Henrissat B, Koszul R, Aury JM et al (2013) Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature 500:453–457PubMedCrossRefGoogle Scholar
  52. Franke M, Ibrahim DM, Andrey G, Schwarzer W, Heinrich V, Schopflin R, Kraft K, Kempfer R, Jerkovic I, Chan WL et al (2016) Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature 538:265–269PubMedCrossRefGoogle Scholar
  53. Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA (2016) Formation of chromosomal domains by loop extrusion. Cell Rep 15:2038–2049PubMedPubMedCentralCrossRefGoogle Scholar
  54. Gabut M, Samavarchi-Tehrani P, Wang X, Slobodeniuc V, O’Hanlon D, Sung HK, Alvarez M, Talukder S, Pan Q, Mazzoni EO et al (2011) An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell 147:132–146PubMedCrossRefGoogle Scholar
  55. Gaiti F, Calcino AD, Tanurdzic M, Degnan BM (2017a) Origin and evolution of the metazoan non-coding regulatory genome. Dev Biol 427:193–202PubMedCrossRefGoogle Scholar
  56. Gaiti F, Jindrich K, Fernandez-Valverde SL, Roper KE, Degnan BM, Tanurdzic M (2017b) Landscape of histone modifications in a sponge reveals the origin of animal cis-regulatory complexity. Elife 6Google Scholar
  57. Ganot P, Kallesoe T, Reinhardt R, Chourrout D, Thompson EM (2004) Spliced-leader RNA trans splicing in a chordate, Oikopleura dioica, with a compact genome. Mol Cell Biol 24:7795–7805PubMedPubMedCentralCrossRefGoogle Scholar
  58. Gao B (2012) Wnt regulation of planar cell polarity (PCP). Curr Top Dev Biol 101:263–295PubMedCrossRefGoogle Scholar
  59. Garcia-Fernàndez J (2005) The genesis and evolution of homeobox gene clusters. Nat Rev Genet 6:881–892PubMedCrossRefGoogle Scholar
  60. Gehman LT, Stoilov P, Maguire J, Damianov A, Lin CH, Shiue L, Ares M Jr, Mody I, Black DL (2011) The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain. Nat Genet 43:706–711PubMedPubMedCentralCrossRefGoogle Scholar
  61. Gehman LT, Meera P, Stoilov P, Shiue L, O’Brien JE, Meisler MH, Ares M Jr, Otis TS, Black DL (2012) The splicing regulator Rbfox2 is required for both cerebellar development and mature motor function. Genes Dev 26:445–460PubMedPubMedCentralCrossRefGoogle Scholar
  62. Gerstberger S, Hafner M, Tuschl T (2014) A census of human RNA-binding proteins. Nat Rev Genet 15:829–845PubMedCrossRefGoogle Scholar
  63. Grau-Bove X, Torruella G, Donachie S, Suga H, Leonard G, Richards TA, Ruiz-Trillo I (2017) Dynamics of genomic innovation in the unicellular ancestry of animals. Elife 6Google Scholar
  64. Grau-Bove X, Ruiz-Trillo I, Irimia M (2018) Origin of exon skipping-rich transcriptomes in animals driven by evolution of gene architecture. Genome Biol 19:135PubMedPubMedCentralCrossRefGoogle Scholar
  65. Gueroussov S, Gonatopoulos-Pournatzis T, Irimia M, Raj B, Lin ZY, Gingras AC, Blencowe BJ (2015) An alternative splicing event amplifies evolutionary differences between vertebrates. Science 349:868–873PubMedCrossRefGoogle Scholar
  66. Harmston N, Ing-Simmons E, Tan G, Perry M, Merkenschlager M, Lenhard B (2017) Topologically associating domains are ancient features that coincide with Metazoan clusters of extreme noncoding conservation. Nat Commun 8:441PubMedPubMedCentralCrossRefGoogle Scholar
  67. Harrison MC, Jongepier E, Robertson HM, Arning N, Bitard-Feildel T, Chao H, Childers CP, Dinh H, Doddapaneni H, Dugan S et al (2018) Hemimetabolous genomes reveal molecular basis of termite eusociality. Nat Ecol Evol 2:557–566PubMedPubMedCentralCrossRefGoogle Scholar
  68. Hastings KE (2005) SL trans-splicing: easy come or easy go? Trends Genet 21:240–247PubMedCrossRefGoogle Scholar
  69. He S, Del Viso F, Chen CY, Ikmi A, Kroesen AE, Gibson MC (2018) An axial Hox code controls tissue segmentation and body patterning in Nematostella vectensis. Science 361:1377–1380PubMedCrossRefGoogle Scholar
  70. Heger P, Wiehe T (2014) New tools in the box: an evolutionary synopsis of chromatin insulators. Trends Genet 30:161–171PubMedCrossRefGoogle Scholar
  71. Heger P, Marin B, Schierenberg E (2009) Loss of the insulator protein CTCF during nematode evolution. BMC Mol Biol 10:84PubMedPubMedCentralCrossRefGoogle Scholar
  72. Heger P, Marin B, Bartkuhn M, Schierenberg E, Wiehe T (2012) The chromatin insulator CTCF and the emergence of metazoan diversity. Proc Natl Acad Sci U S A 109:17507–17512PubMedPubMedCentralCrossRefGoogle Scholar
  73. Heger P, George R, Wiehe T (2013) Successive gain of insulator proteins in arthropod evolution. Evolution 67:2945–2956PubMedPubMedCentralGoogle Scholar
  74. Holland PW, Marlétaz F, Maeso I, Dunwell TL, Paps J (2017) New genes from old: asymmetric divergence of gene duplicates and the evolution of development. Philos Trans R Soc Lond Ser B Biol Sci 372(1713):pii: 20150480CrossRefGoogle Scholar
  75. Huang H, Rastegar M, Bodner C, Goh SL, Rambaldi I, Featherstone M (2005) MEIS C termini harbor transcriptional activation domains that respond to cell signaling. J Biol Chem 280:10119–10127PubMedCrossRefPubMedCentralGoogle Scholar
  76. Huang S, Chen Z, Yan X, Yu T, Huang G, Yan Q, Pontarotti PA, Zhao H, Li J, Yang P et al (2014) Decelerated genome evolution in modern vertebrates revealed by analysis of multiple lancelet genomes. Nat Commun 5:5896PubMedPubMedCentralCrossRefGoogle Scholar
  77. Hug CB, Grimaldi AG, Kruse K, Vaquerizas JM (2017) Chromatin architecture emerges during zygotic genome activation independent of transcription. Cell 169:216–228.e219PubMedCrossRefGoogle Scholar
  78. Irimia M, Blencowe BJ (2012) Alternative splicing: decoding an expansive regulatory layer. Curr Opin Cell Biol 24:323–332PubMedCrossRefGoogle Scholar
  79. Irimia M, Roy SW (2014) Origin of spliceosomal introns and alternative splicing. Cold Spring Harb Perspect Biol 6. pii:a016071PubMedPubMedCentralCrossRefGoogle Scholar
  80. Irimia M, Maeso I, Gunning PW, Garcia-Fernandez J, Roy SW (2010) Internal and external paralogy in the evolution of Tropomyosin genes in metazoans. Mol Biol Evol 27:1504–1517PubMedPubMedCentralCrossRefGoogle Scholar
  81. Irimia M, Maeso I, Burguera D, Hidalgo-Sánchez M, Puelles L, Garcia-Fernàndez J, Roy SW, Ferran JL (2011) Contrasting 5′ and 3′ evolutionary histories and frequent evolutionary convergence in Meis/hth gene structures. Genome Biol Evol 3:551–564PubMedPubMedCentralCrossRefGoogle Scholar
  82. Irimia M, Tena JJ, Alexis MS, Fernandez-Miñan A, Maeso I, Bogdanovic O, de la Calle-Mustienes E, Roy SW, Gómez-Skarmeta JL, Fraser HB (2012a) Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints. Genome Res 22:2356–2367PubMedPubMedCentralCrossRefGoogle Scholar
  83. Irimia M, Royo JL, Burguera D, Maeso I, Gómez-Skarmeta JL, Garcia-Fernandez J (2012b) Comparative genomics of the Hedgehog loci in chordates and the origins of Shh regulatory novelties. Sci Rep 2:433PubMedPubMedCentralCrossRefGoogle Scholar
  84. Irimia M, Maeso I, Roy SW, Fraser HB (2013) Ancient cis-regulatory constraints and the evolution of genome architecture. Trends Genet 29:521–528PubMedPubMedCentralCrossRefGoogle Scholar
  85. Irimia M, Weatheritt RJ, Ellis J, Parikshak NN, Gonatopoulos-Pournatzis T, Babor M, Quesnel-Vallières M, Tapial J, Raj B, O’Hanlon D et al (2014) A highly conserved program of neuronal microexons is misregulated in autistic brains. Cell 159:1511–1523PubMedPubMedCentralCrossRefGoogle Scholar
  86. Jabbari K, Heger P, Sharma R, Wiehe T (2018) The diverging routes of BORIS and CTCF: an interactomic and phylogenomic analysis. Life (Basel) 8Google Scholar
  87. Jensen KB, Dredge BK, Stefani G, Zhong R, Buckanovich RJ, Okano HJ, Yang YY, Darnell RB (2000) Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron 25:359–371PubMedCrossRefPubMedCentralGoogle Scholar
  88. Jordan IK, Rogozin IB, Glazko GV, Koonin EV (2003) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 19:68–72PubMedCrossRefPubMedCentralGoogle Scholar
  89. Kaitsuka T, Tomizawa K, Matsushita M (2011) Transformation of eEF1Bdelta into heat-shock response transcription factor by alternative splicing. EMBO Rep 12:673–681PubMedPubMedCentralCrossRefGoogle Scholar
  90. Kalsotra A, Cooper TA (2011) Functional consequences of developmentally regulated alternative splicing. Nat Rev Genet 12:715–729PubMedPubMedCentralCrossRefGoogle Scholar
  91. Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, Stamm S (2013) Function of alternative splicing. Gene 514:1–30PubMedCrossRefPubMedCentralGoogle Scholar
  92. Kennedy B, Sabara H, Haydon D, Husband B (2006) Pollinator-mediated assortative mating in mixed ploidy populations of Chamerion angustifolium (Onagraceae). Oecologia 150:398–408PubMedCrossRefPubMedCentralGoogle Scholar
  93. Kenny NJ, Chan KW, Nong W, Qu Z, Maeso I, Yip HY, Chan TF, Kwan HS, Holland PW, Chu KH, Hui JH (2016) Ancestral whole-genome duplication in the marine chelicerate horseshoe crabs. Heredity (Edinb) 116:190–199CrossRefGoogle Scholar
  94. Keren H, Lev-Maor G, Ast G (2010) Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet 11:345–355PubMedCrossRefPubMedCentralGoogle Scholar
  95. Kikuta H, Laplante M, Navratilova P, Komisarczuk AZ, Engstrom PG, Fredman D, Akalin A, Caccamo M, Sealy I, Howe K et al (2007) Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates. Genome Res 17:545–555PubMedPubMedCentralCrossRefGoogle Scholar
  96. Kiselev Y, Eriksen TE, Forsdahl S, Nguyen LH (2012) Mikkola I: 3T3 cell lines stably expressing Pax6 or Pax6(5a)–a new tool used for identification of common and isoform specific target genes. PLoS One 7:e31915PubMedPubMedCentralCrossRefGoogle Scholar
  97. Klein TJ, Mlodzik M (2004) A conserved signaling cassette regulates hair patterning from Drosophila to man. Proc Natl Acad Sci U S A 101:9173–9174PubMedPubMedCentralCrossRefGoogle Scholar
  98. Kopelman NM, Lancet D, Yanai I (2005) Alternative splicing and gene duplication are inversely correlated evolutionary mechanisms. Nat Genet 37:588–589PubMedCrossRefPubMedCentralGoogle Scholar
  99. Kunarso G, Chia NY, Jeyakani J, Hwang C, Lu X, Chan YS, Ng HH, Bourque G (2011) Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat Genet 42:631–634CrossRefGoogle Scholar
  100. Laurent B, Ruitu L, Murn J, Hempel K, Ferrao R, Xiang Y, Liu S, Garcia BA, Wu H, Wu F et al (2015) A specific LSD1/KDM1A isoform regulates neuronal differentiation through H3K9 demethylation. Mol Cell 57:957–970PubMedPubMedCentralCrossRefGoogle Scholar
  101. Laurent S, Salamin N, Robinson-Rechavi M (2017) No evidence for the radiation time lag model after whole genome duplications in Teleostei. PLoS One 12:e0176384PubMedPubMedCentralCrossRefGoogle Scholar
  102. Lavialle C, Cornelis G, Dupressoir A, Esnault C, Heidmann O, Vernochet C, Heidmann T (2013) Paleovirology of ‘syncytins’, retroviral env genes exapted for a role in placentation. Philos Trans R Soc Lond Ser B Biol Sci 368:20120507CrossRefGoogle Scholar
  103. Letelier J, de la Calle-Mustienes E, Pieretti J, Naranjo S, Maeso I, Nakamura T, Pascual-Anaya J, Shubin NH, Schneider I, Martinez-Morales JR, Gomez-Skarmeta JL (2018a) A conserved Shh cis-regulatory module highlights a common developmental origin of unpaired and paired fins. Nat Genet 50:504–509PubMedPubMedCentralCrossRefGoogle Scholar
  104. Letelier J, Terriente J, Belzunce I, Voltes A, Undurraga CA, Polvillo R, Devos L, Tena JJ, Maeso I, Retaux S et al (2018b) Evolutionary emergence of the rac3b/rfng/sgca regulatory cluster refined mechanisms for hindbrain boundaries formation. Proc Natl Acad Sci U S A 115:E3731–E3740PubMedPubMedCentralCrossRefGoogle Scholar
  105. Lev-Maor G, Sorek R, Shomron N, Ast G (2003) The birth of an alternatively spliced exon: 3′ splice-site selection in Alu exons. Science 300:1288–1291PubMedCrossRefPubMedCentralGoogle Scholar
  106. Lev-Maor G, Ram O, Kim E, Sela N, Goren A, Levanon EY, Ast G (2008) Intronic Alus influence alternative splicing. PLoS Genet 4:e1000204PubMedPubMedCentralCrossRefGoogle Scholar
  107. Li Q, Zheng S, Han A, Lin CH, Stoilov P, Fu XD, Black DL (2014) The splicing regulator PTBP2 controls a program of embryonic splicing required for neuronal maturation. Elife 3:e01201PubMedPubMedCentralCrossRefGoogle Scholar
  108. Li YI, Sanchez-Pulido L, Haerty W, Ponting CP (2015) RBFOX and PTBP1 proteins regulate the alternative splicing of micro-exons in human brain transcripts. Genome Res 25:1–13PubMedPubMedCentralCrossRefGoogle Scholar
  109. Licatalosi DD, Yano M, Fak JJ, Mele A, Grabinski SE, Zhang C, Darnell RB (2012) Ptbp2 represses adult-specific splicing to regulate the generation of neuronal precursors in the embryonic brain. Genes Dev 26:626–642CrossRefGoogle Scholar
  110. Lupianez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E, Horn D, Kayserili H, Opitz JM, Laxova R et al (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161:1012–1025PubMedPubMedCentralCrossRefGoogle Scholar
  111. Lynch VJ, Leclerc RD, May G, Wagner GP (2011) Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet 43:1154–1159PubMedPubMedCentralCrossRefGoogle Scholar
  112. Lynch VJ, Nnamani MC, Kapusta A, Brayer K, Plaza SL, Mazur EC, Emera D, Sheikh SZ, Grutzner F, Bauersachs S et al (2015) Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy. Cell Rep 10:551–561PubMedPubMedCentralCrossRefGoogle Scholar
  113. Maeso I, Tena JJ (2016) Favorable genomic environments for cis-regulatory evolution: a novel theoretical framework. Semin Cell Dev Biol 57:2–10PubMedCrossRefPubMedCentralGoogle Scholar
  114. Maeso I, Irimia M, Tena JJ, González-Pérez E, Tran D, Ravi V, Venkatesh B, Campuzano S, Gómez-Skarmeta JL, Garcia-Fernàndez J (2012a) An ancient genomic regulatory block conserved across bilaterians and its dismantling in tetrapods by retrogene replacement. Genome Res 22:642–655PubMedPubMedCentralCrossRefGoogle Scholar
  115. Maeso I, Roy SW, Irimia M (2012b) Widespread recurrent evolution of genomic features. Genome Biol Evol 4:486–500PubMedPubMedCentralCrossRefGoogle Scholar
  116. Maeso I, Acemel RD, Gomez-Skarmeta JL (2017) Cis-regulatory landscapes in development and evolution. Curr Opin Genet Dev 43:17–22PubMedCrossRefPubMedCentralGoogle Scholar
  117. Maniatis T, Tasic B (2002) Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature 418:236–243PubMedCrossRefGoogle Scholar
  118. Maeso I, Dunwell TL, Wyatt CD, Marlétaz F, Vető B, Bernal JA, Quah S, Irimia M, Holland PW (2016) Evolutionary origin and functional divergence of totipotent cell homeobox genes in eutherian mammals. BMC Biol 14:45. CrossRefPubMedPubMedCentralGoogle Scholar
  119. Marlétaz F, Firbas PN, Maeso I, Tena JJ, Bogdanovic O, Perry M, Wyatt CD, de la Calle-Mustienes E, Bertrand S, Burguera D et al (2018) Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature 564:64–70PubMedPubMedCentralCrossRefGoogle Scholar
  120. Merkin JJ, Chen P, Alexis MS, Hautaniemi SK, Burge CB (2015) Origins and impacts of new mammalian exons. Cell Rep 10:1992–2005PubMedPubMedCentralCrossRefGoogle Scholar
  121. Miki T, Bottaro DP, Fleming TP, Smith CL, Burgess WH, Chan AM, Aaronson SA (1992) Determination of ligand-binding specificity by alternative splicing: two distinct growth factor receptors encoded by a single gene. Proc Natl Acad Sci U S A 89:246–250PubMedPubMedCentralCrossRefGoogle Scholar
  122. Modrek B, Lee CJ (2003) Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nat Genet 34:177–180PubMedCrossRefPubMedCentralGoogle Scholar
  123. Momose T, Kraus Y, Houliston E (2012) A conserved function for Strabismus in establishing planar cell polarity in the ciliated ectoderm during cnidarian larval development. Development 139:4374–4382PubMedCrossRefPubMedCentralGoogle Scholar
  124. Moran Y, Agron M, Praher D, Technau U (2017) The evolutionary origin of plant and animal microRNAs. Nat Ecol Evol 1:27PubMedPubMedCentralCrossRefGoogle Scholar
  125. Muscente AD, Prabhu A, Zhong H, Eleish A, Meyer MB, Fox P, Hazen RM, Knoll AH (2018) Quantifying ecological impacts of mass extinctions with network analysis of fossil communities. Proc Natl Acad Sci U S A 115:5217–5222PubMedPubMedCentralCrossRefGoogle Scholar
  126. Nelson C, Hersh B, Carroll S (2004) The regulatory content of intergenic DNA shapes genome architecture. Genome Biol 5:R25PubMedPubMedCentralCrossRefGoogle Scholar
  127. Nora EP, Goloborodko A, Valton AL, Gibcus JH, Uebersohn A, Abdennur N, Dekker J, Mirny LA, Bruneau BG (2017) Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169:930–944 e922PubMedPubMedCentralCrossRefGoogle Scholar
  128. Nossa CW, Havlak P, Yue JX, Lv J, Vincent KY, Brockmann HJ, Putnam NH (2014) Joint assembly and genetic mapping of the Atlantic horseshoe crab genome reveals ancient whole genome duplication. Gigascience 3:9PubMedPubMedCentralCrossRefGoogle Scholar
  129. Oka R, Zicola J, Weber B, Anderson SN, Hodgman C, Gent JI, Wesselink JJ, Springer NM, Hoefsloot HCJ, Turck F, Stam M (2017) Genome-wide mapping of transcriptional enhancer candidates using DNA and chromatin features in maize. Genome Biol 18:137PubMedPubMedCentralCrossRefGoogle Scholar
  130. Paps J, Holland PWH (2018) Reconstruction of the ancestral metazoan genome reveals an increase in genomic novelty. Nat Commun 9:1730PubMedPubMedCentralCrossRefGoogle Scholar
  131. Pastuzyn ED, Day CE, Kearns RB, Kyrke-Smith M, Taibi AV, McCormick J, Yoder N, Belnap DM, Erlendsson S, Morado DR et al (2018) The neuronal gene arc encodes a repurposed retrotransposon gag protein that mediates intercellular RNA transfer. Cell 172:275–288 e218PubMedPubMedCentralCrossRefGoogle Scholar
  132. Pauli T, Vedder L, Dowling D, Petersen M, Meusemann K, Donath A, Peters RS, Podsiadlowski L, Mayer C, Liu S et al (2016) Transcriptomic data from panarthropods shed new light on the evolution of insulator binding proteins in insects: insect insulator proteins. BMC Genomics 17:861PubMedPubMedCentralCrossRefGoogle Scholar
  133. Peterson KJ, Dietrich MR, McPeek MA (2009) MicroRNAs and metazoan macroevolution: insights into canalization, complexity, and the Cambrian explosion. Bioessays 31:736–747PubMedCrossRefPubMedCentralGoogle Scholar
  134. Pukhlyakova E, Aman AJ, Elsayad K, Technau U (2018) beta-Catenin-dependent mechanotransduction dates back to the common ancestor of Cnidaria and Bilateria. Proc Natl Acad Sci U S A 115:6231–6236PubMedPubMedCentralCrossRefGoogle Scholar
  135. Putnam N, Butts T, Ferrier DEK, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK et al (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–1071PubMedCrossRefGoogle Scholar
  136. Quesnel-Vallières M, Irimia M, Cordes SP, Blencowe BJ (2015) Essential roles for the splicing regulator nSR100/SRRM4 during nervous system development. Genes Dev 29:746–759PubMedPubMedCentralCrossRefGoogle Scholar
  137. Raj B, O’Hanlon D, Vessey JP, Pan Q, Ray D, Buckley NJ, Miller FD, Blencowe BJ (2011) Cross-regulation between an alternative splicing activator and a transcription repressor controls neurogenesis. Mol Cell 43:843–850PubMedCrossRefGoogle Scholar
  138. Raj B, Irimia M, Braunschweig U, Sterne-Weiler T, O’Hanlon D, Yuan-Lin Z, Chen IG, Easton L, Ule J, Gingras AC et al (2014) Global regulatory mechanism underlying the activation of an exon network required for neurogenesis. Mol Cell 56:90–103PubMedPubMedCentralCrossRefGoogle Scholar
  139. Ram O, Ast G (2007) SR proteins: a foot on the exon before the transition from intron to exon definition. Trends Genet 23:5–7PubMedCrossRefGoogle Scholar
  140. Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–1680PubMedPubMedCentralCrossRefGoogle Scholar
  141. Rao SSP, Huang SC, Glenn St Hilaire B, Engreitz JM, Perez EM, Kieffer-Kwon KR, Sanborn AL, Johnstone SE, Bascom GD, Bochkov ID et al (2017) Cohesin loss eliminates all loop domains. Cell 171:305–320.e324PubMedPubMedCentralCrossRefGoogle Scholar
  142. Richter DJ, Fozouni P, Eisen MB, King N (2018) Gene family innovation, conservation and loss on the animal stem lineage. Elife 7Google Scholar
  143. Robberson BL, Cote GJ, Berget SM (1990) Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol Cell Biol 10:84–94PubMedPubMedCentralCrossRefGoogle Scholar
  144. Roux J, Robinson-Rechavi M (2011) Age-dependent gain of alternative splice forms and biased duplication explain the relation between splicing and duplication. Genome Res 21:357–363PubMedPubMedCentralCrossRefGoogle Scholar
  145. Rowley MJ, Nichols MH, Lyu X, Ando-Kuri M, Rivera ISM, Hermetz K, Wang P, Ruan Y, Corces VG (2017) Evolutionarily conserved principles predict 3D chromatin organization. Mol Cell 67:837–852PubMedPubMedCentralCrossRefGoogle Scholar
  146. Royo JL, Maeso I, Irimia M, Gao F, Peter IS, Lopes CS, D’Aniello S, Casares F, Davidson EH, Garcia-Fernández J, Gómez-Skarmeta JL (2011) Transphyletic conservation of developmental regulatory state in animal evolution. Proc Natl Acad Sci U S A 108:14186–14191PubMedPubMedCentralCrossRefGoogle Scholar
  147. Sanborn AL, Rao SS, Huang SC, Durand NC, Huntley MH, Jewett AI, Bochkov ID, Chinnappan D, Cutkosky A, Li J et al (2015) Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci U S A 112:E6456–E6465PubMedPubMedCentralCrossRefGoogle Scholar
  148. Schenkelaars Q, Fierro-Constain L, Renard E, Borchiellini C (2016a) Retracing the path of planar cell polarity. BMC Evol Biol 16:69PubMedPubMedCentralCrossRefGoogle Scholar
  149. Schenkelaars Q, Quintero O, Hall C, Fierro-Constain L, Renard E, Borchiellini C, Hill AL (2016b) ROCK inhibition abolishes the establishment of the aquiferous system in Ephydatia muelleri (Porifera, Demospongiae). Dev Biol 412:298–310PubMedCrossRefGoogle Scholar
  150. Schippers KJ, Nichols SA (2018) Evidence of signaling and adhesion roles for beta-catenin in the sponge Ephydatia muelleri. Mol Biol Evol 35:1407–1421PubMedCrossRefGoogle Scholar
  151. Schwager EE, Sharma PP, Clarke T, Leite DJ, Wierschin T, Pechmann M, Akiyama-Oda Y, Esposito L, Bechsgaard J, Bilde T et al (2017) The house spider genome reveals an ancient whole-genome duplication during arachnid evolution. BMC Biol 15:62PubMedPubMedCentralCrossRefGoogle Scholar
  152. Schwaiger M, Schonauer A, Rendeiro AF, Pribitzer C, Schauer A, Gilles AF, Schinko JB, Renfer E, Fredman D, Technau U (2014) Evolutionary conservation of the eumetazoan gene regulatory landscape. Genome Res 24:639–650PubMedPubMedCentralCrossRefGoogle Scholar
  153. Schwarzer W, Abdennur N, Goloborodko A, Pekowska A, Fudenberg G, Loe-Mie Y, Fonseca NA, Huber W, Haering C, Mirny L, Spitz F (2017) Two independent modes of chromatin organization revealed by cohesin removal. Nature 551:51–56PubMedPubMedCentralCrossRefGoogle Scholar
  154. Sebe-Pedros A, Ballare C, Parra-Acero H, Chiva C, Tena JJ, Sabido E, Gomez-Skarmeta JL, Di Croce L, Ruiz-Trillo I (2016) The dynamic regulatory genome of capsaspora and the origin of animal multicellularity. Cell 165:1224–1237PubMedPubMedCentralCrossRefGoogle Scholar
  155. Soltis PS, Marchant DB, Van de Peer Y, Soltis DE (2015) Polyploidy and genome evolution in plants. Curr Opin Genet Dev 35:119–125PubMedCrossRefGoogle Scholar
  156. Sorek R, Lev-Maor G, Reznik M, Dagan T, Belinky F, Graur D, Ast G (2004) Minimal conditions for exonization of intronic sequences: 5′ splice site formation in Alu exons. Mol Cell 14:221–231PubMedCrossRefPubMedCentralGoogle Scholar
  157. Stam M, Belele C, Ramakrishna W, Dorweiler JE, Bennetzen JL, Chandler VL (2002) The regulatory regions required for B′ paramutation and expression are located far upstream of the maize b1 transcribed sequences. Genetics 162:917–930PubMedPubMedCentralGoogle Scholar
  158. Stamm S, Ben-Ari S, Rafalska I, Tang Y, Zhang Z, Toiber D, Thanaraj TA, Soreq H (2005) Function of alternative splicing. Gene 344:1–20PubMedCrossRefPubMedCentralGoogle Scholar
  159. Suga H, Chen Z, de Mendoza A, Sebe-Pedros A, Brown MW, Kramer E, Carr M, Kerner P, Vervoort M, Sanchez-Pons N et al (2013) The Capsaspora genome reveals a complex unicellular prehistory of animals. Nat Commun 4:2325PubMedPubMedCentralCrossRefGoogle Scholar
  160. Symmons O, Pan L, Remeseiro S, Aktas T, Klein F, Huber W, Spitz F (2016) The Shh topological domain facilitates the action of remote enhancers by reducing the effects of genomic distances. Dev Cell 39:529–543PubMedPubMedCentralCrossRefGoogle Scholar
  161. Tessier LH, Keller M, Chan RL, Fournier R, Weil JH, Imbault P (1991) Short leader sequences may be transferred from small RNAs to pre-mature mRNAs by trans-splicing in Euglena. EMBO J 10:2621–2625PubMedPubMedCentralCrossRefGoogle Scholar
  162. Thompson JN, Merg KF (2008) Evolution of polyploidy and the diversification of plant-pollinator interactions. Ecology 89:2197–2206PubMedCrossRefPubMedCentralGoogle Scholar
  163. Torres-Méndez A, Bonnal S, Marquez Y, Roth J, Iglesias M, Permanyer J, Almudí I, O’Hanlon D, Guitart T, Soller M et al (2019) The evolutionary origin of neural microexons. Nat Ecol Evol. In pressGoogle Scholar
  164. Trizzino M, Kapusta A, Brown CD (2018) Transposable elements generate regulatory novelty in a tissue-specific fashion. BMC Genomics 19:468PubMedPubMedCentralCrossRefGoogle Scholar
  165. Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10:116–129PubMedCrossRefPubMedCentralGoogle Scholar
  166. Wang J, Telese F, Tan Y, Li W, Jin C, He X, Basnet H, Ma Q, Merkurjev D, Zhu X et al (2015) LSD1n is an H4K20 demethylase regulating memory formation via transcriptional elongation control. Nat Neurosci 18:1256–1264PubMedPubMedCentralCrossRefGoogle Scholar
  167. Wang M, Tu L, Lin M, Lin Z, Wang P, Yang Q, Ye Z, Shen C, Li J, Zhang L et al (2017) Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat Genet 49:579–587PubMedCrossRefGoogle Scholar
  168. Wang M, Wang P, Lin M, Ye Z, Li G, Tu L, Shen C, Li J, Yang Q, Zhang X (2018) Evolutionary dynamics of 3D genome architecture following polyploidization in cotton. Nat Plants 4:90–97PubMedCrossRefGoogle Scholar
  169. Warzecha CC, Shen S, Xing Y, Carstens RP (2009) The epithelial splicing factors ESRP1 and ESRP2 positively and negatively regulate diverse types of alternative splicing events. RNA Biol 6:546–562PubMedPubMedCentralCrossRefGoogle Scholar
  170. Warzecha CC, Jiang P, Amirikian K, Dittmar KA, Lu H, Shen S, Guo W, Xing Y, Carstens RP (2010) An ESRP-regulated splicing programme is abrogated during the epithelial-mesenchymal transition. EMBO J 29:3286–3300PubMedPubMedCentralCrossRefGoogle Scholar
  171. Watanabe H, Kuhn A, Fushiki M, Agata K, Ozbek S, Fujisawa T, Holstein TW (2014) Sequential actions of beta-catenin and Bmp pattern the oral nerve net in Nematostella vectensis. Nat Commun 5:5536PubMedPubMedCentralCrossRefGoogle Scholar
  172. Weise A, Bruser K, Elfert S, Wallmen B, Wittel Y, Wöhrle S, Hecht A (2010) Alternative splicing of Tcf7l2 transcripts generates protein variants with differential promoter-binding and transcriptional activation properties at Wnt/beta-catenin targets. Nucleic Acids Res 38:1964–1981PubMedCrossRefGoogle Scholar
  173. Windsor Reid PJ, Matveev E, McClymont A, Posfai D, Hill AL, Leys SP (2018) Wnt signaling and polarity in freshwater sponges. BMC Evol Biol 18:12PubMedPubMedCentralCrossRefGoogle Scholar
  174. Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH (2009) The frequency of polyploid speciation in vascular plants. Proc Natl Acad Sci U S A 106:13875–13879PubMedPubMedCentralCrossRefGoogle Scholar
  175. Yang X, Coulombe-Huntington J, Kang S, Sheynkman GM, Hao T, Richardson A, Sun S, Yang F, Shen YA, Murray RR et al (2016) Widespread expansion of protein interaction capabilities by alternative splicing. Cell 164:805–817PubMedPubMedCentralCrossRefGoogle Scholar
  176. Zemach A, McDaniel IE, Silva P, Zilberman D (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328:916–919PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Manuel Irimia
    • 1
    • 2
    • 3
  • Ignacio Maeso
    • 4
  1. 1.Centre for Genomic Regulation (CRG)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
  2. 2.Universitat Pompeu Fabra (UPF)BarcelonaSpain
  3. 3.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
  4. 4.Centro Andaluz de Biología del Desarrollo (CABD)CSIC-Universidad Pablo de Olavide-Junta de AndalucíaSevilleSpain

Personalised recommendations