How Do Morphological Novelties Evolve? Novel Approaches to Define Novel Morphologies

  • Isabel Almudí
  • Juan Pascual-Anaya
Part of the Fascinating Life Sciences book series (FLS)


Evolutionary innovations are biological revolutions: new organs are critically associated with the emergence of new species and their exploitation of new niches. Despite their importance in the history of life, how a morphological novelty arises and evolves is a long-standing question in evolutionary biology. By combining evolutionary theories with comparative developmental embryology, the emergence of the evo-devo discipline at the end of the twentieth century revived the interest in these questions. Mostly, a lack of appropriate techniques for non-model organisms precluded further advancements, and it is only now that novel DNA sequencing and genome editing techniques allow us to ask these long-standing questions in the organisms that may best serve to answer them. These new approaches have revealed the need of a new conceptual framework to define and classify morphological novelties in animal evolution. Thus, in this review, we will first revisit some of the most influential definitions of morphological novelty that have been coined over the last half century to further propose the use of the generative events that originated a new structure as the criterion to consider this new organ a morphological novelty or not. These generative events or phenomenological modes are divided into four different categories: (1) fusion of existing structures, (2) heterotopic activation of a gene regulatory network, (3) recruitment of additional cell types (either pre-existing or novel) into structures and (4) processes of symbiogenesis. We will finally revisit how recent studies have shed light into the mechanisms underpinning the evolutionary origin of some of the most classical morphological novelties.



We would like to thank Ignacio Maeso for fruitful discussions. We thank as well Naoki Irie for the drawing of the turtle skeleton and Nobu Tamura for giving us permission to modify and use his illustration of the placoderm Coccosteus cuspidatus.


  1. Anbutsu H, Moriyama M, Nikoh N, Hosokawa T, Futahashi R, Tanahashi M, Meng XY, Kuriwada T, Mori N, Oshima K, Hattori M, Fujie M, Satoh N, Maeda T, Shigenobu S, Koga R, Fukatsu T (2017) Small genome Symbiont underlies cuticle hardness in beetles. Proc Natl Acad Sci U S A 114(40):E8382–E8391PubMedPubMedCentralCrossRefGoogle Scholar
  2. Angelini DR, Kaufman TC (2004) Functional analyses in the hemipteran Oncopeltus fasciatus reveal conserved and derived aspects of appendage patterning in insects. Dev Biol 271(2):306–321PubMedCrossRefPubMedCentralGoogle Scholar
  3. Arendt D, Musser JM, Baker CVH, Bergman A, Cepko C, Erwin DH, Pavlicev M, Schlosser G, Widder S, Laubichler MD, Wagner GP (2016) The origin and evolution of cell types. Nat Rev Genet 17(12):744–757PubMedCrossRefPubMedCentralGoogle Scholar
  4. Arthur W (2000) Intraspecific variation in developmental characters: the origin of evolutionary novelties. Am Zool 40(5):811–818Google Scholar
  5. Averof M, Cohen SM (1997) Evolutionary origin of insect wings from ancestral gills. Nature 385(6617):627–630PubMedCrossRefPubMedCentralGoogle Scholar
  6. Babonis LS, Martindale MQ (2014) Old cell, new trick? Cnidocytes as a model for the evolution of novelty. Integr Comp Biol 54(4):714–722PubMedPubMedCentralCrossRefGoogle Scholar
  7. Babonis LS, Martindale MQ, Ryan JF (2016) Do novel genes drive morphological novelty? An investigation of the nematosomes in the sea anemone Nematostella vectensis. BMC Evol Biol 16(1):114PubMedPubMedCentralCrossRefGoogle Scholar
  8. Balfour FM (1881) On the development of the skeleton of the paired fins of Elasmobranchii, considered in relation to its bearings on the nature of the limbs of the vertebrata. Proc Zool Soc London 49(3):656–670CrossRefGoogle Scholar
  9. Batra LR (1966) Ambrosia fungi: extent of specificity to ambrosia beetles. Science 153(3732):193–195PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bradley TJ, Briscoe AD, Brady SG, Contreras HL, Danforth BN, Dudley R, Grimaldi D, Harrison JF, Kaiser JA, Merlin C, Reppert SM, Vandenbrooks JM, Yanoviak SP (2009) Episodes in insect evolution. Integr Comp Biol 49(5):590–606PubMedCrossRefPubMedCentralGoogle Scholar
  11. Brigandt I, Love AC (2010) Evolutionary novelty and the evo-devo synthesis: field notes. Evol Biol 37(2):93–99CrossRefGoogle Scholar
  12. Brito JM, Teillet MA, Le Douarin NM (2008) Induction of mirror-image supernumerary jaws in chicken mandibular mesenchyme by sonic hedgehog-producing cells. Development 135(13):2311–2319PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bruce H, Patel N (2018) Insect wings and body wall evolved from ancient leg segments. bioRxiv 244541.
  14. Burke A (1989) Development of the turtle carapace: implications for the evolution of a novel Bauplan. J Morphol 199:363–378PubMedCrossRefPubMedCentralGoogle Scholar
  15. Carroll SB, Gates J, Keys DN, Paddock SW, Panganiban GE, Selegue JE, Williams JA (1994) Pattern formation and eyespot determination in butterfly wings. Science 265(5168):109PubMedCrossRefPubMedCentralGoogle Scholar
  16. Cebra-Thomas J, Tan F, Sistla S, Estes E, Bender G, Kim C, Riccio P, Gilbert SF (2005) How the turtle forms its shell: a paracrine hypothesis of carapace formation. J Exp Zool B Mol Dev Evol 304(6):558–569PubMedCrossRefPubMedCentralGoogle Scholar
  17. Cerny R, Cattell M, Sauka-Spengler T, Bronner-Fraser M, Yu F, Medeiros DM (2010) Evidence for the prepattern/cooption model of vertebrate jaw evolution. Proc Natl Acad Sci U S A 107(40):17262–17267PubMedPubMedCentralCrossRefGoogle Scholar
  18. Clark-Hachtel CM, Tomoyasu Y (2016) Exploring the origin of insect wings from an evo-devo perspective. Curr Opin Insect Sci 13:77–85PubMedCrossRefPubMedCentralGoogle Scholar
  19. Clark-Hachtel C, Tomoyasu Y (2018) Two sets of wing homologs in the crustacean, Parhyale hawaiensis. bioRxiv 236281.
  20. Clark-Hachtel CM, Linz DM, Tomoyasu Y (2013) Insights into insect wing origin provided by functional analysis of vestigial in the red flour beetle, Tribolium castaneum. Proc Natl Acad Sci U S A 110(42):16951–16956PubMedPubMedCentralCrossRefGoogle Scholar
  21. Dahn RD, Davis MC, Pappano WN, Shubin NH (2007) Sonic hedgehog function in Chondrichthyan fins and the evolution of appendage patterning. Nature 445(7125):311–314PubMedCrossRefPubMedCentralGoogle Scholar
  22. Dale C (2017) Evolution: weevils get tough on symbiotic tyrosine. Curr Biol 27(23):R1282–R1284PubMedCrossRefPubMedCentralGoogle Scholar
  23. Darwin C (1859) On the origin of species. John Murray, LondonGoogle Scholar
  24. Depew MJ, Compagnucci C (2008) Tweaking the hinge and caps: testing a model of the organization of jaws. J Exp Zool B Mol Dev Evol 310(4):315–335PubMedCrossRefPubMedCentralGoogle Scholar
  25. Depew MJ, Lufkin T, Rubenstein JL (2002) Specification of jaw subdivisions by Dlx genes. Science 298(5592):381–385PubMedCrossRefPubMedCentralGoogle Scholar
  26. Elias-Neto M, Belles X (2016) Tergal and pleural structures contribute to the formation of ectopic prothoracic wings in cockroaches. R Soc Open Sci 3(8):160347PubMedPubMedCentralCrossRefGoogle Scholar
  27. Emlen DJ (1997) Alternative reproductive tactics and male-dimorphism in the horned beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae). Behav Ecol Sociobiol 41(5):335–341CrossRefGoogle Scholar
  28. Erwin DH (2015) Novelty and innovation in the history of life. Curr Biol 25(19):R930–R940PubMedCrossRefPubMedCentralGoogle Scholar
  29. Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9(5):397–405PubMedPubMedCentralCrossRefGoogle Scholar
  30. Filant J, Spencer TE (2014) Uterine glands: biological roles in conceptus implantation, uterine receptivity and decidualization. Int J Dev Biol 58(2–4):107–116PubMedPubMedCentralCrossRefGoogle Scholar
  31. Fish JL (2017) Evolvability of the vertebrate craniofacial skeleton. Semin Cell Dev Biol 17:30284–30287Google Scholar
  32. Freitas R, Zhang G, Cohn MJ (2006) Evidence that mechanisms of fin development evolved in the midline of early vertebrates. Nature 442(7106):1033–1037PubMedCrossRefPubMedCentralGoogle Scholar
  33. Freitas R, Gómez-Skarmeta JL, Rodrigues PN (2014) New frontiers in the evolution of fin development. J Exp Zool B Mol Dev Evol 322(7):540–552PubMedCrossRefPubMedCentralGoogle Scholar
  34. Gans C, Northcutt RG (1983) Neural crest and the origin of vertebrates: a new head. Science 220(4594):268–273PubMedCrossRefPubMedCentralGoogle Scholar
  35. Gegenbaur C (1876) Zur Morphologie der Gliedmassen der Wirbeltiere. Morphologisches Jahrbuch 2:396–420Google Scholar
  36. Green SA, Simoes-Costa M, Bronner ME (2015) Evolution of vertebrates as viewed from the crest. Nature 520(7548):474–482PubMedPubMedCentralCrossRefGoogle Scholar
  37. Grillo M, Casanova J, Averof M (2014) Development: a deep breath for endocrine organ evolution. Curr Biol 24(1):R38–R40PubMedCrossRefPubMedCentralGoogle Scholar
  38. Hallgrímsson B, Jamniczky HA, Young NM, Rolian C, Schmidt-Ott U, Marcucio RS (2012) The generation of variation and the developmental basis for evolutionary novelty. J Exp Zool B Mol Dev Evol 318(6):501–517PubMedPubMedCentralCrossRefGoogle Scholar
  39. Happ GM, Happ CM, Barras SJ (1971) Fine structure of the prothoracic mycangium, a chamber for the culture of symbiotic fungi, in the southern pine beetle, Dendroctonus frontalis. Tissue Cell 3(2):295–308PubMedCrossRefPubMedCentralGoogle Scholar
  40. Hartenstein V (2006) The neuroendocrine system of invertebrates: a developmental and evolutionary perspective. J Endocrinol 190(3):555–570PubMedCrossRefPubMedCentralGoogle Scholar
  41. Held LI (2013) Rethinking butterfly eyespots. Evol Biol 40(1):158–168CrossRefGoogle Scholar
  42. Hirasawa T, Pascual-Anaya J, Kamezaki N, Taniguchi M, Mine K, Kuratani S (2015) The evolutionary origin of the turtle shell and its dependence on the axial arrest of the embryonic rib cage. J Exp Zool B Mol Dev Evol 324(3):194–207PubMedCrossRefPubMedCentralGoogle Scholar
  43. Hulcr J, Stelinski LL (2017) The Ambrosia Symbiosis: from evolutionary ecology to practical management. Annu Rev Entomol 62:285–303PubMedCrossRefPubMedCentralGoogle Scholar
  44. Hulcr J, Rountree NR, Diamond SE, Stelinski LL, Fierer N, Dunn RR (2012) Mycangia of ambrosia beetles host communities of bacteria. Microb Ecol 64(3):784–793PubMedCrossRefPubMedCentralGoogle Scholar
  45. Hunt P, Whiting J, Nonchev S, Sham MH, Marshall H, Graham A, Cook M, Allemann R, Rigby PWJ, Gulisano M, Faiella A, Boncinelli E, Krumlauf R (1991) The branchial Hox code and its implications for gene regulation, patterning of the nervous system and head evolution. Development 2:63–77Google Scholar
  46. Kent D, Simpson J (1992) Eusociality in the beetle Austroplatypus incompertus (Coleoptera, Curculionidae). Naturwissenschaften 79:86–87CrossRefGoogle Scholar
  47. Keys DN, Lewis DL, Selegue JE, Pearson BJ, Goodrich LV, Johnson RL, Gates J, Scott MP, Carroll SB (1999) Recruitment of a hedgehog regulatory circuit in butterfly eyespot evolution. Science 283(5401):532PubMedCrossRefPubMedCentralGoogle Scholar
  48. Kijimoto T, Pespeni M, Beckers O, Moczek AP (2013) Beetle horns and horned beetles: emerging models in developmental evolution and ecology. Wiley Interdiscip Rev Dev Biol 2(3):405–418PubMedCrossRefPubMedCentralGoogle Scholar
  49. Kukalová-Peck J (1983) Origin of the insect wing and wing articulation from the arthropodan leg. Can J Zool 61(7):1618–1669CrossRefGoogle Scholar
  50. Kuraku S, Usuda R, Kuratani S (2005) Comprehensive survey of carapacial ridge-specific genes in turtle implies co-option of some regulatory genes in carapace evolution. Evol Dev 7(1):3–17PubMedCrossRefPubMedCentralGoogle Scholar
  51. Kuraku S, Takio Y, Sugahara F, Takechi M, Kuratani S (2010) Evolution of oropharyngeal patterning mechanisms involving Dlx and endothelins in vertebrates. Dev Biol 341(1):315–323PubMedCrossRefPubMedCentralGoogle Scholar
  52. Kuratani S, Kuraku S, Nagashima H (2011) Evolutionary developmental perspective for the origin of turtles: the folding theory for the shell based on the developmental nature of the carapacial ridge. Evol Dev 13(1):1–14PubMedCrossRefPubMedCentralGoogle Scholar
  53. Kuratani S, Adachi N, Wada N, Oisi Y, Sugahara F (2013) Developmental and evolutionary significance of the mandibular arch and prechordal/premandibular cranium in vertebrates: revising the heterotopy scenario of gnathostome jaw evolution. J Anat 222(1):41–55PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kuriwada T, Hosokawa T, Kumano N, Shiromoto K, Haraguchi D, Fukatsu T (2010) Biological role of Nardonella endosymbiont in its weevil host. PLoS One 5(10):e13101PubMedPubMedCentralCrossRefGoogle Scholar
  55. Letelier J, de la Calle-Mustienes E, Pieretti J, Naranjo S, Maeso I, Nakamura T, Pascual-Anaya J, Shubin NH, Schneider I, Martinez-Morales JR, Gómez-Skarmeta JL (2018) A conserved Shh cis-regulatory module highlights a common developmental origin of unpaired and paired fins. Nat Genet 50(4):504–509PubMedPubMedCentralCrossRefGoogle Scholar
  56. Linz DM, Tomoyasu Y (2018) Dual evolutionary origin of insect wings supported by an investigation of the abdominal wing serial homologs in Tribolium. Proc Natl Acad Sci U S A 115(4):E658–E667PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lukasik P, Nazario K, Van Leuven JT, Campbell MA, Meyer M, Michalik A, Pessacq P, Simon C, Veloso C, McCutcheon JP (2018) Multiple origins of interdependent endosymbiotic complexes in a genus of cicadas. Proc Natl Acad Sci U S A 115(2):E226–E235PubMedCrossRefPubMedCentralGoogle Scholar
  58. Lynch VJ, Roth JJ, Takahashi K, Dunn CW, Nonaka DF, Stopper GF, Wagner GP (2004) Adaptive evolution of HoxA-11 and HoxA-13 at the origin of the uterus in mammals. Proc Biol Sci 271(1554):2201–2207PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lynch VJ, Tanzer A, Wang Y, Leung FC, Gellersen B, Emera D, Wagner GP (2008) Adaptive changes in the transcription factor HoxA-11 are essential for the evolution of pregnancy in mammals. Proc Natl Acad Sci U S A 105(39):14928–14933PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lynch VJ, Leclerc RD, May G, Wagner GP (2011) Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet 43(11):1154–1159PubMedCrossRefPubMedCentralGoogle Scholar
  61. Lynch VJ, Nnamani MC, Kapusta A, Brayer K, Plaza SL, Mazur EC, Emera D, Sheikh SZ, Grutzner F, Bauersachs S, Graf A, Young SL, Lieb JD, DeMayo FJ, Feschotte C, Wagner GP (2015) Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy. Cell Rep 10(4):551–561PubMedPubMedCentralCrossRefGoogle Scholar
  62. Mashimo Y, Machida R (2017) Embryological evidence substantiates the subcoxal theory on the origin of pleuron in insects. Sci Rep 7(1):12597PubMedPubMedCentralCrossRefGoogle Scholar
  63. Mayr E (1960) The emergence of evolutionary novelties. In: Tax S (ed) Evolution after Darwin, vol 1. Harvard University Press, Cambridge, MA, pp 349–380Google Scholar
  64. Mayr E (1982) The growth of biological thought: diversity, evolution, and inheritance. Belknap Press, Cambridge, MAGoogle Scholar
  65. Medved V, Marden JH, Fescemyer HW, Der JP, Liu J, Mahfooz N, Popadić A (2015) Origin and diversification of wings: insights from a neopteran insect. Proc Natl Acad Sci 112(52):15946–15951PubMedCrossRefPubMedCentralGoogle Scholar
  66. Mikels AJ, Nusse R (2006) Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol 4(4):e115PubMedPubMedCentralCrossRefGoogle Scholar
  67. Miller CT, Yelon D, Stainier DY, Kimmel CB (2003) Two endothelin 1 effectors, hand2 and bapx1, pattern ventral pharyngeal cartilage and the jaw joint. Development 130(7):1353–1365PubMedCrossRefPubMedCentralGoogle Scholar
  68. Mivart SG (1879) XII. Notes on the fins of elasmobranchs, with considerations on the nature and homologues of vertebrate limbs. Trans Zool Soc London 10(10):439–484CrossRefGoogle Scholar
  69. Moczek AP (2008) On the origins of novelty in development and evolution. BioEssays 30(5):432–447PubMedCrossRefPubMedCentralGoogle Scholar
  70. Moczek AP (2009) On the origins of novelty and diversity in development and evolution: a case study on beetle horns. Cold Spring Harb Symp Quant Biol 74:289–296PubMedCrossRefPubMedCentralGoogle Scholar
  71. Moczek AP, Rose DJ (2009) Differential recruitment of limb patterning genes during development and diversification of beetle horns. Proc Natl Acad Sci 106(22):8992PubMedCrossRefPubMedCentralGoogle Scholar
  72. Monteiro A (2015) Origin, development, and evolution of butterfly eyespots. Annu Rev Entomol 60:253–271PubMedCrossRefPubMedCentralGoogle Scholar
  73. Müller GB (2010) Epigenetic innovation. In: Müller GB, Newman SA (eds) Evolution—the extended synthesis. MIT Press, Cambridge, MA, pp 51–69Google Scholar
  74. Müller GB, Newman SA (2005) The innovation triad: an EvoDevo agenda. J Exp Zool B Mol Dev Evol 304(6):487–503PubMedCrossRefPubMedCentralGoogle Scholar
  75. Müller GB, Wagner GP (1991) Novelty in evolution: restructuring the concept. Annu Rev Ecol Syst 22(1):229–256CrossRefGoogle Scholar
  76. Nagashima H, Kuraku S, Uchida K, Ohya YK, Narita Y, Kuratani S (2007) On the carapacial ridge in turtle embryos: its developmental origin, function and the chelonian body plan. Development 134(12):2219–2226PubMedCrossRefPubMedCentralGoogle Scholar
  77. Nagashima H, Sugahara F, Takechi M, Ericsson R, Kawashima-Ohya Y, Narita Y, Kuratani S (2009) Evolution of the turtle body plan by the folding and creation of new muscle connections. Science 325(5937):193–196PubMedCrossRefPubMedCentralGoogle Scholar
  78. Newman SA, Müller GB (2001) Epigenetic mechanisms of character origination. In: Wagner GP (ed) The character concept in evolutionary biology. Academic Press, San Diego, pp 559–580CrossRefGoogle Scholar
  79. Nijhout HF (2001) Elements of butterfly wing patterns. J Exp Zool 291(3):213–225PubMedCrossRefPubMedCentralGoogle Scholar
  80. Niwa N, Akimoto-Kato A, Niimi T, Tojo K, Machida R, Hayashi S (2010) Evolutionary origin of the insect wing via integration of two developmental modules. Evol Dev 12(2):168–176PubMedCrossRefPubMedCentralGoogle Scholar
  81. Nunberg M (1951) Contribution to the knowledge of prothoracic glands of Scolytidae and Platypodidae (Coleoptera). Ann Mus Zool Pol 14:261–265Google Scholar
  82. Oliver JC, Tong XL, Gall LF, Piel WH, Monteiro A (2012) A single origin for Nymphalid butterfly eyespots followed by widespread loss of associated gene expression. PLoS Genet 8(8):e1002893PubMedPubMedCentralCrossRefGoogle Scholar
  83. Parzer HF, Moczek AP (2008) Rapid antagonistic coevolution between primary and secondary sexual characters in horned beetles. Evolution 62(9):2423–2428PubMedCrossRefPubMedCentralGoogle Scholar
  84. Pascual-Anaya J, Hirasawa T, Sato I, Kuraku S, Kuratani S (2014) Comparative analysis of pleurodiran and cryptodiran turtle embryos depicts the molecular ground pattern of the turtle carapacial ridge. Int J Dev Biol 58(10–12):743–750PubMedCrossRefPubMedCentralGoogle Scholar
  85. Peterson T, Müller GB (2013) What is evolutionary novelty? Process versus character based definitions. J Exp Zool B Mol Dev Evol 320(6):345–350PubMedCrossRefPubMedCentralGoogle Scholar
  86. Pieretti J, Gehrke AR, Schneider I, Adachi N, Nakamura T, Shubin NH (2015) Organogenesis in deep time: a problem in genomics, development, and paleontology. Proc Natl Acad Sci U S A 112(16):4871–4876PubMedPubMedCentralCrossRefGoogle Scholar
  87. Pigliucci M (2008) What, if anything, is an evolutionary novelty? Philos Sci 75(5):887–898CrossRefGoogle Scholar
  88. PrabhuDas M, Bonney E, Caron K, Dey S, Erlebacher A, Fazleabas A, Fisher S, Golos T, Matzuk M, McCune JM, Mor G, Schulz L, Soares M, Spencer T, Strominger J, Way SS, Yoshinaga K (2015) Immune mechanisms at the maternal-fetal interface: perspectives and challenges. Nat Immunol 16(4):328–334PubMedPubMedCentralCrossRefGoogle Scholar
  89. Prokop J, Pecharová M, Nel A, Hörnschemeyer T, Krzemińska E, Krzemiński W, Engel MS (2017) Paleozoic Nymphal wing pads support dual model of insect wing origins. Curr Biol 27(2):263–269PubMedCrossRefPubMedCentralGoogle Scholar
  90. Rasnitsyn AP (1981) A modified paranotal theory of insect wing origin. J Morphol 168:331–338PubMedCrossRefPubMedCentralGoogle Scholar
  91. Reeve HK, Sherman PW (1993) Adaptation and the goals of evolutionary research. Q Rev Biol 68(1):1–32CrossRefGoogle Scholar
  92. Rinke R, Costa AS, Fonseca FP, Almeida LC, Delalibera Junior I, Henrique-Silva F (2011) Microbial diversity in the larval gut of field and laboratory populations of the sugarcane weevil Sphenophorus levis (Coleoptera, Curculionidae). Genet Mol Res 10(4):2679–2691PubMedCrossRefPubMedCentralGoogle Scholar
  93. Ruckes H (1929) Studies in chelonian osteology, part II: the morphological relationships between the girdles, ribs and carapace. Ann N Y Acad Sci 31(1):81–120CrossRefGoogle Scholar
  94. Saenko SV, Brakefield PM, Beldade P (2010) Single locus affects embryonic segment polarity and multiple aspects of an adult evolutionary novelty. BMC Biol 8(1):111PubMedPubMedCentralCrossRefGoogle Scholar
  95. Sanchez-Higueras C, Hombria JC (2016) Precise long-range migration results from short-range stepwise migration during ring gland organogenesis. Dev Biol 414(1):45–57PubMedCrossRefPubMedCentralGoogle Scholar
  96. Sanchez-Higueras C, Sotillos S, Castelli-Gair Hombria J (2014) Common origin of insect trachea and endocrine organs from a segmentally repeated precursor. Curr Biol 24(1):76–81PubMedCrossRefPubMedCentralGoogle Scholar
  97. Sebé-Pedrós A, Saudemont B, Chomsky E, Plessier F, Mailhé M-P, Renno J, Loe-Mie Y, Lifshitz A, Mukamel Z, Schmutz S, Novault S, Steinmetz PRH, Spitz F, Tanay A, Marlow H (2018) Cnidarian cell type diversity and regulation revealed by whole-organism single-cell RNA-Seq. Cell 173(6):1520–1534PubMedCrossRefPubMedCentralGoogle Scholar
  98. Shaffer HB, Minx P, Warren DE, Shedlock AM, Thomson RC, Valenzuela N, Abramyan J, Amemiya CT, Badenhorst D, Biggar KK, Borchert GM, Botka CW, Bowden RM, Braun EL, Bronikowski AM, Bruneau BG, Buck LT, Capel B, Castoe TA, Czerwinski M, Delehaunty KD, Edwards SV, Fronick CC, Fujita MK, Fulton L, Graves TA, Green RE, Haerty W, Hariharan R, Hernandez O, Hillier LW, Holloway AK, Janes D, Janzen FJ, Kandoth C, Kong L, de Koning AP, Li Y, Literman R, McGaugh SE, Mork L, O’Laughlin M, Paitz RT, Pollock DD, Ponting CP, Radhakrishnan S, Raney BJ, Richman JM, St John J, Schwartz T, Sethuraman A, Spinks PQ, Storey KB, Thane N, Vinar T, Zimmerman LM, Warren WC, Mardis ER, Wilson RK (2013) The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biol 14(3):R28PubMedCrossRefPubMedCentralGoogle Scholar
  99. Shigetani Y, Sugahara F, Kawakami Y, Murakami Y, Hirano S, Kuratani S (2002) Heterotopic shift of epithelial-mesenchymal interactions in vertebrate jaw evolution. Science 296(5571):1316–1319PubMedCrossRefPubMedCentralGoogle Scholar
  100. Shirai LT, Saenko SV, Keller RA, Jerónimo MA, Brakefield PM, Descimon H, Wahlberg N, Beldade P (2012) Evolutionary history of the recruitment of conserved developmental genes in association to the formation and diversification of a novel trait. BMC Evol Biol 12:21–21PubMedPubMedCentralCrossRefGoogle Scholar
  101. Snell-Rood EC, Moczek AP (2012) Insulin signaling as a mechanism underlying developmental plasticity: the role of FOXO in a nutritional polyphenism. PLoS One 7(4):e34857PubMedPubMedCentralCrossRefGoogle Scholar
  102. Stevens M (2005) The role of eyespots as anti-predator mechanisms, principally demonstrated in the Lepidoptera. Biol Rev Camb Philos Soc 80(4):573–588PubMedCrossRefPubMedCentralGoogle Scholar
  103. Takio Y, Pasqualetti M, Kuraku S, Hirano S, Rijli FM, Kuratani S (2004) Evolutionary biology: lamprey Hox genes and the evolution of jaws. Nature 429(6989):1 following 262CrossRefGoogle Scholar
  104. Takio Y, Kuraku S, Murakami Y, Pasqualetti M, Rijli FM, Narita Y, Kuratani S, Kusakabe R (2007) Hox gene expression patterns in Lethenteron japonicum embryos—insights into the evolution of the vertebrate Hox code. Dev Biol 308(2):606–620PubMedCrossRefPubMedCentralGoogle Scholar
  105. Thacher JK (1877) Median and paired fins, a contribution to the history of the vertebrate limbs. Trans Connecticut Acad Arts Sci 3(36):281–310Google Scholar
  106. Tomoyasu Y, Ohde T, Clark-Hachtel C (2017) What serial homologs can tell us about the origin of insect wings. F1000Res 6:268PubMedPubMedCentralCrossRefGoogle Scholar
  107. Van Leuven JT, Meister RC, Simon C, McCutcheon JP (2014) Sympatric speciation in a bacterial endosymbiont results in two genomes with the functionality of one. Cell 158(6):1270–1280PubMedCrossRefPubMedCentralGoogle Scholar
  108. Vanderpool D, Bracewell RR, McCutcheon JP (2017) Know your farmer: ancient origins and multiple independent domestications of ambrosia beetle fungal cultivars. Mol Ecol 27(8):2077–2094PubMedCrossRefPubMedCentralGoogle Scholar
  109. Wagner GP (2014) Homology, genes, and evolutionary innovation. Princeton University Press, PrincetonCrossRefGoogle Scholar
  110. Wagner GP, Kin K, Muglia L, Pavličev M (2014) Evolution of mammalian pregnancy and the origin of the decidual stromal cell. Int J Dev Biol 58(2–4):117–126PubMedCrossRefPubMedCentralGoogle Scholar
  111. Wang Z, Pascual-Anaya J, Zadissa A, Li W, Niimura Y, Huang Z, Li C, White S, Xiong Z, Fang D, Wang B, Ming Y, Chen Y, Zheng Y, Kuraku S, Pignatelli M, Herrero J, Beal K, Nozawa M, Li Q, Wang J, Zhang H, Yu L, Shigenobu S, Wang J, Liu J, Flicek P, Searle S, Wang J, Kuratani S, Yin Y, Aken B, Zhang G, Irie N (2013) The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat Genet 45(6):701–706PubMedPubMedCentralCrossRefGoogle Scholar
  112. Whitney HS, Farris SH (1970) Maxillary Mycangium in the mountain pine beetle. Science 167(3914):54PubMedCrossRefPubMedCentralGoogle Scholar
  113. Zattara EE, Busey HA, Linz DM, Tomoyasu Y, Moczek AP (2016) Neofunctionalization of embryonic head patterning genes facilitates the positioning of novel traits on the dorsal head of adult beetles. Proc Biol Sci 283(1834):20160824PubMedPubMedCentralCrossRefGoogle Scholar
  114. Zelenitsky DK, Therrien F, Erickson GM, DeBuhr CL, Kobayashi Y, Eberth DA, Hadfield F (2012) Feathered non-avian dinosaurs from North America provide insight into wing origins. Science 338(6106):510–514PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Isabel Almudí
    • 1
  • Juan Pascual-Anaya
    • 2
  1. 1.GEM-DMC2 UnitAndalusian Centre for Developmental Biology, CABD (CSIC-UPO-JA)SevilleSpain
  2. 2.Evolutionary Morphology LaboratoryRIKEN Cluster for Pioneering ResearchKobeJapan

Personalised recommendations