Further Bayesian and Monte Carlo Recapture Methods

  • George A. F. SeberEmail author
  • Matthew R. Schofield
Part of the Statistics for Biology and Health book series (SBH)


Although Bayesian methods are sprinkled throughout some of the previous chapters, we now give the topic our full attention and add some extensions. Their particular advantage arises from being able to apply Markov chain Monte Carlo techniques along with so-called reversible jump methods to sample from posterior distributions. We then consider modeling associations between parameters beginning with survival and birth (emergence), and then extending to deal with density dependence, covariates, and migration. Random effects can be better dealt with using a Bayesian model and Markov chain Monte Carlo simulations for the CJS (Cormack–Jolly–Seber) model. We finally describe a general method that is gaining popularity called data augmentation that is mentioned again in later chapters.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of StatisticsUniversity of AucklandAucklandNew Zealand
  2. 2.Department of Mathematics and StatisticsUniversity of OtagoDunedinNew Zealand

Personalised recommendations